1
|
Shi L, Yang C, Zhang M, Li K, Wang K, Jiao L, Liu R, Wang Y, Li M, Wang Y, Ma L, Hu S, Bian X. Dissecting the mechanism of atlastin-mediated homotypic membrane fusion at the single-molecule level. Nat Commun 2024; 15:2488. [PMID: 38509071 PMCID: PMC10954664 DOI: 10.1038/s41467-024-46919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by dynamin-like GTPase atlastin (ATL). This fundamental process relies on GTP-dependent domain rearrangements in the N-terminal region of ATL (ATLcyto), including the GTPase domain and three-helix bundle (3HB). However, its conformational dynamics during the GTPase cycle remain elusive. Here, we combine single-molecule FRET imaging and molecular dynamics simulations to address this conundrum. Different from the prevailing model, ATLcyto can form a loose crossover dimer upon GTP binding, which is tightened by GTP hydrolysis for membrane fusion. Furthermore, the α-helical motif between the 3HB and transmembrane domain, which is embedded in the surface of the lipid bilayer and self-associates in the crossover dimer, is required for ATL function. To recycle the proteins, Pi release, which disassembles the dimer, activates frequent relative movements between the GTPase domain and 3HB, and subsequent GDP dissociation alters the conformational preference of the ATLcyto monomer for entering the next reaction cycle. Finally, we found that two disease-causing mutations affect human ATL1 activity by destabilizing GTP binding-induced loose crossover dimer formation and the membrane-embedded helix, respectively. These results provide insights into ATL-mediated homotypic membrane fusion and the pathological mechanisms of related disease.
Collapse
Affiliation(s)
- Lijun Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Chenguang Yang
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyuan Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Kangning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Keying Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Li Jiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruming Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Lu Ma
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shuxin Hu
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Candia N, Ibacache A, Medina-Yáñez I, Olivares GH, Ramírez M, Vega-Macaya F, Couve A, Sierralta J, Olguín P. Identification of atlastin genetic modifiers in a model of hereditary spastic paraplegia in Drosophila. Hum Genet 2023; 142:1303-1315. [PMID: 37368047 DOI: 10.1007/s00439-023-02577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by progressive dysfunction of corticospinal motor neurons. Mutations in Atlastin1/Spg3, a small GTPase required for membrane fusion in the endoplasmic reticulum, are responsible for 10% of HSPs. Patients with the same Atlastin1/Spg3 mutation present high variability in age at onset and severity, suggesting a fundamental role of the environment and genetic background. Here, we used a Drosophila model of HSPs to identify genetic modifiers of decreased locomotion associated with atlastin knockdown in motor neurons. First, we screened for genomic regions that modify the climbing performance or viability of flies expressing atl RNAi in motor neurons. We tested 364 deficiencies spanning chromosomes two and three and found 35 enhancer and four suppressor regions of the climbing phenotype. We found that candidate genomic regions can also rescue atlastin effects at synapse morphology, suggesting a role in developing or maintaining the neuromuscular junction. Motor neuron-specific knockdown of 84 genes spanning candidate regions of the second chromosome identified 48 genes required for climbing behavior in motor neurons and 7 for viability, mapping to 11 modifier regions. We found that atl interacts genetically with Su(z)2, a component of the Polycomb repressive complex 1, suggesting that epigenetic regulation plays a role in the variability of HSP-like phenotypes caused by atl alleles. Our results identify new candidate genes and epigenetic regulation as a mechanism modifying neuronal atl pathogenic phenotypes, providing new targets for clinical studies.
Collapse
Affiliation(s)
- Noemi Candia
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Andrés Ibacache
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Ignacio Medina-Yáñez
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Gonzalo H Olivares
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Santiago, Chile
| | - Mauricio Ramírez
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Franco Vega-Macaya
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Andrés Couve
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Jimena Sierralta
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricio Olguín
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile.
- Departamento de Neurociencia, Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Santiago, Chile.
| |
Collapse
|
3
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
4
|
Costamagna D, Casters V, Beltrà M, Sampaolesi M, Van Campenhout A, Ortibus E, Desloovere K, Duelen R. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia. Cells 2022; 11:3351. [PMID: 36359747 PMCID: PMC9655384 DOI: 10.3390/cells11213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valérie Casters
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Els Ortibus
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Høyer H, Busk ØL, Esbensen QY, Røsby O, Hilmarsen HT, Russell MB, Nyman TA, Braathen GJ, Nilsen HL. Clinical characteristics and proteome modifications in two Charcot-Marie-Tooth families with the AARS1 Arg326Trp mutation. BMC Neurol 2022; 22:299. [PMID: 35971119 PMCID: PMC9377087 DOI: 10.1186/s12883-022-02828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.
Collapse
Affiliation(s)
- Helle Høyer
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Oddveig Røsby
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.,Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Hilde T Hilmarsen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Michael B Russell
- Head and Neck Research Group, Division for Research and Innovation, Akershus University Hospital, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, 1474, Norbyhagen, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet, 0372, Oslo, Norway
| | - Geir J Braathen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Hilde L Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| |
Collapse
|
6
|
Kelly CM, Byrnes LJ, Neela N, Sondermann H, O'Donnell JP. The hypervariable region of atlastin-1 is a site for intrinsic and extrinsic regulation. J Cell Biol 2021; 220:212648. [PMID: 34546351 PMCID: PMC8563291 DOI: 10.1083/jcb.202104128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Atlastin (ATL) GTPases catalyze homotypic membrane fusion of the peripheral endoplasmic reticulum (ER). GTP-hydrolysis–driven conformational changes and membrane tethering are prerequisites for proper membrane fusion. However, the molecular basis for regulation of these processes is poorly understood. Here we establish intrinsic and extrinsic modes of ATL1 regulation that involve the N-terminal hypervariable region (HVR) of ATLs. Crystal structures of ATL1 and ATL3 exhibit the HVR as a distinct, isoform-specific structural feature. Characterizing the functional role of ATL1’s HVR uncovered its positive effect on membrane tethering and on ATL1’s cellular function. The HVR is post-translationally regulated through phosphorylation-dependent modification. A kinase screen identified candidates that modify the HVR site specifically, corresponding to the modifications on ATL1 detected in cells. This work reveals how the HVR contributes to efficient and potentially regulated activity of ATLs, laying the foundation for the identification of cellular effectors of ATL-mediated membrane processes.
Collapse
Affiliation(s)
- Carolyn M Kelly
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Laura J Byrnes
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Niharika Neela
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Kiel University, Kiel, Germany
| | - John P O'Donnell
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY.,Cell Biology Division, Medical Research Counsil (MRC) Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
7
|
ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021; 10:cells10112870. [PMID: 34831093 PMCID: PMC8616106 DOI: 10.3390/cells10112870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.
Collapse
|
8
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
9
|
|
10
|
Affiliation(s)
- Maaran Michael Rajah
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC) -Université de Paris, Paris, France
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- * E-mail: (BM); (OS)
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris, France
- Vaccine Research Institute, Creteil, France
- * E-mail: (BM); (OS)
| |
Collapse
|
11
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Naef V, Mero S, Fichi G, D'Amore A, Ogi A, Gemignani F, Santorelli FM, Marchese M. Swimming in Deep Water: Zebrafish Modeling of Complicated Forms of Hereditary Spastic Paraplegia and Spastic Ataxia. Front Neurosci 2019; 13:1311. [PMID: 31920481 PMCID: PMC6914767 DOI: 10.3389/fnins.2019.01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) and hereditary ataxia (HA) are two groups of disorders characterized, respectively, by progressive dysfunction or degeneration of the pyramidal tracts (HSP) and of the Purkinje cells and spinocerebellar tracts (HA). Although HSP and HA are generally shown to have distinct clinical-genetic profiles, in several cases the clinical presentation, the causative genes, and the cellular pathways and mechanisms involved overlap between the two forms. Genetic analyses in humans in combination with in vitro and in vivo studies using model systems have greatly expanded our knowledge of spinocerebellar degenerative disorders. In this review, we focus on the zebrafish (Danio rerio), a vertebrate model widely used in biomedical research since its overall nervous system organization is similar to that of humans. A critical analysis of the literature suggests that zebrafish could serve as a powerful experimental tool for molecular and genetic dissection of both HA and HSP. The zebrafish, found to be very useful for demonstrating the causal relationship between defect and mutation, also offers a useful platform to exploit for the development of therapies.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | - Serena Mero
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Gianluca Fichi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Struttura Complessa Toscana Sud (Sede Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M. Aleandri, Grosseto, Italy
| | - Angelica D'Amore
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy.,Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Asahi Ogi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | | | - Maria Marchese
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| |
Collapse
|
13
|
Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. J Virol 2019; 93:JVI.01047-19. [PMID: 31534046 DOI: 10.1128/jvi.01047-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
Collapse
|
14
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
15
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
16
|
Jardin N, Giudicelli F, Ten Martín D, Vitrac A, De Gois S, Allison R, Houart C, Reid E, Hazan J, Fassier C. BMP- and neuropilin 1-mediated motor axon navigation relies on spastin alternative translation. Development 2018; 145:dev.162701. [PMID: 30082270 PMCID: PMC6141775 DOI: 10.1242/dev.162701] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Functional analyses of genes responsible for neurodegenerative disorders have unveiled crucial links between neurodegenerative processes and key developmental signalling pathways. Mutations in SPG4-encoding spastin cause hereditary spastic paraplegia (HSP). Spastin is involved in diverse cellular processes that couple microtubule severing to membrane remodelling. Two main spastin isoforms are synthesised from alternative translational start sites (M1 and M87). However, their specific roles in neuronal development and homeostasis remain largely unknown. To selectively unravel their neuronal function, we blocked spastin synthesis from each initiation codon during zebrafish development and performed rescue analyses. The knockdown of each isoform led to different motor neuron and locomotion defects, which were not rescued by the selective expression of the other isoform. Notably, both morphant neuronal phenotypes were observed in a CRISPR/Cas9 spastin mutant. We next showed that M1 spastin, together with HSP proteins atlastin 1 and NIPA1, drives motor axon targeting by repressing BMP signalling, whereas M87 spastin acts downstream of neuropilin 1 to control motor neuron migration. Our data therefore suggest that defective BMP and neuropilin 1 signalling may contribute to the motor phenotype in a vertebrate model of spastin depletion.
Collapse
Affiliation(s)
- Nicolas Jardin
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| | - François Giudicelli
- Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM, Biologie du Développement Paris Seine - Institut de Biologie Paris-Seine (LBD-IBPS), 75005 Paris, France
| | - Daniel Ten Martín
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| | - Anaïs Vitrac
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| | - Rachel Allison
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Jamilé Hazan
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| | - Coralie Fassier
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), 75005 Paris, France
| |
Collapse
|
17
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Ring J, Rockenfeller P, Abraham C, Tadic J, Poglitsch M, Schimmel K, Westermayer J, Schauer S, Achleitner B, Schimpel C, Moitzi B, Rechberger GN, Sigrist SJ, Carmona-Gutierrez D, Kroemer G, Büttner S, Eisenberg T, Madeo F. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:411-422. [PMID: 29234670 PMCID: PMC5722644 DOI: 10.15698/mic2017.12.603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023]
Abstract
Hereditary spastic paraplegias, a group of neurodegenerative disorders, can be caused by loss-of-function mutations in the protein spartin. However, the physiological role of spartin remains largely elusive. Here we show that heterologous expression of human or Drosophila spartin extends chronological lifespan of yeast, reducing age-associated ROS production, apoptosis, and necrosis. We demonstrate that spartin localizes to the proximity of mitochondria and physically interacts with proteins related to mitochondrial and respiratory metabolism. Interestingly, Nde1, the mitochondrial external NADH dehydrogenase, and Pda1, the core enzyme of the pyruvate dehydrogenase complex, are required for spartin-mediated cytoprotection. Furthermore, spartin interacts with the glycolysis enhancer phospo-fructo-kinase-2,6 (Pfk26) and is sufficient to complement for PFK26-deficiency at least in early aging. We conclude that mitochondria-related energy metabolism is crucial for spartin's vital function during aging and uncover a network of specific interactors required for this function.
Collapse
Affiliation(s)
- Julia Ring
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Claudia Abraham
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katherina Schimmel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Julia Westermayer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Simon Schauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Bettina Achleitner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Christa Schimpel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioNanoNet Forschungsgesellschaft mbH, Graz, Austria
| | - Barbara Moitzi
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Gerald N. Rechberger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Stephan J. Sigrist
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | | | - Guido Kroemer
- BioTechMed Graz, Graz, Austria
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
19
|
Xu S, Stern M, McNew JA. Beneficial effects of rapamycin in a Drosophila model for hereditary spastic paraplegia. J Cell Sci 2016; 130:453-465. [PMID: 27909242 DOI: 10.1242/jcs.196741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
The locomotor deficits in the group of diseases referred to as hereditary spastic paraplegia (HSP) reflect degeneration of upper motor neurons, but the mechanisms underlying this neurodegeneration are unknown. We established a Drosophila model for HSP, atlastin (atl), which encodes an ER fusion protein. Here, we show that neuronal atl loss causes degeneration of specific thoracic muscles that is preceded by other pathologies, including accumulation of aggregates containing polyubiquitin, increased generation of reactive oxygen species and activation of the JNK-Foxo stress response pathway. We show that inhibiting the Tor kinase, either genetically or by administering rapamycin, at least partially reversed many of these pathologies. atl loss from muscle also triggered muscle degeneration and rapamycin-sensitive locomotor deficits, as well as polyubiquitin aggregate accumulation. These results indicate that atl loss triggers muscle degeneration both cell autonomously and nonautonomously.
Collapse
Affiliation(s)
- Shiyu Xu
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - James A McNew
- Department of BioSciences, Program in Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
20
|
Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res 2016; 349:32-44. [DOI: 10.1016/j.yexcr.2016.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
|
21
|
Rao K, Stone MC, Weiner AT, Gheres KW, Zhou C, Deitcher DL, Levitan ES, Rolls MM. Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol Biol Cell 2016; 27:3245-3256. [PMID: 27605706 PMCID: PMC5170858 DOI: 10.1091/mbc.e16-05-0287] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
A Drosophila model system is used to show that the hereditary spastic paraplegia proteins spastin and atlastin help axons but not dendrites regenerate. The endoplasmic reticulum concentrates at tips of regenerating axons but not dendrites, and this depends on spastin and atlastin. Mutations in >50 genes, including spastin and atlastin, lead to hereditary spastic paraplegia (HSP). We previously demonstrated that reduction of spastin leads to a deficit in axon regeneration in a Drosophila model. Axon regeneration was similarly impaired in neurons when HSP proteins atlastin, seipin, and spichthyin were reduced. Impaired regeneration was dependent on genetic background and was observed when partial reduction of HSP proteins was combined with expression of dominant-negative microtubule regulators, suggesting that HSP proteins work with microtubules to promote regeneration. Microtubule rearrangements triggered by axon injury were, however, normal in all genotypes. We examined other markers to identify additional changes associated with regeneration. Whereas mitochondria, endosomes, and ribosomes did not exhibit dramatic repatterning during regeneration, the endoplasmic reticulum (ER) was frequently concentrated near the tip of the growing axon. In atlastin RNAi and spastin mutant animals, ER accumulation near single growing axon tips was impaired. ER tip concentration was observed only during axon regeneration and not during dendrite regeneration. In addition, dendrite regeneration was unaffected by reduction of spastin or atlastin. We propose that the HSP proteins spastin and atlastin promote axon regeneration by coordinating concentration of the ER and microtubules at the growing axon tip.
Collapse
Affiliation(s)
- Kavitha Rao
- Biochemistry and Molecular Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Michelle C Stone
- Biochemistry and Molecular Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802.,Molecular, Cellular and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA 16802
| | - Kyle W Gheres
- Biochemistry and Molecular Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802.,Molecular, Cellular and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA 16802
| | - Chaoming Zhou
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | | - Edwin S Levitan
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 .,Molecular, Cellular and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
22
|
Zhang H, Hu J. Shaping the Endoplasmic Reticulum into a Social Network. Trends Cell Biol 2016; 26:934-943. [PMID: 27339937 DOI: 10.1016/j.tcb.2016.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is constructed as a network of tubules and sheets that exist in one continuous membrane system. Several classes of integral membrane protein have been shown to shape ER membranes. Functional studies using mutant proteins have begun to reveal the significance of ER morphology and membrane dynamics. In this review, we discuss the common protein modules and mechanisms that generate the characteristic shape of the ER. We also describe the cellular functions closely related to ER morphology, particularly contacts with other membrane systems, and their potential roles in the development of multicellular organisms.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Zhao J, Hedera P. Strumpellin and Spartin, Hereditary Spastic Paraplegia Proteins, are Binding Partners. J Exp Neurosci 2015; 9:15-25. [PMID: 25987849 PMCID: PMC4426939 DOI: 10.4137/jen.s22969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 01/02/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is one of the most heterogeneous neurodegenerative diseases with more than 50 identified genes causing a relatively stereotypical phenotypic presentation. Recent studies of HSP pathogenesis have suggested the existence of shared biochemical pathways that are crucial for axonal maintenance and degeneration. We explored possible interactions of several proteins associated with this condition. Here we report interactions of endogenous and overexpressed strumpellin with another HSP-associated protein, spartin. This biochemical interaction does not appear to be a part of the Wiskott–Aldrich syndrome protein and Scar homologue (WASH) complex because spartin is not co-immunoprecipitated with WASH1 protein. The spartin–strumpellin association does not require the presence of the microtubule interacting and trafficking domain of spartin. Over-expression of mutant forms of strumpellin with the introduced HSP-causing mutations does not alter the colocalization of these two proteins. Knockdown of strumpellin in cultured cortical rat neurons interferes with development of neuronal branching and results in reduced expression of endogenous spartin. Proteosomal inhibition stabilized the levels of spartin and WASH1 proteins, supporting increased spartin degradation in the absence of strumpellin.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University, Nashville, TN, USA. ; Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
|
25
|
Caenorhabditis elegans Models of Hereditary Spastic Paraplegia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Kang MJ, Hansen TJ, Mickiewicz M, Kaczynski TJ, Fye S, Gunawardena S. Disruption of axonal transport perturbs bone morphogenetic protein (BMP)--signaling and contributes to synaptic abnormalities in two neurodegenerative diseases. PLoS One 2014; 9:e104617. [PMID: 25127478 PMCID: PMC4134223 DOI: 10.1371/journal.pone.0104617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/14/2023] Open
Abstract
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.
Collapse
Affiliation(s)
- Min Jung Kang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Timothy J. Hansen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Monique Mickiewicz
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Tadeusz J. Kaczynski
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Samantha Fye
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhu PP, Denton KR, Pierson TM, Li XJ, Blackstone C. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet 2014; 23:5638-48. [PMID: 24908668 DOI: 10.1093/hmg/ddu280] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegias are a large, diverse group of neurological disorders (SPG1-71) with the unifying feature of prominent lower extremity spasticity, owing to a length-dependent axonopathy of corticospinal motor neurons. The most common early-onset form of pure, autosomal dominant hereditary spastic paraplegia is caused by mutation in the ATL1 gene encoding the atlastin-1 GTPase, which mediates homotypic fusion of ER tubules to form the polygonal ER network. We have identified a p.Pro342Ser mutation in a young girl with pure SPG3A. This residue is in a critical hinge region of atlastin-1 between its GTPase and assembly domains, and it is conserved in all known eukaryotic atlastin orthologs. We produced induced pluripotent stem cells from skin fibroblasts and differentiated these into forebrain neurons to generate a human neuronal model for SPG3A. Axons of these SPG3A neurons showed impaired growth, recapitulating axonal defects in atlastin-1-depleted rat cortical neurons and impaired root hair growth in loss-of-function mutants of the ATL1 ortholog rhd3 in the plant Arabidopsis. Both the microtubule cytoskeleton and tubular ER are important for mitochondrial distribution and function within cells, and SPG3A neurons showed alterations in mitochondrial motility. Even so, it is not clear whether this change is involved in disease pathogenesis. The SPG3A axon growth defects could be rescued with microtubule-binding agents, emphasizing the importance of tubular ER interactions with the microtubule cytoskeleton in hereditary spastic paraplegia pathogenesis. The prominent alterations in axon growth in SPG3A neurons may represent a particularly attractive target for suppression in screens for novel pharmacologic agents.
Collapse
Affiliation(s)
- Peng-Peng Zhu
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology and the Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue-Jun Li
- Department of Neuroscience and The Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA and
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Pathogenesis of autosomal dominant hereditary spastic paraplegia (SPG6) revealed by a rat model. J Neuropathol Exp Neurol 2013; 72:1016-28. [PMID: 24128679 PMCID: PMC3814936 DOI: 10.1097/nen.0000000000000000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Supplemental Digital Content is available in the text. Hereditary spastic paraplegias (HSPs) are characterized by progressive spasticity and weakness in the lower extremities that result from length-dependent central to peripheral axonal degeneration. Mutations in the non-imprinted Prader-Willi/Angelman syndrome locus 1 (NIPA1) transmembrane protein cause an autosomal dominant form of HSP (SPG6). Here, we report that transgenic (Tg) rats expressing a human NIPA1/SPG6 mutation in neurons (Thy1.2-hNIPA1G106R) show marked early onset behavioral and electrophysiologic abnormalities. Detailed morphologic analyses reveal unique histopathologic findings, including the accumulation of tubulovesicular organelles with endosomal features that start at axonal and dendritic terminals, followed by multifocal vacuolar degeneration in both the CNS and peripheral nerves. In addition, the NIPA1G106R mutation in the spinal cord from older Tg rats results in an increase in bone morphogenetic protein type II receptor expression, suggesting that its degradation is impaired. This Thy1.2-hNIPA1G106R Tg rat model may serve as a valuable tool for understanding endosomal trafficking in the pathogenesis of a subgroup of HSP with an abnormal interaction with bone morphogenetic protein type II receptor, as well as for developing potential therapeutic strategies for diseases with axonal degeneration and similar pathogenetic mechanisms.
Collapse
|
29
|
Abstract
Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.
Collapse
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005;
| | | | | | | | | |
Collapse
|