1
|
Vinci M, Treccarichi S, Galati Rando R, Musumeci A, Todaro V, Federico C, Saccone S, Elia M, Calì F. A de novo ARIH2 gene mutation was detected in a patient with autism spectrum disorders and intellectual disability. Sci Rep 2024; 14:15848. [PMID: 38982159 PMCID: PMC11233510 DOI: 10.1038/s41598-024-66475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Todaro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy.
| | | | | |
Collapse
|
2
|
Song JM, Kang M, Lee S, Kim J, Park S, Park DH, Lee S, Suh YH. Deneddylating enzyme SENP8 regulates neuronal development. J Neurochem 2023; 165:348-361. [PMID: 36847487 DOI: 10.1111/jnc.15797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Neddylation is a cellular process in which the neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) is conjugated to the lysine residue of target proteins via serial enzymatic cascades. Recently, it has been demonstrated that neddylation is required for synaptic clustering of metabotropic glutamate receptor 7 (mGlu7) and postsynaptic density protein 95 (PSD-95), and the inhibition of neddylation impairs neurite outgrowth and excitatory synaptic maturation. Similar to the balanced role of deubiquitylating enzymes (DUBs) in the ubiquitination process, we hypothesized that deneddylating enzymes can regulate neuronal development by counteracting the process of neddylation. We find that the SUMO peptidase family member, NEDD8 specific (SENP8) acts as a key neuronal deneddylase targeting the global neuronal substrates in primary rat cultured neurons. We demonstrate that SENP8 expression levels are developmentally regulated, peaking around the first postnatal week and gradually diminishing in mature brain and neurons. We find that SENP8 negatively regulates neurite outgrowth through multiple pathways, including actin dynamics, Wnt/β-catenin signaling, and autophagic processes. Alterations in neurite outgrowth by SENP8 subsequently result in the impairment of excitatory synapse maturation. Our data indicate that SENP8 plays an essential role in neuronal development and is a promising therapeutic target for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Govindarajulu M, Ramesh S, Shankar T, Kora MK, Moore T, Dhanasekaran M. Role of Neddylation in Neurodegenerative Diseases. NEUROSCI 2022; 3:533-545. [PMID: 39483771 PMCID: PMC11523694 DOI: 10.3390/neurosci3040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons in specific regions of the brain. Neuronal death is often associated with the accumulation of misfolded proteins due to genetic mutations or abnormal protein homeostasis. An essential mechanism for regulating the clearance of misfolded proteins is neddylation, a post-translational modification closely related to ubiquitination. Neddylation is brought about by conjugating neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to target substrates through a cascade of cellular events. Neddylation is crucial for many biological processes, and dysfunctional neddylation is implicated in several neurodegenerative diseases. This review discusses the current understanding of the role of neddylation pathways in neurodegenerative disorders and the emergence of neddylation signaling as a potential target for drug discovery and development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Tharanth Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India
| | | | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| |
Collapse
|
4
|
He X, Zhu A, Feng J, Wang X. Role of neddylation in neurological development and diseases. Biotechnol Appl Biochem 2022; 69:330-341. [PMID: 33469954 DOI: 10.1002/bab.2112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Neddylation, a posttranslational protein modification, refers to the specific conjugation of NEDD8 to substrates, which is of great significance to various biological processes. Besides members of the cullin protein family, other key proteins can act as a substrate for neddylation modification, which remarkably influences neurodevelopment and neurodegenerative diseases. Normal levels of protein neddylation contribute to nerve growth, synapse strength, neurotransmission, and synaptic plasticity, whereas overactivation of protein neddylation pathways lead to apoptosis, autophagy of neurons, and tumorigenesis. Furthermore, impaired neddylation causes neurodegenerative diseases. These facts suggest that neddylation may be a target for treatment of these diseases. This review focuses on the current understanding of neddylation function in neurodevelopment as well as neurodegenerative diseases. Meanwhile, the recent view that different level of neddylation pathway may contribute to the opposing disease progression, such as neoplasms and Alzheimer's disease, is discussed. The review also discusses neddylation inhibitors, which are currently being tested in clinical trials. However, potential drawbacks of these drugs are noted, which may benefit the development of new pharmaceutical strategies in the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Xin He
- Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ainong Zhu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong, People's Republic of China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Confettura AD, Cuboni E, Ammar MR, Jia S, Gomes GM, Yuanxiang P, Raman R, Li T, Grochowska KM, Ahrends R, Karpova A, Dityatev A, Kreutz MR. Neddylation-dependent protein degradation is a nexus between synaptic insulin resistance, neuroinflammation and Alzheimer's disease. Transl Neurodegener 2022; 11:2. [PMID: 34986876 PMCID: PMC8734066 DOI: 10.1186/s40035-021-00277-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The metabolic syndrome is a consequence of modern lifestyle that causes synaptic insulin resistance and cognitive deficits and that in interaction with a high amyloid load is an important risk factor for Alzheimer's disease. It has been proposed that neuroinflammation might be an intervening variable, but the underlying mechanisms are currently unknown. METHODS We utilized primary neurons to induce synaptic insulin resistance as well as a mouse model of high-risk aging that includes a high amyloid load, neuroinflammation, and diet-induced obesity to test hypotheses on underlying mechanisms. RESULTS We found that neddylation and subsequent activation of cullin-RING ligase complexes induced synaptic insulin resistance through ubiquitylation and degradation of the insulin-receptor substrate IRS1 that organizes synaptic insulin signaling. Accordingly, inhibition of neddylation preserved synaptic insulin signaling and rescued memory deficits in mice with a high amyloid load, which were fed with a 'western diet'. CONCLUSIONS Collectively, the data suggest that neddylation and degradation of the insulin-receptor substrate is a nodal point that links high amyloid load, neuroinflammation, and synaptic insulin resistance to cognitive decline and impaired synaptic plasticity in high-risk aging.
Collapse
Affiliation(s)
| | - Eleonora Cuboni
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Mohamed Rafeet Ammar
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Guilherme M Gomes
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Rajeev Raman
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Tingting Li
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Katarzyna M Grochowska
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Robert Ahrends
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090, Wien, Austria
| | - Anna Karpova
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany. .,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
6
|
Kang M, Lee D, Song JM, Park S, Park DH, Lee S, Suh YH. Neddylation is required for presynaptic clustering of mGlu7 and maturation of presynaptic terminals. Exp Mol Med 2021; 53:457-467. [PMID: 33767338 PMCID: PMC8080653 DOI: 10.1038/s12276-021-00585-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Neddylation is a posttranslational modification in which NEDD8 is conjugated to a target substrate by cellular processes similar to those involved in ubiquitination. Recent studies have identified PSD-95 and cofilin as substrates for neddylation in the brain and have shown that neddylation modulates the maturation and stability of dendritic spines in developing neurons. However, the precise substrates and functional consequences of neddylation at presynaptic terminals remain elusive. Here, we provide evidence that the mGlu7 receptor is a target of neddylation in heterologous cells and rat primary cultured neurons. We found that mGlu7 neddylation is reduced by agonist treatment and is required for the clustering of mGlu7 in the presynaptic active zone. In addition, we observed that neddylation is not required for the endocytosis of mGlu7, but it facilitates the ubiquitination of mGlu7 and stabilizes mGlu7 protein expression. Finally, we demonstrate that neddylation is necessary for the maturation of excitatory presynaptic terminals, providing a key role for neddylation in synaptic function.
Collapse
Affiliation(s)
- Minji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - DoEun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Smith SG, Haynes KA, Hegde AN. Degradation of Transcriptional Repressor ATF4 during Long-Term Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21228543. [PMID: 33198401 PMCID: PMC7697267 DOI: 10.3390/ijms21228543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of long-term synaptic plasticity requires gene expression mediated by cAMP-responsive element binding protein (CREB). Gene expression driven by CREB can commence only if the inhibition by a transcriptional repressor activating transcription factor 4 (ATF4; also known as CREB2) is relieved. Previous research showed that the removal of ATF4 occurs through ubiquitin-proteasome-mediated proteolysis. Using chemically induced hippocampal long-term potentiation (cLTP) as a model system, we investigate the mechanisms that control ATF4 degradation. We observed that ATF4 phosphorylated at serine-219 increases upon induction of cLTP and decreases about 30 min thereafter. Proteasome inhibitor β-lactone prevents the decrease in ATF4. We found that the phosphorylation of ATF4 is mediated by cAMP-dependent protein kinase. Our initial experiments towards the identification of the ligase that mediates ubiquitination of ATF4 revealed a possible role for β-transducin repeat containing protein (β-TrCP). Regulation of ATF4 degradation is likely to be a mechanism for determining the threshold for gene expression underlying maintenance of long-term synaptic plasticity and by extension, long-term memory.
Collapse
Affiliation(s)
| | | | - Ashok N. Hegde
- Correspondence: ; Tel.: +(478)-445-3464; Fax: +(478)-445-5290
| |
Collapse
|
8
|
Bayraktar G, Yuanxiang P, Confettura AD, Gomes GM, Raza SA, Stork O, Tajima S, Suetake I, Karpova A, Yildirim F, Kreutz MR. Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus. Neuropsychopharmacology 2020; 45:2120-2130. [PMID: 32726795 PMCID: PMC7547096 DOI: 10.1038/s41386-020-0780-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
DNA methylation is a crucial epigenetic mark for activity-dependent gene expression in neurons. Very little is known about how synaptic signals impact promoter methylation in neuronal nuclei. In this study we show that protein levels of the principal de novo DNA-methyltransferase in neurons, DNMT3A1, are tightly controlled by activation of N-methyl-D-aspartate receptors (NMDAR) containing the GluN2A subunit. Interestingly, synaptic NMDARs drive degradation of the methyltransferase in a neddylation-dependent manner. Inhibition of neddylation, the conjugation of the small ubiquitin-like protein NEDD8 to lysine residues, interrupts degradation of DNMT3A1. This results in deficits in promoter methylation of activity-dependent genes, as well as synaptic plasticity and memory formation. In turn, the underlying molecular pathway is triggered by the induction of synaptic plasticity and in response to object location learning. Collectively, the data show that plasticity-relevant signals from GluN2A-containing NMDARs control activity-dependent DNA-methylation involved in memory formation.
Collapse
Affiliation(s)
- Gonca Bayraktar
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany ,grid.5335.00000000121885934Present Address: UK Dementia Research Institute at the University of Cambridge, Island Research Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH UK
| | - PingAn Yuanxiang
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Alessandro D. Confettura
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Guilherme M. Gomes
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Syed A. Raza
- grid.5807.a0000 0001 1018 4307Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Leipziger Str. 44, Haus 91, 39120 Magdeburg, Germany
| | - Oliver Stork
- grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Leipziger Str. 44, Haus 91, 39120 Magdeburg, Germany
| | - Shoji Tajima
- grid.136593.b0000 0004 0373 3971Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871 Osaka Japan
| | - Isao Suetake
- grid.412000.70000 0004 0640 6482Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Organic Chemistry, Institute for Protein Research, Osaka University, Suita, Japan ,grid.136593.b0000 0004 0373 3971Center for Twin Research, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Anna Karpova
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Ferah Yildirim
- grid.6363.00000 0001 2218 4662NeuroCure Clinical Research Center & Department of Neuropsychiatry at Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Virchowweg 6, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael R. Kreutz
- grid.418723.b0000 0001 2109 6265RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany ,Leibniz Group ‘Dendritic Organelles and Synaptic Function’, ZMNH, 20251 Hamburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
9
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
10
|
Emon MA, Domingo-Fernández D, Hoyt CT, Hofmann-Apitius M. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. BMC Bioinformatics 2020; 21:231. [PMID: 32503412 PMCID: PMC7275349 DOI: 10.1186/s12859-020-03568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, there has been a surge towards computational drug repositioning owing to constantly increasing -omics data in the biomedical research field. While numerous existing methods focus on the integration of heterogeneous data to propose candidate drugs, it is still challenging to substantiate their results with mechanistic insights of these candidate drugs. Therefore, there is a need for more innovative and efficient methods which can enable better integration of data and knowledge for drug repositioning. Results Here, we present a customizable workflow (PS4DR) which not only integrates high-throughput data such as genome-wide association study (GWAS) data and gene expression signatures from disease and drug perturbations but also takes pathway knowledge into consideration to predict drug candidates for repositioning. We have collected and integrated publicly available GWAS data and gene expression signatures for several diseases and hundreds of FDA-approved drugs or those under clinical trial in this study. Additionally, different pathway databases were used for mechanistic knowledge integration in the workflow. Using this systematic consolidation of data and knowledge, the workflow computes pathway signatures that assist in the prediction of new indications for approved and investigational drugs. Conclusion We showcase PS4DR with applications demonstrating how this tool can be used for repositioning and identifying new drugs as well as proposing drugs that can simulate disease dysregulations. We were able to validate our workflow by demonstrating its capability to predict FDA-approved drugs for their known indications for several diseases. Further, PS4DR returned many potential drug candidates for repositioning that were backed up by epidemiological evidence extracted from scientific literature. Source code is freely available at https://github.com/ps4dr/ps4dr.
Collapse
Affiliation(s)
- Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| |
Collapse
|
11
|
Brockmann MM, Döngi M, Einsfelder U, Körber N, Refojo D, Stein V. Neddylation regulates excitatory synaptic transmission and plasticity. Sci Rep 2019; 9:17935. [PMID: 31784571 PMCID: PMC6884593 DOI: 10.1038/s41598-019-54182-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications, like phosphorylation, ubiquitylation, and sumoylation, have been shown to impact on synaptic neurotransmission by modifying pre- and postsynaptic proteins and therefore alter protein stability, localization, or protein-protein interactions. Previous studies showed that post-translational modifications are essential during the induction of synaptic plasticity, defined by a major reorganization of synaptic proteins. We demonstrated before that neddylation, a post-translational modification that covalently binds Nedd8 to lysine-residues, strongly affects neuronal maturation and spine stability. We now analysed the consequences of inhibiting neddylation on excitatory synaptic transmission and plasticity, which will help to narrow down possible targets, to make educated guesses, and test specific candidates. Here, we show that acute inhibition of neddylation impacts on synaptic neurotransmission before morphological changes occur. Our data indicate that pre- and postsynaptic proteins are neddylated since the inhibition of neddylation impacts on presynaptic release probability and postsynaptic receptor stabilization. In addition, blocking neddylation during the induction of long-term potentiation and long-term inhibition abolished both forms of synaptic plasticity. Therefore, this study shows the importance of identifying synaptic targets of the neddylation pathway to understand the regulation of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Marisa M Brockmann
- Institut für Physiologie II, Universität Bonn, Bonn, Germany.,Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.,Institut für Neurophysiologie, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael Döngi
- Institut für Physiologie II, Universität Bonn, Bonn, Germany
| | - Ulf Einsfelder
- Institut für Physiologie II, Universität Bonn, Bonn, Germany
| | - Nils Körber
- Institut für Physiologie II, Universität Bonn, Bonn, Germany
| | - Damian Refojo
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.,Laboratorio de Neurobiología Molecular, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Valentin Stein
- Institut für Physiologie II, Universität Bonn, Bonn, Germany.
| |
Collapse
|
12
|
MLN4924 Exerts a Neuroprotective Effect against Oxidative Stress via Sirt1 in Spinal Cord Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7283639. [PMID: 31178972 PMCID: PMC6501157 DOI: 10.1155/2019/7283639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro. However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against oxidative stress in SCIR injury via Sirt1.
Collapse
|
13
|
Buuh ZY, Lyu Z, Wang RE. Interrogating the Roles of Post-Translational Modifications of Non-Histone Proteins. J Med Chem 2017; 61:3239-3252. [PMID: 28505447 DOI: 10.1021/acs.jmedchem.6b01817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) allot versatility to the biological functions of highly conserved proteins. Recently, modifications to non-histone proteins such as methylation, acetylation, phosphorylation, glycosylation, ubiquitination, and many more have been linked to the regulation of pivotal pathways related to cellular response and stability. Due to the roles these dynamic modifications assume, their dysregulation has been associated with cancer and many other important diseases such as inflammatory disorders and neurodegenerative diseases. For this reason, we present a review and perspective on important post-translational modifications on non-histone proteins, with emphasis on their roles in diseases and small molecule inhibitors developed to target PTM writers. Certain PTMs' contribution to epigenetics has been extensively expounded; yet more efforts will be needed to systematically dissect their roles on non-histone proteins, especially for their relationships with nononcological diseases. Finally, current research approaches for PTM study will be discussed and compared, including limitations and possible improvements.
Collapse
Affiliation(s)
- Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
14
|
Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Mol Neurobiol 2016; 54:6839-6856. [PMID: 27771897 DOI: 10.1007/s12035-016-0191-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
In ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex. Changes in protein expression were greatest at 4 h after photothrombotic impact. These included over-expression of proteins initiating, regulating, or executing various apoptosis stages (caspases, SMAC/DIABLO, Bcl-10, phosphatidylserine receptor (PSR), prostate apoptosis response 4 (Par4), E2F1, p75, p38, JNK, p53, growth arrest and DNA damage inducible protein 153 (GADD153), glutamate decarboxylases (GAD65/67), NMDAR2a, c-myc) and antiapoptotic proteins (Bcl-x, p63, MDM2, p21WAF-1, ERK1/2, ERK5, MAP kinase-activated protein kinase-2 (MAKAPK2), PKCα, PKCβ, PKCμ, RAF1, protein phosphatases 1α and MAP kinase phosphatase-1 (MKP-1), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), estrogen and EGF receptors, calmodulin, CaMKIIα, CaMKIV, amyloid precursor protein (APP), nicastrin). Phospholipase Cγ1, S-100, and S-100β were down-regulated. Bidirectional changes in levels of adhesion and cytoskeleton proteins were related to destruction and/or remodeling of penumbra. Following proteins regulating actin cytoskeleton were over-expressed: cofilin, actopaxin, p120CTN, α-catenin, p35, myosin Va, and pFAK were up-regulated, whereas ezrin, tropomyosin, spectrin (α + β), βIV-tubulin and polyglutamated β-tubulin, and cytokeratins 7 and 19 were down-regulated. Down-regulation of syntaxin, AP2β/γ, and adaptin β1/2 indicated impairment of vesicular transport and synaptic processes. Down-regulation of cyclin-dependent kinase 6 (Cdk6), cell division cycle 7-related protein kinase (Cdc7 kinase), telomeric repeat-binding factor 1 (Trf1), and topoisomerase-1 showed proliferation suppression. Cytoprotection proteins AOP-1 and chaperons Hsp70 and Hsp90 were down-regulated. These data provide the integral view on penumbra response to photothrombotic infarct. Some of these proteins may be potential targets for antistroke therapy.
Collapse
|
15
|
Andérica-Romero AC, Hernández-Damián J, Vázquez-Cervantes GI, Torres I, González-Herrera IG, Pedraza-Chaverri J. The MLN4924 inhibitor exerts a neuroprotective effect against oxidative stress injury via Nrf2 protein accumulation. Redox Biol 2016; 8:341-7. [PMID: 26966893 PMCID: PMC4789348 DOI: 10.1016/j.redox.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
It was explored the cytoprotective and antioxidant effect of MLN4924, a specific inhibitor of Nedd8-activating enzyme (NAE), against hydrogen peroxide (H2O2)-induced damage in cerebellar granule neurons (CGNs). Primary cultures of CGNs were exposed to H2O2 after preincubation with MLN4924. The compounds were removed, and CGNs were incubated in culture medium for 24 h in order to determine cell viability by 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyl-tetrazolium bromide (MTT) and fluorescein diacetate (FDA) assays. It was demonstrated that MLN4924 remarkably attenuated H2O2-induced cell damage. Meanwhile reactive oxygen species (ROS) production was evaluated with the fluorescent probe dihydroethidium (DHE). Interestingly H2O2-induced ROS production was inhibited by pretreatment with MLN4924. MLN4924 treatment in CGNs resulted in nuclear factor E2-related factor 2 (Nrf2) protein accumulation. Intriguingly this effect was observed in the cytosolic and nuclear compartments of the CGNs. The cytoprotective effect of MLN4924 was associated with its ability to diminish ROS production induced by H2O2 and the accumulation of Nrf2 protein levels in the cytoplasm and nucleus of the CGNs. MLN4924 attenuates H2O2-induced neuronal damage. MLN4924 attenuates H2O2-induced ROS production in neurons. MLN4924 promotes both nuclear and cytoplasmic accumulation of Nrf2.
Collapse
Affiliation(s)
- Ana Cristina Andérica-Romero
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 Mexico City, Mexico
| | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 Mexico City, Mexico
| | - Gustavo Ignacio Vázquez-Cervantes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 Mexico City, Mexico
| | - Ismael Torres
- Animal Care Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), University City, 04510 Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 Mexico City, Mexico.
| |
Collapse
|