1
|
Doan RA, Monk KR. Dock1 functions in Schwann cells to regulate development, maintenance, and repair. J Cell Biol 2025; 224:e202311041. [PMID: 40105697 PMCID: PMC11921805 DOI: 10.1083/jcb.202311041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination. Previously, in zebrafish, we showed that the loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, resulted in delayed peripheral myelination during development. Here, we demonstrate that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, Dock1 performs an evolutionarily conserved role in mice, functioning cell autonomously in Schwann cells to regulate the development, maintenance, and repair of peripheral myelin. Pharmacological and genetic manipulation of Rac1 in larval zebrafish, along with the analysis of active Rac1 levels in developing Dock1 mutant mouse nerves, revealed an interaction between these two proteins. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the PNS.
Collapse
Affiliation(s)
- Ryan A. Doan
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kelly R. Monk
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Kulig H, Polasik D, Drozd R, Grzesiak W, Hukowska-Szematowicz B, Yu YH, Cheng YH, Dybus A. Structural impact of GSR and LRP8 gene polymorphisms on protein function and their role in racing performance of homing pigeons. Int J Biol Macromol 2025; 310:143181. [PMID: 40246119 DOI: 10.1016/j.ijbiomac.2025.143181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glutathione reductase (GSR) plays a critical role in the prevention of oxidative damage within the cell. Apolipoprotein E receptor 2 (LRP8) participates in a pathway that modulates synaptic plasticity events crucial for learning and memory. The above aspects are very important when homing pigeons participate in sports competitions. The aim of the study was to analyze single nucleotide polymorphisms (SNPs) in the GSR and LRP8 genes in homing pigeons and to evaluate the potential impact of these genotypes on racing performance, as well as their structural consequences for the encoded proteins. The research included a total of 311 young individuals. DNA was extracted from the blood. Genotypes were determined by the ACRS-PCR test designed. Statistical analysis revealed that the c.606G > T polymorphism in LRP8 gene significantly influenced racing performance, was associated with race performance heterozygous GT pigeons achieving higher mean values of ace points (AP) than homozygous individuals. Therefore, the GT genotype may serve as a selection criterion in pigeon breeding. Further research is necessary to confirm the functionality of the GSR KB376299.1:62398C > T SNP in shaping the racing phenotype of pigeons.
Collapse
Affiliation(s)
- Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Daniel Polasik
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland.
| | - Wilhelm Grzesiak
- Biostatistics, Bioinformatics and Animal Research Methods Research Team, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
3
|
Fuentealba LM, Pizarro H, Marzolo MP. OCRL1 Deficiency Affects the Intracellular Traffic of ApoER2 and Impairs Reelin-Induced Responses. Biomolecules 2024; 14:799. [PMID: 39062513 PMCID: PMC11274606 DOI: 10.3390/biom14070799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lowe Syndrome (LS) is a rare X-linked disorder characterized by renal dysfunction, cataracts, and several central nervous system (CNS) anomalies. The mechanisms underlying the neurological dysfunction in LS remain unclear, albeit they share some phenotypic characteristics similar to the deficiency or dysfunction of the Reelin signaling, a relevant pathway with roles in CNS development and neuronal functions. In this study, we investigated the role of OCRL1, an inositol polyphosphate 5-phosphatase encoded by the OCRL gene, mutated in LS, focusing on its impact on endosomal trafficking and receptor recycling in human neuronal cells. Specifically, we tested the effects of OCRL1 deficiency in the trafficking and signaling of ApoER2/LRP8, a receptor for the ligand Reelin. We found that loss of OCRL1 impairs ApoER2 intracellular trafficking, leading to reduced receptor expression and decreased levels at the plasma membrane. Additionally, human neurons deficient in OCRL1 showed impairments in ApoER2/Reelin-induced responses. Our findings highlight the critical role of OCRL1 in regulating ApoER2 endosomal recycling and its impact on the ApoER2/Reelin signaling pathway, providing insights into potential mechanisms underlying the neurological manifestations of LS.
Collapse
Affiliation(s)
| | | | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810128, Chile; (L.M.F.); (H.P.)
| |
Collapse
|
4
|
Caracci MO, Pizarro H, Alarcón-Godoy C, Fuentealba LM, Farfán P, De Pace R, Santibañez N, Cavieres VA, Pástor TP, Bonifacino JS, Mardones GA, Marzolo MP. The Reelin receptor ApoER2 is a cargo for the adaptor protein complex AP-4: Implications for Hereditary Spastic Paraplegia. Prog Neurobiol 2024; 234:102575. [PMID: 38281682 PMCID: PMC10979513 DOI: 10.1016/j.pneurobio.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Héctor Pizarro
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Carlos Alarcón-Godoy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Natacha Santibañez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Departamento de Ciencias Biológicas y Químicas, Fac. Med y Ciencia, USS, Santiago, Chile
| | - Tammy P Pástor
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gonzalo A Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Caracci MO, Pizarro H, Alarcón-Godoy C, Fuentealba LM, Farfán P, Pace RD, Santibañez N, Cavieres VA, Pástor TP, Bonifacino JS, Mardones GA, Marzolo MP. The Reelin Receptor ApoER2 is a Cargo for the Adaptor Protein Complex AP-4: Implications for Hereditary Spastic Paraplegia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572896. [PMID: 38187774 PMCID: PMC10769347 DOI: 10.1101/2023.12.21.572896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes protein export from the trans -Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1 -knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1 -KO mice display increased Golgi localization of ApoER2. Furthermore, hippocampal neurons from Ap4e1 -KO mice and AP4M1 -KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. Altogether, this work establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.
Collapse
|
6
|
Doan RA, Monk KR. Dock1 acts cell-autonomously in Schwann cells to regulate the development, maintenance, and repair of peripheral myelin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564271. [PMID: 37961336 PMCID: PMC10634861 DOI: 10.1101/2023.10.26.564271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination, and we previously showed in zebrafish that loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, results in delayed peripheral myelination in development. We demonstrate here that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, it performs an evolutionary conserved role in mice, acting cell-autonomously in Schwann cells to regulate peripheral myelin development, maintenance, and repair. Additionally, manipulating Rac1 levels in larval zebrafish reveals that dock1 mutants are sensitized to inhibition of Rac1, suggesting an interaction between the two proteins during PNS development. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the peripheral nervous system.
Collapse
Affiliation(s)
- Ryan A Doan
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Jaafar AK, Techer R, Chemello K, Lambert G, Bourane S. PCSK9 and the nervous system: a no-brainer? J Lipid Res 2023; 64:100426. [PMID: 37586604 PMCID: PMC10491654 DOI: 10.1016/j.jlr.2023.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ali K Jaafar
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Romuald Techer
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Kévin Chemello
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Gilles Lambert
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France; Faculté de Médecine, Université de La Réunion, Saint-Pierre, La Réunion, France.
| | - Steeve Bourane
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| |
Collapse
|
8
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
9
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
10
|
Singh S, Winkelstein BA. Inhibiting the β1integrin subunit increases the strain threshold for neuronal dysfunction under tensile loading in collagen gels mimicking innervated ligaments. Biomech Model Mechanobiol 2022; 21:885-898. [DOI: 10.1007/s10237-022-01565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
11
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
12
|
Jausoro I, Marzolo MP. Reelin activates the small GTPase TC10 and VAMP7 to promote neurite outgrowth and regeneration of dorsal root ganglia (DRG) neurons. J Neurosci Res 2021; 99:392-406. [PMID: 32652719 DOI: 10.1002/jnr.24688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023]
Abstract
Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Maltas J, Reed H, Porter A, Malliri A. Mechanisms and consequences of dysregulation of the Tiam family of Rac activators in disease. Biochem Soc Trans 2020; 48:2703-2719. [PMID: 33200195 DOI: 10.1042/bst20200481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The Tiam family proteins - Tiam1 and Tiam2/STEF - are Rac1-specific Guanine Nucleotide Exchange Factors (GEFs) with important functions in epithelial, neuronal, immune and other cell types. Tiam GEFs regulate cellular migration, proliferation and survival, mainly through activating and directing Rac1 signalling. Dysregulation of the Tiam GEFs is significantly associated with human diseases including cancer, immunological and neurological disorders. Uncovering the mechanisms and consequences of dysregulation is therefore imperative to improving the diagnosis and treatment of diseases. Here we compare and contrast the subcellular localisation and function of Tiam1 and Tiam2/STEF, and review the evidence for their dysregulation in disease.
Collapse
Affiliation(s)
- Joe Maltas
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Hannah Reed
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, U.K
| |
Collapse
|
14
|
The Secreted Glycoprotein Reelin Suppresses the Proliferation and Regulates the Distribution of Oligodendrocyte Progenitor Cells in the Embryonic Neocortex. J Neurosci 2020; 40:7625-7636. [PMID: 32913108 DOI: 10.1523/jneurosci.0125-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.SIGNIFICANCE STATEMENT Here, we report that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic mouse neocortex. Oligodendrocyte (OL) progenitor cells (OPCs) express Reelin signaling molecules and respond to Reelin stimulation. Reelin-Dab1 signaling suppresses the proliferation of OPCs both in vitro and in vivo Reelin repels OPCs in vitro, and the radial distribution of OPCs is altered in mice with either attenuated or augmented Reelin-Dab1 signaling. This is the first report identifying the secreted molecule that plays a role in the radial distribution of OPCs in the late embryonic neocortex. Our results also show that the regulation of Reelin function by its specific proteolysis is important for the normal development of OPCs.
Collapse
|
15
|
Valdivia A, Cárdenas A, Brenet M, Maldonado H, Kong M, Díaz J, Burridge K, Schneider P, San Martín A, García-Mata R, Quest AFG, Leyton L. Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells. Cell Commun Signal 2020; 18:129. [PMID: 32811537 PMCID: PMC7433185 DOI: 10.1186/s12964-020-00629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvβ3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration. Methods Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including: PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy. Results We identified PAR-3 as a Syndecan-4-binding protein. Its interaction depended on the carboxy-terminal EFYA sequence present on Syndecan-4. In astrocytes where PAR-3 expression was reduced, Thy-1-induced cell migration and focal adhesion disassembly was impaired. This effect was associated with a sustained Focal Adhesion Kinase activation in the siRNA-PAR-3 treated cells. Our data also show that Thy-1/CD90 activates Tiam1, a PAR-3 effector. Additionally, we found that after Syndecan-4 silencing, Tiam1 activation was decreased and it was no longer recruited to the membrane. Syndecan-4/PAR-3 interaction and the alteration in focal adhesion dynamics were validated in mouse embryonic fibroblast (MEF) cells, thereby identifying this novel Syndecan-4/PAR-3 signaling complex as a general mechanism for mesenchymal cell migration involved in Thy-1/CD90 stimulation. Conclusions The newly identified Syndecan-4/PAR-3 signaling complex participates in Thy-1/CD90-induced focal adhesion disassembly in mesenchymal cells. The mechanism involves focal adhesion kinase dephosphorylation and Tiam1 activation downstream of Syndecan-4/PAR-3 signaling complex formation. Additionally, PAR-3 is defined here as a novel adhesome-associated component with an essential role in focal adhesion disassembly during polarized cell migration. These novel findings uncover signaling mechanisms regulating cell migration, thereby opening up new avenues for future research on Syndecan-4/PAR-3 signaling in processes such as wound healing and scarring. Graphical abstract ![]()
Collapse
Affiliation(s)
- Alejandra Valdivia
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile. .,Microscopy in Medicine (MiM) Core, Emory University, Atlanta, GA, 30322, USA. .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| | - Areli Cárdenas
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Marianne Brenet
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Horacio Maldonado
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Catalyst for Rare Disease, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Milene Kong
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.,Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Alejandra San Martín
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Rafael García-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Andrew F G Quest
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile.,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia, 838-0453, Santiago, Chile. .,Center for studies on Exercise, Metabolism and Cancer (CEMC) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453, Santiago, Chile.
| |
Collapse
|
16
|
Myoblast Migration and Directional Persistence Affected by Syndecan-4-Mediated Tiam-1 Expression and Distribution. Int J Mol Sci 2020; 21:ijms21030823. [PMID: 32012800 PMCID: PMC7037462 DOI: 10.3390/ijms21030823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.
Collapse
|
17
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
18
|
Dlugosz P, Nimpf J. The Reelin Receptors Apolipoprotein E receptor 2 (ApoER2) and VLDL Receptor. Int J Mol Sci 2018; 19:E3090. [PMID: 30304853 PMCID: PMC6213145 DOI: 10.3390/ijms19103090] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E receptor 2 (ApoER2) and VLDL receptor belong to the low density lipoprotein receptor family and bind apolipoprotein E. These receptors interact with the clathrin machinery to mediate endocytosis of macromolecules but also interact with other adapter proteins to perform as signal transduction receptors. The best characterized signaling pathway in which ApoER2 and VLDL receptor (VLDLR) are involved is the Reelin pathway. This pathway plays a pivotal role in the development of laminated structures of the brain and in synaptic plasticity of the adult brain. Since Reelin and apolipoprotein E, are ligands of ApoER2 and VLDLR, these receptors are of interest with respect to Alzheimer's disease. We will focus this review on the complex structure of ApoER2 and VLDLR and a recently characterized ligand, namely clusterin.
Collapse
Affiliation(s)
- Paula Dlugosz
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, 1030 Vienna, Austria.
| | - Johannes Nimpf
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Wang Y, Wang B, Li P, Zhang Q, Liu P. Reduced RAC1 activity inhibits cell proliferation and induces apoptosis in neurofibromatosis type 2(NF2)-associated schwannoma. Neurol Res 2017; 39:1086-1093. [PMID: 28934903 DOI: 10.1080/01616412.2017.1376494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective To study the function and potential mechanism of RAC1 inhibitors in NF2-associated schwannoma. Methods In this study, we the downregulation of RAC1 activity and tumor cell phenotypes by RAC1 inhibitor NSC23766 in vitro. And we further validated the anti-proliferation effect by this RAC1 inhibitor in subcutaneous xenograft tumor model and sciatic nerve model. Results Pharmacological inhibition of RAC1 could significantly inhibit the proliferation of both RT4 cells and human NF2-associated primary schwannoma cells by inducing apoptosis. Pharmacological inhibition of RAC1 effectively reduced Rac1 activity and down-regulated the pathway downstream of Rac. Moreover, pharmacological inhibition of RAC1 showed a potential antitumor effect, with low toxicity in vivo. Conclusion RAC1 inhibitors may play a therapeutic role in patients with schwannoma.
Collapse
Affiliation(s)
- Ying Wang
- a Beijing Neurosurgical Institute, Capital Medical University , Beijing , China
| | - Bo Wang
- b Department of Neurosurgery , Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| | - Peng Li
- b Department of Neurosurgery , Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| | - Qi Zhang
- a Beijing Neurosurgical Institute, Capital Medical University , Beijing , China
| | - Pinan Liu
- a Beijing Neurosurgical Institute, Capital Medical University , Beijing , China.,b Department of Neurosurgery , Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
20
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
21
|
Reelin expression is up-regulated in mice colon in response to acute colitis and provides resistance against colitis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:462-473. [DOI: 10.1016/j.bbadis.2016.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
|
22
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|