1
|
Yi W, Sylvester E, Lian J, Deng C. The effects of risperidone and voluntary exercise intervention on synaptic plasticity gene expressions in the hippocampus and prefrontal cortex of juvenile female rats. Physiol Behav 2025; 294:114879. [PMID: 40096936 DOI: 10.1016/j.physbeh.2025.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Psychiatric disorders and antipsychotics are associated with impaired neuroplasticity, while physical exercise has been reported to enhance neuroplasticity and improve cognitive and affective processes. Therefore, this study hypothesizes that voluntary exercise can enhance synaptic plasticity in juvenile rats disrupted by risperidone, a commonly prescribed antipsychotic for pediatric patients. METHODS Thirty-two juvenile female rats were randomly assigned to Vehicle+Sedentary, Risperidone (0.9mg/kg; b.i.d)+Sedentary, Vehicle+Exercise (three hours daily access to running wheels), and Risperidone+Exercise groups for four week treatment. Brains were collected for further analysis. RESULTS In the hippocampus, the mRNA expressions of Bdnf, Ntrk2, and Grin2b were increased by risperidone and exercise intervention. Exercise upregulated expression of Grin1 and Grin2a. Syn1 and Syp mRNA expression were enhanced by exercise in the risperidone-treated group. The expression of both Mfn1 and Drp1 mRNA were decreased by risperidone-only treatment. In the prefrontal cortex, Bdnf and Dlg4 expression was upregulated by exercise, while the Ntrk2 expression was reduced by risperidone and reversed by exercise. The Mfn1 mRNA expression was decreased by risperidone with or without voluntary exercise. The risperidone-decreased Ppargc1α gene expression was enhanced by exercise. CONCLUSION Risperidone affects synaptic plasticity through a complex mechanism in female juvenile rats: enhancing certain key genes in the hippocampus while inhibiting genes essential for mitochondrial function. In line with our hypothesis, voluntary exercise promotes genes beneficial for synaptic plasticity and enhances specific genes reduced by risperidone, in female juvenile rats.
Collapse
Affiliation(s)
- Weijie Yi
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Emma Sylvester
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Zhao H, Qiu X, Wang S, Wang Y, Xie L, Xia X, Li W. Multiple pathways through which the gut microbiota regulates neuronal mitochondria constitute another possible direction for depression. Front Microbiol 2025; 16:1578155. [PMID: 40313405 PMCID: PMC12043685 DOI: 10.3389/fmicb.2025.1578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
As a significant mental health disorder worldwide, the treatment of depression has long faced the challenges of a low treatment rate, significant drug side effects and a high relapse rate. Recent studies have revealed that the gut microbiota and neuronal mitochondrial dysfunction play central roles in the pathogenesis of depression: the gut microbiota influences the course of depression through multiple pathways, including immune regulation, HPA axis modulation and neurotransmitter metabolism. Mitochondrial function serves as a key hub that mediates mood disorders through mechanisms such as defective energy metabolism, impaired neuroplasticity and amplified neuroinflammation. Notably, a bidirectional regulatory network exists between the gut microbiota and mitochondria: the flora metabolite butyrate enhances mitochondrial biosynthesis through activation of the AMPK-PGC1α pathway, whereas reactive oxygen species produced by mitochondria counteract the flora composition by altering the intestinal epithelial microenvironment. In this study, we systematically revealed the potential pathways by which the gut microbiota improves neuronal mitochondrial function by regulating neurotransmitter synthesis, mitochondrial autophagy, and oxidative stress homeostasis and proposed the integration of probiotic supplementation, dietary fiber intervention, and fecal microbial transplantation to remodel the flora-mitochondrial axis, which provides a theoretical basis for the development of novel antidepressant therapies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Hongyi Zhao
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Qiu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xie
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuwen Xia
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
3
|
Hao K, Chen F, Xu S, Xiong Y, Xu R, Huang H, Shu C, Lv Y, Wang G, Wang H. Cognitive impairment following maternal separation in rats mediated by the NAD +/SIRT3 axis via modulation of hippocampal synaptic plasticity. Transl Psychiatry 2025; 15:112. [PMID: 40159484 PMCID: PMC11955552 DOI: 10.1038/s41398-025-03318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/16/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Maternal separation (MS) during early life can induce behaviors in adult animals that resemble those seen in schizophrenia, manifesting cognitive deficits. These cognitive deficits may be indicative of oxidative stress linked to mitochondrial dysfunction. However, there is limited understanding of the molecular mechanisms regulating mitochondria in neural circuits that govern cognitive impairment relevant to schizophrenia, and their impact on neuronal structure and function. A 24-h MS rat model was utilized to simulate features associated with schizophrenia. Schizophrenia-associated behaviors and cognitive impairment were assessed using the open field test, pre-pulse inhibition, novel object recognition test, and Barnes maze test. The levels of mitochondrial proteins were measured using western blot analysis. Additionally, alterations in mitochondrial morphology, reduced hippocampal neuronal spine density, and impaired LTP in the hippocampus were observed. Nicotinamide (NAM) supplementation, administration of honokiol (HNK) (a SIRT3 activator), or overexpression of SIRT3 could inhibit cognitive deficits and cellular dysfunction. Conversely, administration of 3-TYP (a SIRT3 inhibitor) or knocking down SIRT3 expression in control rats led to deficits in behavioral and hippocampal neuronal phenotype. Our results suggest a causal role for the NAD+/SIRT3 axis in modulating cognitive behaviors via effects on hippocampal neuronal synaptic plasticity. The NAD+/SIRT3 axis could be a promising therapeutic target for addressing cognitive dysfunctions, such as those seen in schizophrenia.
Collapse
Affiliation(s)
- Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fashuai Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yisheng Lv
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Institute of Neurology and Psychiatry Research, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
- Department of Psychiatry, Hubei Provincial Clinical Research Center for Psychiatry, Wuhan, China.
| |
Collapse
|
4
|
Tröger J, Dahlhaus R, Bayrhammer A, Koch D, Kessels MM, Qualmann B. Mitochondria are positioned at dendritic branch induction sites, a process requiring rhotekin2 and syndapin I. Nat Commun 2025; 16:2353. [PMID: 40064846 PMCID: PMC11893792 DOI: 10.1038/s41467-025-57399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Proper neuronal development, function and survival critically rely on mitochondrial functions. Yet, how developing neurons ensure spatiotemporal distribution of mitochondria during expansion of their dendritic arbor remained unclear. We demonstrate the existence of effective mitochondrial positioning and tethering mechanisms during dendritic arborization. We identify rhotekin2 as outer mitochondrial membrane-associated protein that tethers mitochondria to dendritic branch induction sites. Rhotekin2-deficient neurons failed to correctly position mitochondria at these sites and also lacked the reduction in mitochondrial dynamics observed at wild-type nascent dendritic branch sites. Rhotekin2 hereby serves as important anchor for the plasma membrane-binding and membrane curvature-inducing F-BAR protein syndapin I (PACSIN1). Consistently, syndapin I loss-of-function phenocopied the rhotekin2 loss-of-function phenotype in mitochondrial positioning at dendritic branch induction sites. The finding that rhotekin2 deficiency impaired dendritic branch induction and that a syndapin binding-deficient rhotekin2 mutant failed to rescue this phenotype highlighted the physiological importance of rhotekin2 functions for neuronal network formation.
Collapse
Affiliation(s)
- Jessica Tröger
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Regina Dahlhaus
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
- Research Division for Neurodegenerative Diseases, Faculty of Medicine/Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems-Stein, Austria
| | - Anne Bayrhammer
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| |
Collapse
|
5
|
Li Y, Zhang ZG, Chopp M, Liu Z, Golembieski W, Landschoot-Ward J, Zhang Y, Liu XS, Xin H. Labeling and isolating cell specific neuronal mitochondria and their functional analysis in mice post stroke. Exp Neurol 2025; 385:115126. [PMID: 39719208 DOI: 10.1016/j.expneurol.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Dendritic and axonal plasticity, which mediates neurobiological recovery after a stroke, critically depends on the mitochondrial function of neurons. To investigate, in vivo, neuronal mitochondrial function at the stroke recovery stage, we employed Mito-tag mice combined with cerebral cortical infection of AAV9 produced from plasmids carrying Cre-recombinase controlled by two neuronal promoters, synapsin-I (SYN1) and calmodulin-kinase IIa to induce expression of a hemagglutinin (HA)-tagged enhanced green fluorescence protein (EGFP) that localizes to mitochondrial outer membranes of SYN1 positive (SYN+) and CaMKIIa positive (CaMKIIa+) neurons. These mice were then subjected to permanent middle cerebral artery occlusion (MCAO) and sacrificed 14 days post stroke. Neuronal mitochondria were then selectively isolated from the fresh brain tissues excised from the ischemic core (IC), ischemic boundary zone (IBZ), as well as from the homologous contralateral hemisphere (CON) by anti-HA magnetic beads for functional analyses. We found that the bead pulled neuronal specific mitochondria were co-precipitated with GFP and enriched with mitochondrial markers, e.g. voltage-dependent anion channel, cytochrome C, and COX IV, but lacked the Golgi protein RCAS1 as well as endoplasmic reticulum markers: Heme‑oxygenase 1 and Calnexin, indicating that specific neuronal mitochondria have been selectively isolated. Western-blot data showed that oxidative phosphorylation (OXPHOS) components in SYN+ and CAMKII+ neuronal mitochondria were significantly decreased in the IBZ and further decreased in the IC compared to the contralateral tissue, which was associated with the significant reductions of mitochondrial function indicated by oxygen consumption rate (OCR) (p < 0.05, respectively, for both neuron types). These data suggest dysfunction of neuronal mitochondria post stroke is present during the stroke recovery stage. Collectively, for the first time, we demonstrated that using a Mito-tag mouse line combined with AAV9 carrying Cre recombinase approach, neuronal specific mitochondria can be efficiently isolated from the mouse brain to investigate their functional changes post stroke.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physics, Oakland University, Rochester, MI 48309, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - William Golembieski
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America.
| |
Collapse
|
6
|
Zhang T, Li L, Fan X, Shou X, Ruan Y, Xie X. Metaxin-2 tunes mitochondrial transportation and neuronal function in Drosophila. Genetics 2025; 229:iyae204. [PMID: 39657051 DOI: 10.1093/genetics/iyae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons. To deepen our understanding of Mtx2's role in neurons, we examined the homologous genes CG5662 and CG8004 in Drosophila. The CG5662 is a non-essential gene while CG8004 null mutants die at late pupal stages. The CG8004 protein is widely expressed throughout the Drosophila nervous system and is targeted to mitochondria. However, neuronal CG8004 is dispensable for animal survival and is partially required for mitochondrial distribution in certain neuropil regions. Conditional knockout of CG8004 in adult gustatory receptor neurons (GRNs) impairs mitochondrial trafficking along GRN axons and diminishes the mitochondrial quantities in axon terminals. The absence of CG8004 also leads to mitochondrial fragmentation within GRN axons, a phenomenon that may be linked to mitochondrial transport through its genetic interaction with the fusion proteins Marf and Opa1. While the removal of neuronal CG8004 is not lethal during the developmental stage, it does have consequences for the lifespan and healthspan of adult Drosophila. At last, double knockout (KO) of CG5662 and CG8004 shows similar phenotypes as the CG8004 single KO, suggesting that CG5662 does not compensate for the loss of CG8004. In summary, our findings suggest that CG8004 plays a conserved and context-dependent role in axonal mitochondrial transport, as well it is important for sustaining neuronal function. Therefore, we refer to CG8004 as the Drosophila Metaxin-2 (dMtx2).
Collapse
Affiliation(s)
- Ting Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Ling Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Fan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xinyi Shou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Yina Ruan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xiaojun Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Khatoon R, Fick J, Elesinnla A, Waddell J, Kristian T. Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells. Int J Mol Sci 2024; 25:13714. [PMID: 39769476 PMCID: PMC11678447 DOI: 10.3390/ijms252413714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP). Both male and female PC-mito-eYFP mice received an intraperitoneal injection of ethanol or vehicle. One hour after ethanol administration, the animals were perfusion fixed or their cerebellum tissue or isolated mitochondria were collected. Cerebellum sections were analyzed using confocal microscopy to assess changes in mitochondrial length distribution. In vivo superoxide levels were measured using dihydroethidium (DHE), and mitochondrial NAD levels were determined by high-performance liquid chromatography (HPLC). Our findings revealed a sex-dependent response to ethanol administration in mitochondrial size distribution. While male Purkinje cell mitochondria exhibited no significant changes in size, female mitochondria became more fragmented after one hour of ethanol administration. This coincided with elevated phosphorylation of the fission protein Drp1 and increased superoxide production, as measured by DHE fluorescence intensity. Similarly, mitochondrial NAD levels were significantly reduced in female mice, but no changes were observed in males. Our results demonstrate that ethanol induced mitochondrial fragmentation through increased free radical levels, due to reduced NAD and increased p-Drp1, in PC cells of the female cerebellum.
Collapse
Affiliation(s)
- Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
| | - Jordan Fick
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| | - Abosede Elesinnla
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA; (R.K.); (A.E.)
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
8
|
Baum TB, Bodnya C, Costanzo J, Gama V. Patient mutations in DRP1 perturb synaptic maturation of cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609462. [PMID: 39229012 PMCID: PMC11370610 DOI: 10.1101/2024.08.23.609462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the advent of exome sequencing, a growing number of children are being identified with de novo loss of function mutations in the dynamin 1 like (DNM1L) gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development in vitro. High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
Collapse
Affiliation(s)
- T B Baum
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - C Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - J Costanzo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - V Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| |
Collapse
|
9
|
Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14897. [PMID: 39097920 PMCID: PMC11298206 DOI: 10.1111/cns.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Synaptic plasticity is believed to underlie the cellular and molecular basis of memory formation. Mitochondria are one of the main organelles involved in metabolism and energy maintenance as plastic organelles that change morphologically and functionally in response to cellular needs and regulate synaptic function and plasticity through multiple mechanisms, including ATP generation, calcium homeostasis, and biogenesis. An increased neuronal activity enhances synaptic efficiency, during which mitochondria's spatial distribution and morphology change significantly. These organelles build up in the pre-and postsynaptic zones to produce ATP, which is necessary for several synaptic processes like neurotransmitter release and recycling. Mitochondria also regulate calcium homeostasis by buffering intracellular calcium, which ensures proper synaptic activity. Furthermore, mitochondria in the presynaptic terminal have distinct morphological properties compared to dendritic or postsynaptic mitochondria. This specialization enables precise control of synaptic activity and plasticity. Mitochondrial dysfunction has been linked to synaptic failure in many neurodegenerative disorders, like Alzheimer's disease (AD). In AD, malfunctioning mitochondria cause delays in synaptic vesicle release and recycling, ionic gradient imbalances, and mostly synaptic failure. This review emphasizes mitochondrial plasticity's contribution to synaptic function. It also explores the profound effect of mitochondrial malfunction on neurodegenerative disorders, focusing on AD, and provides an overview of how they sustain cellular health under normal conditions and how their malfunction contributes to neurodegenerative diseases, highlighting their potential as a therapeutic target for such conditions.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | | | - Anahita Zoghi
- Department of Neurology, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Omidvar Rezaei
- Skull Base Research CenterLoghman Hakim Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
10
|
Liu SX, Ramakrishnan A, Shen L, Gewirtz JC, Georgieff MK, Tran PV. Chromatin accessibility and H3K9me3 landscapes reveal long-term epigenetic effects of fetal-neonatal iron deficiency in rat hippocampus. BMC Genomics 2024; 25:301. [PMID: 38515015 PMCID: PMC10956188 DOI: 10.1186/s12864-024-10230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Li Shen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Hatsuda A, Kurisu J, Fujishima K, Kawaguchi A, Ohno N, Kengaku M. Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons. Development 2023; 150:dev201930. [PMID: 37823352 DOI: 10.1242/dev.201930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.
Collapse
Affiliation(s)
- Akane Hatsuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166798. [PMID: 37392948 DOI: 10.1016/j.bbadis.2023.166798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid β (Aβ) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with Aβ and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with Aβ and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
13
|
Lam CHI, Zou B, Chan HHL, Tse DYY. Functional and structural changes in the neuroretina are accompanied by mitochondrial dysfunction in a type 2 diabetic mouse model. EYE AND VISION (LONDON, ENGLAND) 2023; 10:37. [PMID: 37653465 PMCID: PMC10472703 DOI: 10.1186/s40662-023-00353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR), one of the leading causes of blindness and vision impairment, is suggested to exhibit functional and structural changes in retinal neurons as the earliest manifestation, which could be used to predict the progression of related angiopathy. While neural function and survival rely on proper mitochondrial function, and a growing body of literature has supported the role of mitochondrial dysfunction in the development of DR, how diabetes affects mitochondrial function in retinal tissue remains elusive. This study primarily aimed to investigate mitochondrial functional changes in a diabetic rodent model. We also characterized the early DR phenotype, in particular, neurodegeneration. METHODS C57BLKsJ-db/db (db/db) mice (a type 2 diabetic mouse model) were used with their normoglycemic heterozygous littermates (db/+) serving as controls. Longitudinal changes in retinal function and morphology were assessed with electroretinography (ERG) and optical coherence tomography (OCT), respectively, at 9, 13, 17, and 25 weeks of age. At 25 weeks, the retinas were harvested for immunohistochemistry and ex vivo mitochondrial bioenergetics. RESULTS Decreased ERG responses were observed in db/db mice as early as 13 weeks of age. OCT revealed that db/db mice had significantly thinner retinas than the controls. Immunohistochemistry showed that the retinas of the db/db mice at 25 weeks were thinner at the outer and inner nuclear layers, with lower photoreceptor and cone cell densities compared with the db/+ mice. The number of rod-bipolar cell dendritic boutons and axon terminals was significantly reduced in db/db mice relative to the db/+ mice, suggesting that diabetes may lead to compromised synaptic connectivity. More importantly, the retinas of db/db mice had weaker mitochondrial functions than the controls. CONCLUSIONS Our longitudinal data suggest that diabetes-induced functional deterioration and morphological changes were accompanied by reduced mitochondrial function in the retina of db/db mice. These findings suggest that mitochondrial dysfunction may be a contributing factor triggering the development of DR. While the underlying mechanistic cause remains elusive, the db/db mice could be a useful animal model for testing potential treatment regimens targeting neurodegeneration in DR.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Bing Zou
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
- Centre for Eye and Vision Research Limited (CEVR), Hong Kong, SAR, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
14
|
Egorova PA, Marinina KS, Bezprozvanny IB. Chronic suppression of STIM1-mediated calcium signaling in Purkinje cells rescues the cerebellar pathology in spinocerebellar ataxia type 2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119466. [PMID: 36940741 DOI: 10.1016/j.bbamcr.2023.119466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Li SJ, Liu H, Wu FF, Feng DY, Zhang S, Zheng J, Wang L, Tian F, Yang YL, Wang YY. Meshed neuronal mitochondrial networks empowered by AI-powered classifiers and immersive VR reconstruction. Front Neurosci 2023; 17:1059965. [PMID: 36816131 PMCID: PMC9932543 DOI: 10.3389/fnins.2023.1059965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial networks are defined as a continuous matrix lumen, but the morphological feature of neuronal mitochondrial networks is not clear due to the lack of suitable analysis techniques. The aim of the present study is to develop a framework to capture and analyze the neuronal mitochondrial networks by using 4-step process composed of 2D and 3D observation, primary and secondary virtual reality (VR) analysis, with the help of artificial intelligence (AI)-powered Aivia segmentation an classifiers. In order to fulfill this purpose, we first generated the PCs-Mito-GFP mice, in which green fluorescence protein (GFP) could be expressed on the outer mitochondrial membrane specifically on the cerebellar Purkinje cells (PCs), thus all mitochondria in the giant neuronal soma, complex dendritic arborization trees and long projection axons of Purkinje cells could be easily detected under a laser scanning confocal microscope. The 4-step process resolved the complicated neuronal mitochondrial networks into discrete neuronal mitochondrial meshes. Second, we measured the two parameters of the neuronal mitochondrial meshes, and the results showed that the surface area (μm2) of mitochondrial meshes was the biggest in dendritic trees (45.30 ± 53.21), the smallest in granular-like axons (3.99 ± 1.82), and moderate in soma (27.81 ± 22.22) and silk-like axons (17.50 ± 15.19). These values showed statistically different among different subcellular locations. The volume (μm3) of mitochondrial meshes was the biggest in dendritic trees (9.97 ± 12.34), the smallest in granular-like axons (0.43 ± 0.25), and moderate in soma (6.26 ± 6.46) and silk-like axons (3.52 ± 4.29). These values showed significantly different among different subcellular locations. Finally, we found both the surface area and the volume of mitochondrial meshes in dendritic trees and soma within the Purkinje cells in PCs-Mito-GFP mice after receiving the training with the simulating long-term pilot flight concentrating increased significantly. The precise reconstruction of neuronal mitochondrial networks is extremely laborious, the present 4-step workflow powered by artificial intelligence and virtual reality reconstruction could successfully address these challenges.
Collapse
Affiliation(s)
- Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Shuai Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Jie Zheng
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China
| | - Lu Wang
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan’an University, Yan’an, China,Lu Wang,
| | - Fei Tian
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Fei Tian,
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China,Yan-Ling Yang,
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China,State Key Laboratory of Military Stomatology, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi’an, China,*Correspondence: Ya-Yun Wang, ,
| |
Collapse
|
16
|
Mitochondria in Cell-Based Therapy for Stroke. Antioxidants (Basel) 2023; 12:antiox12010178. [PMID: 36671040 PMCID: PMC9854436 DOI: 10.3390/antiox12010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke.
Collapse
|
17
|
Hasegawa K, Matsui TK, Kondo J, Kuwako KI. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo. Development 2022; 149:285127. [PMID: 36469048 DOI: 10.1242/dev.201214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Junpei Kondo
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| |
Collapse
|
18
|
Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants (Basel) 2022; 11:antiox11061146. [PMID: 35740042 PMCID: PMC9219619 DOI: 10.3390/antiox11061146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS. In this scenario, we propose a new potential downstream signaling of Nrf2 pathway, namely the opening of hemichannels and pannexons. These large-pore channels are known to modulate glial/neuronal function and ROS production as they are permeable to extracellular Ca2+ and release potentially harmful transmitters to the synaptic cleft. In this way, the Nrf2 dysfunction impairs not only the bioenergetics and metabolic properties of glial cells but also the proper antioxidant defense and energy supply that they provide to neurons.
Collapse
|
19
|
Lu F, Zhang Q, Zhang M, Sun S, Yang X, Yan H. Blocking exosomal secretion aggravates 1,4-Benzoquinone-induced mitochondrial fission activated by the AMPK/MFF/Drp1 pathway in HL-60 cells. J Appl Toxicol 2022; 42:1618-1627. [PMID: 35383983 DOI: 10.1002/jat.4328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/11/2022]
Abstract
There is in vivo and in vitro evidence that exposure to benzene or its metabolites could affect the mitochondrial function. However, the underlying molecular mechanism of mitochondrial damage remains to be elucidated. In this study, exposure of human promyelocytic leukemia cells (HL-60) to 1,4-benzoquinone (1,4-BQ; an active metabolite of benzene) increased the intracellular reactive oxygen species levels, decreased the mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA (mtDNA) copy number, up-regulated the expression of mitochondrial fission proteins Drp1 and Fis1, and down-regulated the expression of mitochondrial fusion proteins Mfn2 and Opa1. Further study showed that 1,4-BQ mediated mitochondrial fission through activation of the AMP-activated protein kinase/mitochondrial fission factor/dynamin-related protein 1 pathway. Additionally, we also examined the role of exosomal secretion in mitochondrial damage under 1,4-BQ treatment. Results showed that 1,4-BQ increased the total protein level and mtDNA content in exosomes. Upon pre-treatment with the mitochondria-targeted antioxidant SS-31, there was attenuation of the mitochondrial damage induced by 1,4-BQ, accompanied by a change in the exosome release characteristics, while inhibition of exosomal secretion using GW4869 aggravated the 1,4-BQ-mediated mitochondrial fission. We concluded that exosomal secretion may serve as a self-protective mechanism of cells against 1,4-BQ-induced mitochondria damage and mitochondrial dynamics interference.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China.,Department of Pharmacology, School of Pharmacy, Qilu Medical University, Shandong, PR China
| | - Mengyan Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Shuqiang Sun
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| |
Collapse
|
20
|
Abstract
The brain is one of the most energetically demanding tissues in the human body, and mitochondrial pathology is strongly implicated in chronic neurodegenerative diseases. In contrast to acute brain injuries in which bioenergetics and cell death play dominant roles, studies modeling familial neurodegeneration implicate a more complex and nuanced relationship involving the entire mitochondrial life cycle. Recent literature on mitochondrial mechanisms in Parkinson's disease, Alzheimer's disease, frontotemporal dementia, Huntington's disease, and amyotrophic lateral sclerosis is reviewed with an emphasis on mitochondrial quality control, transport and synaptodendritic calcium homeostasis. Potential neuroprotective interventions include targeting the mitochondrial kinase PTEN-induced kinase 1 (PINK1), which plays a role in regulating not only multiple facets of mitochondrial biology, but also neuronal morphogenesis and dendritic arborization.
Collapse
Affiliation(s)
- Charleen T Chu
- Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases, Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
22
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
23
|
Yamada S, Sato A, Ishihara N, Akiyama H, Sakakibara SI. Drp1 SUMO/deSUMOylation by Senp5 isoforms influences ER tubulation and mitochondrial dynamics to regulate brain development. iScience 2021; 24:103484. [PMID: 34988397 PMCID: PMC8710555 DOI: 10.1016/j.isci.2021.103484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Corresponding author
| |
Collapse
|
24
|
The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment. Neurosci Lett 2021; 764:136195. [PMID: 34450229 PMCID: PMC8572160 DOI: 10.1016/j.neulet.2021.136195] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
|
25
|
Silva CA, Yalnizyan-Carson A, Fernández Busch MV, van Zwieten M, Verhage M, Lohmann C. Activity-dependent regulation of mitochondrial motility in developing cortical dendrites. eLife 2021; 10:62091. [PMID: 34491202 PMCID: PMC8423438 DOI: 10.7554/elife.62091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.
Collapse
Affiliation(s)
- Catia Ap Silva
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - M Victoria Fernández Busch
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Mike van Zwieten
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, University Amsterdam, Amsterdam, Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021; 5:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are the main suppliers of neuronal adenosine triphosphate and play a critical role in brain energy metabolism. Mitochondria also serve as Ca2+ sinks and anabolic factories and are therefore essential for neuronal function and survival. Dysregulation of neuronal bioenergetics is increasingly implicated in neurodegenerative disorders, particularly Parkinson's disease. This review describes the role of mitochondria in energy metabolism under resting conditions and during synaptic transmission, and presents evidence for the contribution of neuronal mitochondrial dysfunction to Parkinson's disease.
Collapse
Affiliation(s)
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Angelika Bettina Harbauer
- Max-Planck-Institute for Neurobiology, 82152, Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, 80333, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
27
|
Ca 2+ handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium 2021; 98:102453. [PMID: 34399235 DOI: 10.1016/j.ceca.2021.102453] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are morpho-functional units, formed at the loci of close apposition of the ER-forming endomembrane and outer mitochondrial membrane (OMM). These sites contribute to fundamental cellular processes including lipid biosynthesis, autophagy, apoptosis, ER-stress and calcium (Ca2+) signalling. At MERCS, Ca2+ ions are transferred from the ER directly to mitochondria through a core protein complex composed of inositol-1,4,5 trisphosphate receptor (InsP3R), voltage-gated anion channel 1 (VDAC1), mitochondrial calcium uniporter (MCU) and adaptor protein glucose-regulated protein 75 (Grp75); this complex is regulated by several associated proteins. Deregulation of ER-mitochondria Ca2+ transfer contributes to pathogenesis of neurodegenerative and other diseases. The efficacy of Ca2+ transfer between ER and mitochondria depends on the protein composition of MERCS, which controls ER-mitochondria interaction regulating, for example, the transversal distance between ER membrane and OMM and the extension of the longitudinal interface between ER and mitochondria. These parameters are altered in neurodegeneration. Here we overview the ER and mitochondrial Ca2+ homeostasis, the composition of ER-mitochondrial Ca2+ transfer machinery and alterations of the ER-mitochondria Ca2+ transfer in three major neurodegenerative diseases: motor neurone diseases, Parkinson disease and Alzheimer's disease.
Collapse
|
28
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
29
|
Mitostasis, Calcium and Free Radicals in Health, Aging and Neurodegeneration. Biomolecules 2021; 11:biom11071012. [PMID: 34356637 PMCID: PMC8301949 DOI: 10.3390/biom11071012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play key roles in ATP supply, calcium homeostasis, redox balance control and apoptosis, which in neurons are fundamental for neurotransmission and to allow synaptic plasticity. Their functional integrity is maintained by mitostasis, a process that involves mitochondrial transport, anchoring, fusion and fission processes regulated by different signaling pathways but mainly by the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α also favors Ca2+ homeostasis, reduces oxidative stress, modulates inflammatory processes and mobilizes mitochondria to where they are needed. To achieve their functions, mitochondria are tightly connected to the endoplasmic reticulum (ER) through specialized structures of the ER termed mitochondria-associated membranes (MAMs), which facilitate the communication between these two organelles mainly to aim Ca2+ buffering. Alterations in mitochondrial activity enhance reactive oxygen species (ROS) production, disturbing the physiological metabolism and causing cell damage. Furthermore, cytosolic Ca2+ overload results in an increase in mitochondrial Ca2+, resulting in mitochondrial dysfunction and the induction of mitochondrial permeability transition pore (mPTP) opening, leading to mitochondrial swelling and cell death through apoptosis as demonstrated in several neuropathologies. In summary, mitochondrial homeostasis is critical to maintain neuronal function; in fact, their regulation aims to improve neuronal viability and to protect against aging and neurodegenerative diseases.
Collapse
|
30
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Gebara E, Zanoletti O, Ghosal S, Grosse J, Schneider BL, Knott G, Astori S, Sandi C. Mitofusin-2 in the Nucleus Accumbens Regulates Anxiety and Depression-like Behaviors Through Mitochondrial and Neuronal Actions. Biol Psychiatry 2021; 89:1033-1044. [PMID: 33583561 DOI: 10.1016/j.biopsych.2020.12.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging evidence points to a central role of mitochondria in psychiatric disorders. However, little is known about the molecular players that regulate mitochondria in neural circuits regulating anxiety and depression and about how they impact neuronal structure and function. Here, we investigated the role of molecules involved in mitochondrial dynamics in medium spiny neurons (MSNs) from the nucleus accumbens (NAc), a hub of the brain's motivation system. METHODS We assessed how individual differences in anxiety-like (measured via the elevated plus maze and open field tests) and depression-like (measured via the forced swim and saccharin preference tests) behaviors in outbred rats relate to mitochondrial morphology (electron microscopy and 3-dimensional reconstructions) and function (mitochondrial respirometry). Mitochondrial molecules were measured for protein (Western blot) and messenger RNA (quantitative reverse transcriptase polymerase chain reaction, RNAscope) content. Dendritic arborization (Golgi Sholl analyses), spine morphology, and MSN excitatory inputs (patch-clamp electrophysiology) were characterized. MFN2 overexpression in the NAc was induced through an AAV9-syn1-MFN2. RESULTS Highly anxious animals showed increased depression-like behaviors, as well as reduced expression of the mitochondrial GTPase MFN2 in the NAc. They also showed alterations in mitochondria (i.e., respiration, volume, and interactions with the endoplasmic reticulum) and MSNs (i.e., dendritic complexity, spine density and typology, and excitatory inputs). Viral MFN2 overexpression in the NAc reversed all of these behavioral, mitochondrial, and neuronal phenotypes. CONCLUSIONS Our results implicate a causal role for accumbal MFN2 on the regulation of anxiety and depression-like behaviors through actions on mitochondrial and MSN structure and function. MFN2 is posited as a promising therapeutic target to treat anxiety and associated behavioral disturbances.
Collapse
Affiliation(s)
- Elias Gebara
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Graham Knott
- Biological Electron Microscopy Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021; 9:biomedicines9050489. [PMID: 33946782 PMCID: PMC8145363 DOI: 10.3390/biomedicines9050489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.
Collapse
|
33
|
Tresse E, Riera-Ponsati L, Jaberi E, Sew WQG, Ruscher K, Issazadeh-Navikas S. IFN-β rescues neurodegeneration by regulating mitochondrial fission via STAT5, PGAM5, and Drp1. EMBO J 2021; 40:e106868. [PMID: 33913175 DOI: 10.15252/embj.2020106868] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial homeostasis is essential for providing cellular energy, particularly in resource-demanding neurons, defects in which cause neurodegeneration, but the function of interferons (IFNs) in regulating neuronal mitochondrial homeostasis is unknown. We found that neuronal IFN-β is indispensable for mitochondrial homeostasis and metabolism, sustaining ATP levels and preventing excessive ROS by controlling mitochondrial fission. IFN-β induces events that are required for mitochondrial fission, phosphorylating STAT5 and upregulating PGAM5, which phosphorylates serine 622 of Drp1. IFN-β signaling then recruits Drp1 to mitochondria, oligomerizes it, and engages INF2 to stabilize mitochondria-endoplasmic reticulum (ER) platforms. This process tethers damaged mitochondria to the ER to separate them via fission. Lack of neuronal IFN-β in the Ifnb-/- model of Parkinson disease (PD) disrupts STAT5-PGAM5-Drp1 signaling, impairing fission and causing large multibranched, damaged mitochondria with insufficient ATP production and excessive oxidative stress to accumulate. In other PD models, IFN-β rescues dopaminergic neuronal cell death and pathology, associated with preserved mitochondrial homeostasis. Thus, IFN-β activates mitochondrial fission in neurons through the pSTAT5/PGAM5/S622 Drp1 pathway to stabilize mitochondria/ER platforms, constituting an essential neuroprotective mechanism.
Collapse
Affiliation(s)
- Emilie Tresse
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lluís Riera-Ponsati
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Elham Jaberi
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Wei Qi Guinevere Sew
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research and LUBIN Lab - Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Shohreh Issazadeh-Navikas
- Faculty of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
35
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Kirch C, Gollo LL. Single-neuron dynamical effects of dendritic pruning implicated in aging and neurodegeneration: towards a measure of neuronal reserve. Sci Rep 2021; 11:1309. [PMID: 33446683 PMCID: PMC7809359 DOI: 10.1038/s41598-020-78815-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is a main risk factor for neurodegenerative disorders including Alzheimer's disease. It is often accompanied by reduced cognitive functions, gray-matter volume, and dendritic integrity. Although age-related brain structural changes have been observed across multiple scales, their functional implications remain largely unknown. Here we simulate the aging effects on neuronal morphology as dendritic pruning and characterize its dynamical implications. Utilizing a detailed computational modeling approach, we simulate the dynamics of digitally reconstructed neurons obtained from Neuromorpho.org. We show that dendritic pruning affects neuronal integrity: firing rate is reduced, causing a reduction in energy consumption, energy efficiency, and dynamic range. Pruned neurons require less energy but their function is often impaired, which can explain the diminished ability to distinguish between similar experiences (pattern separation) in older people. Our measures indicate that the resilience of neuronal dynamics is neuron-specific, heterogeneous, and strongly affected by dendritic topology and the position of the soma. Based on the emergent neuronal dynamics, we propose to classify the effects of dendritic deterioration, and put forward a topological measure of “neuronal reserve” that quantifies the resilience of neuronal dynamics to dendritic pruning. Moreover, our findings suggest that increasing dendritic excitability could partially mitigate the dynamical effects of aging.
Collapse
Affiliation(s)
- Christoph Kirch
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Queensland University of Technology, Brisbane, Australia
| | - Leonardo L Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,The Queensland University of Technology, Brisbane, Australia. .,The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging, Monash University, Melbourne, Australia.
| |
Collapse
|
37
|
Kirch C, Gollo LL. Spatially resolved dendritic integration: towards a functional classification of neurons. PeerJ 2020; 8:e10250. [PMID: 33282551 PMCID: PMC7694565 DOI: 10.7717/peerj.10250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
The vast tree-like dendritic structure of neurons allows them to receive and integrate input from many neurons. A wide variety of neuronal morphologies exist, however, their role in dendritic integration, and how it shapes the response of the neuron, is not yet fully understood. Here, we study the evolution and interactions of dendritic spikes in excitable neurons with complex real branch structures. We focus on dozens of digitally reconstructed illustrative neurons from the online repository NeuroMorpho.org, which contains over 130,000 neurons. Yet, our methods can be promptly extended to any other neuron. This approach allows us to estimate and map specific and heterogeneous patterns of activity observed across extensive dendritic trees with thousands of compartments. We propose a classification of neurons based on the location of the soma (centrality) and the number of branches connected to the soma. These are key topological factors in determining the neuron's energy consumption, firing rate, and the dynamic range, which quantifies the range in synaptic input rate that can be reliably encoded by the neuron's firing rate. Moreover, we find that bifurcations, the structural building blocks of complex dendrites, play a major role in increasing the dynamic range of neurons. Our results provide a better understanding of the effects of neuronal morphology in the diversity of neuronal dynamics and function.
Collapse
Affiliation(s)
- Christoph Kirch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Leonardo L. Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Luo Z, Wang J, Tang S, Zheng Y, Zhou X, Tian F, Xu Z. Dynamic-related protein 1 inhibitor eases epileptic seizures and can regulate equilibrative nucleoside transporter 1 expression. BMC Neurol 2020; 20:353. [PMID: 32962663 PMCID: PMC7507736 DOI: 10.1186/s12883-020-01921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Background Dynamic-related protein 1 (Drp1) is a key protein involved in the regulation of mitochondrial fission, and it could affect the dynamic balance of mitochondria and appears to be protective against neuronal injury in epileptic seizures. Equilibrative nucleoside transporter 1 (ENT1) is expressed and functional in the mitochondrial membrane that equilibrates adenosine concentration across membranes. Whether Drp1 participates in the pathogenesis of epileptic seizures via regulating function of ENT1 remains unclear. Methods In the present study, we used pilocarpine to induce status epilepticus (SE) in rats, and we used mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor to Drp1, to suppress mitochondrial fission in pilocarpine-induced SE model. Mdivi-1administered by intraperitoneal injection before SE induction, and the latency to firstepileptic seizure and the number of epileptic seizures was thereafter observed. The distribution of Drp1 was detected by immunofluorescence, and the expression patterns of Drp1 and ENT1 were detected by Western blot. Furthermore, the mitochondrial ultrastructure of neurons in the hippocampal CA1 region was observed by transmission electron microscopy. Results We found that Drp1 was expressed mainly in neurons and Drp1 expression was significantly upregulated in the hippocampal and temporal neocortex tissues at 6 h and 24 h after induction of SE. Mitochondrial fission inhibitor 1 attenuated epileptic seizures after induction of SE, reduced mitochondrial damage and ENT1 expression. Conclusions These data indicate that Drp1 is upregulated in hippocampus and temporal neocortex after pilocarpine-induced SE and the inhibition of Drp1 may lead to potential therapeutic target for SE by regulating ENT1 after pilocarpine-induced SE.
Collapse
Affiliation(s)
- Zhong Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Jing Wang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Shirong Tang
- Department of Neurology, The Thirteenth People's Hospital of Chongqing, Chongqing, 400053, China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Xuejiao Zhou
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Fei Tian
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China.
| |
Collapse
|
39
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
40
|
Lovy A, Ahumada-Castro U, Bustos G, Farias P, Gonzalez-Billault C, Molgó J, Cardenas C. Concerted Action of AMPK and Sirtuin-1 Induces Mitochondrial Fragmentation Upon Inhibition of Ca 2+ Transfer to Mitochondria. Front Cell Dev Biol 2020; 8:378. [PMID: 32523953 PMCID: PMC7261923 DOI: 10.3389/fcell.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles constantly undergoing fusion and fission. Ca2+ regulates many aspects of mitochondrial physiology by modulating the activity of several mitochondrial proteins. We previously showed that inhibition of constitutive IP3R-mediated Ca2+ transfer to the mitochondria leads to a metabolic cellular stress and eventually cell death. Here, we show that the decline of mitochondrial function generated by a lack of Ca2+ transfer induces a DRP-1 independent mitochondrial fragmentation that at an early time is mediated by an increase in the NAD+/NADH ratio and activation of SIRT1. Subsequently, AMPK predominates and drives the fragmentation. SIRT1 activation leads to the deacetylation of cortactin, favoring actin polymerization, and mitochondrial fragmentation. Knockdown of cortactin or inhibition of actin polymerization prevents fragmentation. These data reveal SIRT1 as a new player in the regulation of mitochondrial fragmentation induced by metabolic/bioenergetic stress through regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frédéric Joliot, ERL CNRS n° 9004, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | - Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
41
|
NeuroPath2Path: Classification and elastic morphing between neuronal arbors using path-wise similarity. Neuroinformatics 2020; 18:479-508. [PMID: 32107735 DOI: 10.1007/s12021-019-09450-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neuron shape and connectivity affect function. Modern imaging methods have proven successful at extracting morphological information. One potential path to achieve analysis of this morphology is through graph theory. Encoding by graphs enables the use of high throughput informatic methods to extract and infer brain function. However, the application of graph-theoretic methods to neuronal morphology comes with certain challenges in term of complex subgraph matching and the difficulty in computing intermediate shapes in between two imaged temporal samples. Here we report a novel, efficacious graph-theoretic method that rises to the challenges. The morphology of a neuron, which consists of its overall size, global shape, local branch patterns, and cell-specific biophysical properties, can vary significantly with the cell's identity, location, as well as developmental and physiological state. Various algorithms have been developed to customize shape based statistical and graph related features for quantitative analysis of neuromorphology, followed by the classification of neuron cell types using the features. Unlike the classical feature extraction based methods from imaged or 3D reconstructed neurons, we propose a model based on the rooted path decomposition from the soma to the dendrites of a neuron and extract morphological features from each constituent path. We hypothesize that measuring the distance between two neurons can be realized by minimizing the cost of continuously morphing the set of all rooted paths of one neuron to another. To validate this claim, we first establish the correspondence of paths between two neurons using a modified Munkres algorithm. Next, an elastic deformation framework that employs the square root velocity function is established to perform the continuous morphing, which, as an added benefit, provides an effective visualization tool. We experimentally show the efficacy of NeuroPath2Path, NeuroP2P, over the state of the art.
Collapse
|
42
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|
43
|
Mandal A, Drerup CM. Axonal Transport and Mitochondrial Function in Neurons. Front Cell Neurosci 2019; 13:373. [PMID: 31447650 PMCID: PMC6696875 DOI: 10.3389/fncel.2019.00373] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
The complex and elaborate architecture of a neuron poses a great challenge to the cellular machinery which localizes proteins and organelles, such as mitochondria, to necessary locations. Proper mitochondrial localization in neurons is particularly important as this organelle provides energy and metabolites essential to form and maintain functional neural connections. Consequently, maintenance of a healthy pool of mitochondria and removal of damaged organelles are essential for neuronal homeostasis. Long distance transport of the organelle itself as well as components necessary for maintaining mitochondria in distal compartments are important for a constant supply of healthy mitochondria at the right time and place. Accordingly, many neurodegenerative diseases have been associated with mitochondrial abnormalities. Here, we review our current understanding on transport-dependent mechanisms that regulate mitochondrial replenishment. We focus on axonal transport and import of mRNAs and proteins destined for mitochondria as well as mitochondrial fusion and fission to maintain mitochondrial homeostasis in distal compartments of the neuron.
Collapse
Affiliation(s)
- Amrita Mandal
- Unit on Neuronal Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
Ardicli D, Sarkozy A, Zaharieva I, Deshpande C, Bodi I, Siddiqui A, U-King-Im JM, Selfe A, Phadke R, Jungbluth H, Muntoni F. A novel case of MSTO1 gene related congenital muscular dystrophy with progressive neurological involvement. Neuromuscul Disord 2019; 29:448-455. [DOI: 10.1016/j.nmd.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
45
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
46
|
Glover ME, McCoy CR, Shupe EA, Unroe KA, Jackson NL, Clinton SM. Perinatal exposure to the SSRI paroxetine alters the methylome landscape of the developing dentate gyrus. Eur J Neurosci 2019; 50:1843-1870. [PMID: 30585666 DOI: 10.1111/ejn.14315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Evidence in humans and rodents suggests that perinatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants can have serious long-term consequences in offspring exposed in utero or infancy via breast milk. In spite of this, there is limited knowledge of how perinatal SSRI exposure impacts brain development and adult behaviour. Children exposed to SSRIs in utero exhibit increased internalizing behaviour and abnormal social behaviour between the ages of 3 and 6, and increased risk of depression in adolescence; however, the neurobiological changes underlying this behaviour are poorly understood. In rodents, perinatal SSRI exposure perturbs hippocampal gene expression and alters adult emotional behaviour (including increased depression-like behaviour). The present study demonstrates that perinatal exposure to the SSRI paroxetine leads to DNA hypomethylation and reduces DNA methyltransferase 3a (Dnmt3a) mRNA expression in the hippocampus during the second and third weeks of life. Next-generation sequencing identified numerous differentially methylated genomic regions, including altered methylation and transcription of several dendritogenesis-related genes. We then tested the hypothesis that transiently decreasing Dnmt3a expression in the early postnatal hippocampus would mimic the behavioural effects of perinatal SSRI exposure. We found that siRNA-mediated knockdown of Dnmt3a in the dentate gyrus during the second to third week of life produced greater depression-like behaviour in adult female (but not male) offspring, akin to the behavioural consequences of perinatal SSRI exposure. Overall, these data suggest that perinatal SSRI exposure may increase depression-like behaviours, at least in part, through reduced Dnmt3a expression in the developing hippocampus.
Collapse
Affiliation(s)
| | | | | | - Keaton A Unroe
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nateka L Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
47
|
Chronic Energy Depletion due to Iron Deficiency Impairs Dendritic Mitochondrial Motility during Hippocampal Neuron Development. J Neurosci 2018; 39:802-813. [PMID: 30523068 DOI: 10.1523/jneurosci.1504-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 11/21/2022] Open
Abstract
During development, neurons require highly integrated metabolic machinery to meet the large energy demands of growth, differentiation, and synaptic activity within their complex cellular architecture. Dendrites/axons require anterograde trafficking of mitochondria for local ATP synthesis to support these processes. Acute energy depletion impairs mitochondrial dynamics, but how chronic energy insufficiency affects mitochondrial trafficking and quality control during neuronal development is unknown. Because iron deficiency impairs mitochondrial respiration/ATP production, we treated mixed-sex embryonic mouse hippocampal neuron cultures with the iron chelator deferoxamine (DFO) to model chronic energetic insufficiency and its effects on mitochondrial dynamics during neuronal development. At 11 days in vitro (DIV), DFO reduced average mitochondrial speed by increasing the pause frequency of individual dendritic mitochondria. Time spent in anterograde motion was reduced; retrograde motion was spared. The average size of moving mitochondria was reduced, and the expression of fusion and fission genes was altered, indicating impaired mitochondrial quality control. Mitochondrial density was not altered, suggesting that respiratory capacity and not location is the key factor for mitochondrial regulation of early dendritic growth/branching. At 18 DIV, the overall density of mitochondria within terminal dendritic branches was reduced in DFO-treated neurons, which may contribute to the long-term deficits in connectivity and synaptic function following early-life iron deficiency. The study provides new insights into the cross-regulation between energy production and dendritic mitochondrial dynamics during neuronal development and may be particularly relevant to neuropsychiatric and neurodegenerative diseases, many of which are characterized by impaired brain iron homeostasis, energy metabolism and mitochondrial trafficking.SIGNIFICANCE STATEMENT This study uses a primary neuronal culture model of iron deficiency to address a gap in understanding of how dendritic mitochondrial dynamics are regulated when energy depletion occurs during a critical period of neuronal maturation. At the beginning of peak dendritic growth/branching, iron deficiency reduces mitochondrial speed through increased pause frequency, decreases mitochondrial size, and alters fusion/fission gene expression. At this stage, mitochondrial density in terminal dendrites is not altered, suggesting that total mitochondrial oxidative capacity and not trafficking is the main mechanism underlying dendritic complexity deficits in iron-deficient neurons. Our findings provide foundational support for future studies exploring the mechanistic role of developmental mitochondrial dysfunction in neurodevelopmental, psychiatric, and neurodegenerative disorders characterized by mitochondrial energy production and trafficking deficits.
Collapse
|
48
|
Abstract
Proper neuronal wiring is central to all bodily functions, sensory perception, cognition, memory, and learning. Establishment of a functional neuronal circuit is a highly regulated and dynamic process involving axonal and dendritic branching and navigation toward appropriate targets and connection partners. This intricate circuitry includes axo-dendritic synapse formation, synaptic connections formed with effector cells, and extensive dendritic arborization that function to receive and transmit mechanical and chemical sensory inputs. Such complexity is primarily achieved by extensive axonal and dendritic branch formation and pruning. Fundamental to neuronal branching are cytoskeletal dynamics and plasma membrane expansion, both of which are regulated via numerous extracellular and intracellular signaling mechanisms and molecules. This review focuses on recent advances in understanding the biology of neuronal branching.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
49
|
Singh M, Denny H, Smith C, Granados J, Renden R. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 2018; 596:6263-6287. [PMID: 30285293 DOI: 10.1113/jp276424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca2+ channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation. ABSTRACT Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca2+ accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca2+ channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Henry Denny
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Christina Smith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jorge Granados
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
50
|
Dendritic Self-Avoidance and Morphological Development of Cerebellar Purkinje Cells. THE CEREBELLUM 2018; 17:701-708. [DOI: 10.1007/s12311-018-0984-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|