1
|
Ito A, Miller C, Imamura F. Suppression of BMP signaling restores mitral cell development impaired by FGF signaling deficits in mouse olfactory bulb. Mol Cell Neurosci 2024; 128:103913. [PMID: 38056728 PMCID: PMC10939902 DOI: 10.1016/j.mcn.2023.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) play various important roles in the development of the central nervous system. However, the roles of FGF and BMP signaling in the development of the olfactory bulb (OB) are largely unknown. In this study, we first showed the expression of FGF receptors (FGFRs) and BMP receptors (BMPRs) in OB RGCs, radial glial cells (RGCs) in the developing OB, which generate the OB projection neurons, mitral and tufted cells. When the FGF signaling was inhibited by a dominant-negative form of FGFR1 (dnFGFR1), OB RGCs accelerated their state transition to mitral cell precursors without affecting their transcription cascade and fate. However, the mitral cell precursors could not radially migrate to form the mitral cell layer (MCL). In addition, FGF signaling inhibition reduced the expression of a BMP antagonist, Noggin, in the developing OB. When BMP signaling was suppressed by the ectopic expression of Noggin or a dominant-negative form of BMPR1a (dnBMPR1a) in the developing OB, the defect in MCL formation caused by the dnFGFR1 was rescued. However, the dnBMPR1a did not rescue the accelerated state transition of OB RGCs. These results demonstrate that FGF signaling is important for OB RGCs to maintain their self-renewal state and MCL formation. Moreover, the suppression of BMP signaling is required for mitral cells to form the MCL. This study sheds new light on the roles of FGFs and BMPs in OB development.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Claire Miller
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| |
Collapse
|
2
|
Engmann AK, Hatch JJ, Nanda P, Veeraraghavan P, Ozkan A, Poulopoulos A, Murphy AJ, Macklis JD. Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes. Nat Protoc 2022; 17:222-251. [PMID: 35022617 PMCID: PMC9751848 DOI: 10.1038/s41596-021-00638-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
During neuronal development, growth cones (GCs) of projection neurons navigate complex extracellular environments to reach distant targets, thereby generating extraordinarily complex circuitry. These dynamic structures located at the tips of axonal projections respond to substrate-bound as well as diffusible guidance cues in a neuronal subtype- and stage-specific manner to construct highly specific and functional circuitry. In vitro studies of the past decade indicate that subcellular localization of specific molecular machinery in GCs underlies the precise navigational control that occurs during circuit 'wiring'. Our laboratory has recently developed integrated experimental and analytical approaches enabling high-depth, quantitative proteomic and transcriptomic investigation of subtype- and stage-specific GC molecular machinery directly from the rodent central nervous system (CNS) in vivo. By using these approaches, a pure population of GCs and paired somata can be isolated from any neuronal subtype of the CNS that can be fluorescently labeled. GCs are dissociated from parent axons using fluid shear forces, and a bulk GC fraction is isolated by buoyancy ultracentrifugation. Subtype-specific GCs and somata are purified by recently developed fluorescent small particle sorting and established FACS of neurons and are suitable for downstream analyses of proteins and RNAs, including small RNAs. The isolation of subtype-specific GCs and parent somata takes ~3 h, plus sorting time, and ~1-2 h for subsequent extraction of molecular contents. RNA library preparation and sequencing can take several days to weeks, depending on the turnaround time of the core facility involved.
Collapse
Affiliation(s)
- Anne K Engmann
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J Hatch
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Prakruti Nanda
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Abdulkadir Ozkan
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander J Murphy
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
4
|
Ito A, Imamura F. Expression of Maf family proteins in glutamatergic neurons of the mouse olfactory bulb. Dev Neurobiol 2021; 82:77-87. [PMID: 34679244 DOI: 10.1002/dneu.22859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
The fate of neurons in the developing brain is largely determined by the combination of transcription factors they express. In particular, stem cells must follow different transcriptional cascades during differentiation in order to generate neurons with different neurotransmitter properties, such as glutamatergic and GABAergic neurons. In the mouse cerebral cortex, it has been shown that large Maf family proteins, MafA, MafB and c-Maf, regulate the development of specific types of GABAergic interneurons but are not expressed in glutamatergic neurons. In this study, we examined the expression of large Maf family proteins in the developing mouse olfactory bulb (OB) by immunohistochemistry and found that the cell populations expressing MafA and MafB are almost identical, and most of them express Tbr2. As Tbr2 is expressed in glutamatergic neurons in the OB, we further examined the expression of glutamatergic and GABAergic neuronal markers in MafA and MafB positive cells. The results showed that in the OB, MafA and MafB are expressed exclusively in glutamatergic neurons, but not in GABAergic neurons. We also found that few cells express c-Maf in the OB. These results indicate that, unlike the cerebral cortex, MafA and/or MafB may regulate the development of glutamatergic neurons in the developing OB. This study advances our knowledge about the development of glutamatergic neurons in the olfactory bulb, and also might suggest that mechanisms for the generation of projection neurons and interneurons differ between the cortex and the olfactory bulb, even though they both develop from the telencephalon.
Collapse
Affiliation(s)
- Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
Zeppilli S, Ackels T, Attey R, Klimpert N, Ritola KD, Boeing S, Crombach A, Schaefer AT, Fleischmann A. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 2021; 10:e65445. [PMID: 34292150 PMCID: PMC8352594 DOI: 10.7554/elife.65445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| | - Tobias Ackels
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Robin Attey
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stefan Boeing
- The Francis Crick Institute, Bioinformatics and BiostatisticsLondonUnited Kingdom
- The Francis Crick Institute, Scientific Computing - Digital Development TeamLondonUnited Kingdom
| | - Anton Crombach
- Inria Antenne Lyon La DouaVilleurbanneFrance
- Université de Lyon, INSA-Lyon, LIRIS, UMR 5205VilleurbanneFrance
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| |
Collapse
|
6
|
Topographically Distinct Projection Patterns of Early-Generated and Late-Generated Projection Neurons in the Mouse Olfactory Bulb. eNeuro 2020; 7:ENEURO.0369-20.2020. [PMID: 33158934 PMCID: PMC7716433 DOI: 10.1523/eneuro.0369-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. We have previously shown that mitral cells generated at different embryonic days differentially localize within the mitral cell layer (MCL) and extend their lateral dendrites to different sublayers of the external plexiform layer (EPL). Here, we examined the axonal projection patterns from the subpopulations of OB projection neurons that are determined by the timing of neurogenesis (neuronal birthdate) to understand the developmental origin of the diversity in olfactory pathways. We separately labeled early-generated and late-generated OB projection neurons using in utero electroporation performed at embryonic day (E)11 and E12, respectively, and quantitatively analyzed their axonal projection patterns in the whole mouse brain using high-resolution 3D imaging. In this study, we demonstrate that the axonal projection of late-generated OB projection neurons is restricted to the anterior portion of the olfactory cortex while those of the early-generated OB projection neurons innervate the entire olfactory cortex. Our results suggest that the late-generated mitral cells do not extend their axons to the posterior regions of the olfactory cortex. Therefore, the mitral cells having different birthdates differ, not only in cell body location and dendritic projections within the OB, but also in their axonal projection pattern to the olfactory cortex.
Collapse
|
7
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
8
|
Li J, Wang C, Zhang Z, Wen Y, An L, Liang Q, Xu Z, Wei S, Li W, Guo T, Liu G, Tao G, You Y, Du H, Fu Z, He M, Chen B, Campbell K, Alvarez-Buylla A, Rubenstein JL, Yang Z. Transcription Factors Sp8 and Sp9 Coordinately Regulate Olfactory Bulb Interneuron Development. Cereb Cortex 2019; 28:3278-3294. [PMID: 28981617 DOI: 10.1093/cercor/bhx199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells in the postnatal telencephalic ventricular-subventricular zone (V-SVZ) generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) into the olfactory bulb (OB). The Sp8 and Sp9 transcription factors are expressed in neuroblasts, as well as in the immature and mature interneurons in the V-SVZ-RMS-OB system. Here we show that Sp8 and Sp9 coordinately regulate OB interneuron development: although Sp9 null mutants show no major OB interneuron defect, conditional deletion of both Sp8 and Sp9 resulted in a much more severe reduction of OB interneuron number than that observed in the Sp8 conditional mutant mice, due to defects in neuronal differentiation, tangential and radial migration, and increased cell death in the V-SVZ-RMS-OB system. RNA-Seq and RNA in situ hybridization reveal that, in Sp8/Sp9 double mutant mice, but not in Sp8 or Sp9 single mutant mice, newly born neuroblasts in the V-SVZ-RMS-OB system fail to express Prokr2 and Tshz1 expression, genes with known roles in promoting OB interneuron differentiation and migration, and that are involved in human Kallmann syndrome.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunyang Wang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan Wen
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei An
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Qifei Liang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Song Wei
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weiwei Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Teng Guo
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoping Liu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guangxu Tao
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan You
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Heng Du
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuoning Fu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Miao He
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zhengang Yang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, Xu Z, Shang Z, Guo T, Su Z, Chen H, You Y, Li J, Yang Z. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol 2019; 527:2931-2947. [DOI: 10.1002/cne.24719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Haotian Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Jiada Li
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life SciencesCentral South University Changsha Hunan PR China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| |
Collapse
|
10
|
Podany A, Rauchut J, Wu T, Kawasawa YI, Wright J, Lamendella R, Soybel DI, Kelleher SL. Excess Dietary Zinc Intake in Neonatal Mice Causes Oxidative Stress and Alters Intestinal Host-Microbe Interactions. Mol Nutr Food Res 2018; 63:e1800947. [PMID: 30513548 DOI: 10.1002/mnfr.201800947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/23/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Greater than 68% of young infants are exposed to dietary zinc (Zn) levels that are higher than the Tolerable Upper Intake Limit. However, the consequences of excess dietary Zn during early life on intestinal function and host-microbe interactions are unknown. METHODS AND RESULTS Neonatal mice are gavaged with 100 Zn µg d-1 from postnatal day (PN) 2 through PN10 and indices of intestinal function and host-microbe interactions are compared to unsupplemented mice. Excess dietary Zn causes oxidative stress, increases goblet cell number and mucus production, and are associated with increased intestinal permeability and systemic inflammation. Over 900 genes are differentially expressed; 413 genes display a fold-change >1.60. The Gene Ontology Biological processes most significantly affected include biological adhesion, the immune system, metabolic processes, and response to stimulus. Key genes most highly and significantly upregulated include ALDH2, MT1, TMEM6, CDK20, and COX62b, while CALU, ST3GAL4, CRTC2, SLC28A2, and COMMA1 are downregulated. These changes are associated with a microbiome enriched in pathogenic taxa including Pseudomonadales and Campylobacter, and greater expression of bacterial stress response genes. CONCLUSION Excess dietary Zn may have unforeseen influences on epithelial signaling pathways, barrier function, and luminal ecology in the intestine that may have long-term consequences on intestinal health.
Collapse
Affiliation(s)
- Abigail Podany
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Jessica Rauchut
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State Hershey College of Medicine, Hershey, PA
| | - Justin Wright
- Department of Biology, Juniata College, Huntingdon, PA
| | | | - David I Soybel
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA
| | - Shannon L Kelleher
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA.,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA.,Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA
| |
Collapse
|
11
|
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360:176-182. [PMID: 29545511 PMCID: PMC7643870 DOI: 10.1126/science.aam8999] [Citation(s) in RCA: 888] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
To facilitate scalable profiling of single cells, we developed split-pool ligation-based transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than 100 cell types were identified, with gene expression patterns corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime analysis revealed transcriptional programs driving four developmental lineages, providing a snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides a path toward comprehensive single-cell transcriptomic analysis of other similarly complex multicellular systems.
Collapse
Affiliation(s)
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard A Muscat
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Anna Kuchina
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Paul Sample
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sumit Mukherjee
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | | | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Pan X, Wang B, Yuan T, Zhang M, Kent KC, Guo LW. Analysis of Combined Transcriptomes Identifies Gene Modules that Differentially Respond to Pathogenic Stimulation of Vascular Smooth Muscle and Endothelial Cells. Sci Rep 2018; 8:395. [PMID: 29321689 PMCID: PMC5762668 DOI: 10.1038/s41598-017-18675-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Smooth muscle cells (SMCs) and endothelial cells (ECs) are vital cell types composing the vascular medial wall and the atheroprotective inner lining, respectively. Current treatments for cardiovascular disease inhibit SMC hyperplasia but compromise EC integrity, predisposing patients to thrombosis. Therapeutics targeting SMCs without collateral damage to ECs are highly desirable. However, differential (SMC versus EC) disease-associated regulations remain poorly defined. We conducted RNA-seq experiments to investigate SMC-versus-EC differential transcriptomic dynamics, following treatment of human primary SMCs and ECs with TNFα or IL-1β, both established inducers of SMC hyperplasia and EC dysfunction. As revealed by combined SMC/EC transcriptomes, after TNFα or IL-1β induction, 174 and 213 genes respectively showed greater up-regulation in SMCs than in ECs (SMC-enriched), while 117 and 138 genes showed greater up-regulation in ECs over SMCs (EC-enriched). Analysis of gene interaction networks identified central genes shared in the two SMC-enriched gene sets, and a distinct group of central genes common in the two EC-enriched gene sets. Significantly, four gene modules (subnetworks) were identified from these central genes, including SMC-enriched JUN and FYN modules and EC-enriched SMAD3 and XPO1 modules. These modules may inform potential intervention targets for selective blockage of SMC hyperplasia without endothelial damage.
Collapse
Affiliation(s)
- Xiaokang Pan
- Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,James Molecular Laboratory, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43240, USA
| | - Bowen Wang
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tiezheng Yuan
- Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Mengxue Zhang
- Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Surgery and Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - K Craig Kent
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Lian-Wang Guo
- Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA. .,Department of Surgery and Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|