1
|
Torres AK, Mira RG, Pinto C, Inestrosa NC. Studying the mechanisms of neurodegeneration: C. elegans advantages and opportunities. Front Cell Neurosci 2025; 19:1559151. [PMID: 40207239 PMCID: PMC11979225 DOI: 10.3389/fncel.2025.1559151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Caenorhabditis elegans has been widely used as a model organism in neurodevelopment for several decades due to its simplicity, rapid growth, short life cycle, transparency, and rather simple genetics. It has been useful in modeling neurodegenerative diseases by the heterologous expression of the major proteins that form neurodegenerative-linked aggregates such as amyloid-β peptide, tau protein, and α-synuclein, among others. Furthermore, chemical treatments as well as the existence of several interference RNA libraries, transgenic worm lines, and the possibility of generating new transgenic strains create a magnificent range of possible tools to study the signaling pathways that could confer protection against protein aggregates or, on the contrary, are playing a detrimental role. In this review, we summarize the different C. elegans models of neurodegenerative diseases with a focus on Alzheimer's and Parkinson's diseases and how genetic tools could be used to dissect the signaling pathways involved in their pathogenesis mentioning several examples. Finally, we discuss the use of pharmacological agents in C. elegans models that could help to study these disease-associated signaling pathways and the powerful combinations of experimental designs with genetic tools. This review highlights the advantages of C. elegans as a valuable intermediary between in vitro and mammalian in vivo models in the development of potential new therapies.
Collapse
Affiliation(s)
- Angie K. Torres
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Cristina Pinto
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
3
|
Ide S, Ikeda K. Caenorhabditis elegans for opioid addiction research. Curr Opin Neurobiol 2024; 88:102914. [PMID: 39236640 DOI: 10.1016/j.conb.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
The problem of drug addiction has become a profound societal problem worldwide. A better understanding of the neurobiological basis of addiction and the discovery of more effective treatments are needed. Recent studies have shown that many mechanisms that underlie addiction exist in more primitive organisms, including the nematode Caenorhabditis elegans (C. elegans). C. elegans is also hypothesized to possess a functional opioid-like system, including the endogenous opioid-like peptide NLP-24 and opioid-like receptor NPR-17. Opioids, such as morphine, are thought to cause addiction-like behavior by activating dopamine nerves in C. elegans via the opioid-like system. Accumulating evidence suggests that C. elegans is an excellent animal model for identifying molecular mechanisms of addiction.
Collapse
Affiliation(s)
- Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan.
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| |
Collapse
|
4
|
Refai O, Rodriguez P, Gichi Z, Blakely RD. Forward genetic screen of the C. elegans million mutation library reveals essential, cell-autonomous contributions of BBSome proteins to dopamine signaling. J Neurochem 2024; 168:2073-2091. [PMID: 39118406 DOI: 10.1111/jnc.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The nematode Caenorhabditis elegans is well known for its ability to support forward genetic screens to identify molecules involved in neuronal viability and signaling. The proteins involved in C. elegans dopamine (DA) regulation are highly conserved across evolution, with prior work demonstrating that the model can serve as an efficient platform to identify novel genes involved in disease-associated processes. To identify novel players in DA signaling, we took advantage of a recently developed library of pre-sequenced mutant nematodes arising from the million mutation project (MMP) to identify strains that display the DA-dependent swimming-induced-paralysis phenotype (Swip). Our screen identified novel mutations in the dopamine transporter encoding gene dat-1, whose loss was previously used to identify the Swip phenotype, as well as multiple genes with previously unknown connections to DA signaling. Here, we present our isolation and characterization of one of these genes, bbs-1, previously linked to the function of primary cilia in worms and higher organisms, including humans, and where loss-of-function mutations result in a human disorder known as Bardet-Biedl syndrome. Our studies of C. elegans BBS-1 protein, as well as other proteins that are known to be assembled into a higher order complex (the BBSome) reveal that functional or structural disruption of this complex leads to exaggerated C. elegans DA signaling to produce Swip via a cell-autonomous mechanism. We provide evidence that not only does the proper function of cilia in C. elegans DA neurons support normal swimming behavior, but also that bbs-1 maintains normal levels of DAT-1 trafficking or function via a RHO-1 and SWIP-13/MAPK-15 dependent pathway where mutants may contribute to Swip independent of altered ciliary function. Together, these studies demonstrate novel contributors to DA neuron function in the worm and demonstrate the utility and efficiency of forward genetic screens using the MMP library.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Peter Rodriguez
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Zayna Gichi
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
5
|
Qu M, Zhao X, Wang Q, Xu X, Chen H, Wang Y. PIEZO mediates a protective mechanism for nematode Caenorhabditis elegans in response to nanoplastics caused dopaminergic neurotoxicity at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115738. [PMID: 38056120 DOI: 10.1016/j.ecoenv.2023.115738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Studies have probed nanoplastic toxicity on environmental organisms, but the regulatory role of animal PIEZO-type mechanosensitive ion channel component (PIEZO) remains unclear. Herein, we identified the sole PIEZO in Caenorhabditis elegans (C. elegans), utilizing amino acid homology analysis and Trans-Membrane prediction using Hidden Markov Models (TMHMM). In C. elegans, RNAi knockdown of pezo-1 had no impact on lifespan, body length, lethality, locomotion behaviors, or oxidative response (P > 0.05). However, exposure to 15 μg/L nanopolystyrene in the pezo-1 RNAi group resulted in severe locomotion changes: head trashes (P < 0.01), body bends (P < 0.05), forward turns (P < 0.05), backward turns (P < 0.01), and impaired sensory perception, including abnormal chemotaxis to NaCl (P < 0.01) and diacetyl (P < 0.01), as well as aversive responses (P < 0.05) to nanopolystyrene compared to the wild-type group. Dopaminergic neuron damage explains these behaviors, with GST-4 (P < 0.01) and SKN-1/Nrf2 (P < 0.01) activation mitigating nanoplastic-induced damage. Our results emphasize that even at the environmentally relevant concentrations (ERC), nanoplastics can impact neurotoxicity-related endpoints, with PIEZO mediating the regulation of oxidative and antioxidative systems in response to these effects. PIEZO may be applied for assessing the neurotoxicity or oxidative stress induced by other environmental toxicants besides nanoplastics.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Xiao Zhao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Qingao Wang
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Xuan Xu
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
6
|
Dejima K, Mitani S. Balancer-assisted outcrossing to remove unwanted background mutations. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000561. [PMID: 35622523 PMCID: PMC9047254 DOI: 10.17912/micropub.biology.000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/01/1970] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Whole-genome sequencing analysis allows us to identify a large number of natural variants and genetic changes created by mutagenesis. For instance, the Million Mutation Project isolated many point mutant alleles, which are available from the Caenorhabditis Genetics Center. Although collections of such mutations are very useful for genetic studies, the strains are often sick because they have multiple other mutations than the mutation of interest. To utilize the strains, it is necessary to outcross with other strains to remove undesired mutations. We previously constructed an inversion balancer toolkit covering a large part of C. elegans genome. In contrast to classical translocation balancers that cover parts of two chromosomes, each balancer from the toolkit covers a part of a chromosome. We think this compactness is beneficial for outcrossing mutants containing multiple background mutations. Here, we show that the fluorescence inversion balancer can be practically useful for outcrossing in the case where researchers want to simply evaluate the phenotypes.
Collapse
Affiliation(s)
| | - Shohei Mitani
- Tokyo Women's Medical University
,
Correspondence to: Shohei Mitani (
)
| |
Collapse
|
7
|
Refai O, Aggarwal S, Cheng MH, Gichi Z, Salvino JM, Bahar I, Blakely RD, Mortensen OV. Allosteric Modulator KM822 Attenuates Behavioral Actions of Amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol Pharmacol 2022; 101:123-131. [PMID: 34906999 PMCID: PMC8969146 DOI: 10.1124/molpharm.121.000400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson's disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter's substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators. SIGNIFICANCE STATEMENT: We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Shaili Aggarwal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Mary Hongying Cheng
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Joseph M Salvino
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ivet Bahar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| | - Ole V Mortensen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida (O.R., Z.G., R.D.B.); Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida (O.R., R.D.B.); Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (S.A., O.V.M.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (M.H.C., I.B.); and The Wistar Institute, Philadelphia, Pennsylvania (J.M.S.)
| |
Collapse
|
8
|
Piniella D, Martínez-Blanco E, Bartolomé-Martín D, Sanz-Martos AB, Zafra F. Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Martínez-Blanco
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain.
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Chatterjee S, Choi AJ, Frankel G. A systematic review of Sec24 cargo interactome. Traffic 2021; 22:412-424. [PMID: 34533884 DOI: 10.1111/tra.12817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.
Collapse
Affiliation(s)
- Sharanya Chatterjee
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Ana Jeemin Choi
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
10
|
Rebensburg SV, Wei G, Larue RC, Lindenberger J, Francis AC, Annamalai AS, Morrison J, Shkriabai N, Huang SW, KewalRamani V, Poeschla EM, Melikyan GB, Kvaratskhelia M. Sec24C is an HIV-1 host dependency factor crucial for virus replication. Nat Microbiol 2021; 6:435-444. [PMID: 33649557 PMCID: PMC8012256 DOI: 10.1038/s41564-021-00868-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Early events of the human immunodeficiency virus 1 (HIV-1) lifecycle, such as post-entry virus trafficking, uncoating and nuclear import, are poorly characterized because of limited understanding of virus-host interactions. Here, we used mass spectrometry-based proteomics to delineate cellular binding partners of curved HIV-1 capsid lattices and identified Sec24C as an HIV-1 host dependency factor. Gene deletion and complementation in Jurkat cells revealed that Sec24C facilitates infection and markedly enhances HIV-1 spreading infection. Downregulation of Sec24C in HeLa cells substantially reduced HIV-1 core stability and adversely affected reverse transcription, nuclear import and infectivity. Live-cell microscopy showed that Sec24C co-trafficked with HIV-1 cores in the cytoplasm during virus ingress. Biochemical assays demonstrated that Sec24C directly and specifically interacted with hexameric capsid lattices. A 2.3-Å resolution crystal structure of Sec24C228-242 in the complex with a capsid hexamer revealed that the Sec24C FG-motif bound to a pocket comprised of two adjoining capsid subunits. Combined with previous data1-4, our findings indicate that a capsid-binding FG-motif is conserved in unrelated proteins present in the cytoplasm (Sec24C), the nuclear pore (Nup153; refs. 3,4) and the nucleus (CPSF6; refs. 1,2). We propose that these virus-host interactions during HIV-1 trafficking across different cellular compartments are crucial for productive infection of target cells.
Collapse
Affiliation(s)
- Stephanie V Rebensburg
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guochao Wei
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross C Larue
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jared Lindenberger
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashwanth C Francis
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Morrison
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Szu-Wei Huang
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Vineet KewalRamani
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|
12
|
Robinson SB, Refai O, Hardaway JA, Sturgeon S, Popay T, Bermingham DP, Freeman P, Wright J, Blakely RD. Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1. PLoS One 2019; 14:e0216417. [PMID: 31083672 PMCID: PMC6513266 DOI: 10.1371/journal.pone.0216417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/21/2019] [Indexed: 11/18/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter with actions across phylogeny that modulate core behaviors such as motor activity, reward, attention, and cognition. Perturbed DA signaling in humans is associated with multiple disorders, including addiction, ADHD, schizophrenia, and Parkinson's disease. The presynaptic DA transporter exerts powerful control on DA signaling by efficient clearance of the neurotransmitter following release. As in vertebrates, Caenorhabditis elegans DAT (DAT-1) constrains DA signaling and loss of function mutations in the dat-1 gene result in slowed crawling on solid media and swimming-induced paralysis (Swip) in water. Previously, we identified a mutant line, vt34, that exhibits robust DA-dependent Swip. vt34 exhibits biochemical and behavioral phenotypes consistent with reduced DAT-1 function though vt34; dat-1 double mutants exhibit an enhanced Swip phenotype, suggesting contributions of the vt34-associated mutation to additional mechanisms that lead to excess DA signaling. SNP mapping and whole genome sequencing of vt34 identified the site of the molecular lesion in the gene B0412.2 that encodes the Runx transcription factor ortholog RNT-1. Unlike dat-1 animals, but similar to other loss of function rnt-1 mutants, vt34 exhibits altered male tail morphology and reduced body size. Deletion mutations in both rnt-1 and the bro-1 gene, which encodes a RNT-1 binding partner also exhibit Swip. Both vt34 and rnt-1 mutations exhibit reduced levels of dat-1 mRNA as well as the tyrosine hydroxylase ortholog cat-2. Although reporter studies indicate that rnt-1 is expressed in DA neurons, its re-expression in DA neurons of vt34 animals fails to fully rescue Swip. Moreover, as shown for vt34, rnt-1 mutation exhibits additivity with dat-1 in generating Swip, as do rnt-1 and bro-1 mutations, and vt34 exhibits altered capacity for acetylcholine signaling at the neuromuscular junction. Together, these findings identify a novel role for rnt-1 in limiting DA neurotransmission and suggest that loss of RNT-1 may disrupt function of both DA neurons and body wall muscle to drive Swip.
Collapse
Affiliation(s)
- Sarah B Robinson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
| | - J Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Sarah Sturgeon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Tessa Popay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Daniel P Bermingham
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Phyllis Freeman
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States of America
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL United States of America
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
13
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
14
|
Essmann CL, Ryan KR, Elmi M, Bryon-Dodd K, Porter A, Vaughan A, McMullan R, Nurrish S. Activation of RHO-1 in cholinergic motor neurons competes with dopamine signalling to control locomotion. PLoS One 2018; 13:e0204057. [PMID: 30240421 PMCID: PMC6150489 DOI: 10.1371/journal.pone.0204057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The small GTPase RhoA plays a crucial role in the regulation of neuronal signalling to generate behaviour. In the developing nervous system RhoA is known to regulate the actin cytoskeleton, however the effectors of RhoA-signalling in adult neurons remain largely unidentified. We have previously shown that activation of the RhoA ortholog (RHO-1) in C. elegans cholinergic motor neurons triggers hyperactivity of these neurons and loopy locomotion with exaggerated body bends. This is achieved in part through increased diacylglycerol (DAG) levels and the recruitment of the synaptic vesicle protein UNC-13 to synaptic release sites, however other pathways remain to be identified. Dopamine, which is negatively regulated by the dopamine re-uptake transporter (DAT), has a central role in modulating locomotion in both humans and C. elegans. In this study we identify a new pathway in which RHO-1 regulates locomotory behaviour by repressing dopamine signalling, via DAT-1, linking these two pathways together. We observed an upregulation of dat-1 expression when RHO-1 is activated and show that loss of DAT-1 inhibits the loopy locomotion phenotype caused by RHO-1 activation. Reducing dopamine signalling in dat-1 mutants through mutations in genes involved in dopamine synthesis or in the dopamine receptor DOP-1 restores the ability of RHO-1 to trigger loopy locomotion in dat-1 mutants. Taken together, we show that negative regulation of dopamine signalling via DAT-1 is necessary for the neuronal RHO-1 pathway to regulate locomotion.
Collapse
Affiliation(s)
- Clara L. Essmann
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Katie R. Ryan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Muna Elmi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kimberley Bryon-Dodd
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Porter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Rachel McMullan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Asjad HMM, Kasture A, El-Kasaby A, Sackel M, Hummel T, Freissmuth M, Sucic S. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism. J Biol Chem 2017; 292:19250-19265. [PMID: 28972153 PMCID: PMC5702666 DOI: 10.1074/jbc.m117.797092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.
Collapse
Affiliation(s)
- H M Mazhar Asjad
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ameya Kasture
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Ali El-Kasaby
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Sackel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Hummel
- the Department of Neurobiology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
16
|
The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism. J Neurosci 2017; 37:9288-9304. [PMID: 28842414 DOI: 10.1523/jneurosci.1582-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022] Open
Abstract
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.
Collapse
|