1
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
2
|
Davis-Anderson K, Micheva-Viteva S, Solomon E, Hovde B, Cirigliano E, Harris J, Twary S, Iyer R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int J Mol Sci 2023; 24:16161. [PMID: 38003351 PMCID: PMC10671572 DOI: 10.3390/ijms242216161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegeneration causes a significant disease burden and there are few therapeutic interventions available for reversing or slowing the disease progression. Induced pluripotent stem cells (iPSCs) hold significant potential since they are sourced from adult tissue and have the capacity to be differentiated into numerous cell lineages, including motor neurons. This differentiation process traditionally relies on cell lineage patterning factors to be supplied in the differentiation media. Genetic engineering of iPSC with the introduction of recombinant master regulators of motor neuron (MN) differentiation has the potential to shorten and streamline cell developmental programs. We have established stable iPSC cell lines with transient induction of exogenous LHX3 and ISL1 from the Tet-activator regulatory region and have demonstrated that induction of the transgenes is not sufficient for the development of mature MNs in the absence of neuron patterning factors. Comparative global transcriptome analysis of MN development from native and Lhx-ISL1 modified iPSC cultures demonstrated that the genetic manipulation helped to streamline the neuronal patterning process. However, leaky gene expression of the exogenous MN master regulators in iPSC resulted in the premature activation of genetic pathways characteristic of the mature MN function. Dysregulation of metabolic and regulatory pathways within the developmental process affected the MN electrophysiological responses.
Collapse
Affiliation(s)
- Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Blake Hovde
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Elisa Cirigliano
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Harris
- Information Systems and Modeling Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA; (K.D.-A.); (E.S.)
| | - Rashi Iyer
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
3
|
Rodriguez TC, Zhong L, Simpson H, Gleason E. Reduced Expression of TMEM16A Impairs Nitric Oxide-Dependent Cl− Transport in Retinal Amacrine Cells. Front Cell Neurosci 2022; 16:937060. [PMID: 35966201 PMCID: PMC9363626 DOI: 10.3389/fncel.2022.937060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Postsynaptic cytosolic Cl− concentration determines whether GABAergic and glycinergic synapses are inhibitory or excitatory. We have shown that nitric oxide (NO) initiates the release of Cl− from acidic internal stores into the cytosol of retinal amacrine cells (ACs) thereby elevating cytosolic Cl−. In addition, we found that cystic fibrosis transmembrane conductance regulator (CFTR) expression and Ca2+ elevations are necessary for the transient effects of NO on cytosolic Cl− levels, but the mechanism remains to be elucidated. Here, we investigated the involvement of TMEM16A as a possible link between Ca2+ elevations and cytosolic Cl− release. TMEM16A is a Ca2+-activated Cl− channel that is functionally coupled with CFTR in epithelia. Both proteins are also expressed in neurons. Based on this and its Ca2+ dependence, we test the hypothesis that TMEM16A participates in the NO-dependent elevation in cytosolic Cl− in ACs. Chick retina ACs express TMEM16A as shown by Western blot analysis, single-cell PCR, and immunocytochemistry. Electrophysiology experiments demonstrate that TMEM16A functions in amacrine cells. Pharmacological inhibition of TMEM16A with T16inh-AO1 reduces the NO-dependent Cl− release as indicated by the diminished shift in the reversal potential of GABAA receptor-mediated currents. We confirmed the involvement of TMEM16A in the NO-dependent Cl− release using CRISPR/Cas9 knockdown of TMEM16A. Two different modalities targeting the gene for TMEM16A (ANO1) were tested in retinal amacrine cells: an all-in-one plasmid vector and crRNA/tracrRNA/Cas9 ribonucleoprotein. The all-in-one CRISPR/Cas9 modality did not change the expression of TMEM16A protein and produced no change in the response to NO. However, TMEM16A-specific crRNA/tracrRNA/Cas9 ribonucleoprotein effectively reduces both TMEM16A protein levels and the NO-dependent shift in the reversal potential of GABA-gated currents. These results show that TMEM16A plays a role in the NO-dependent Cl− release from retinal ACs.
Collapse
|
4
|
Venkatesh I, Mehra V, Wang Z, Simpson MT, Eastwood E, Chakraborty A, Beine Z, Gross D, Cabahug M, Olson G, Blackmore MG. Co-occupancy identifies transcription factor co-operation for axon growth. Nat Commun 2021; 12:2555. [PMID: 33953205 PMCID: PMC8099911 DOI: 10.1038/s41467-021-22828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors (TFs) act as powerful levers to regulate neural physiology and can be targeted to improve cellular responses to injury or disease. Because TFs often depend on cooperative activity, a major challenge is to identify and deploy optimal sets. Here we developed a bioinformatics pipeline, centered on TF co-occupancy of regulatory DNA, and used it to predict factors that potentiate the effects of pro-regenerative Klf6 in vitro. High content screens of neurite outgrowth identified cooperative activity by 12 candidates, and systematic testing in a mouse model of corticospinal tract (CST) damage substantiated three novel instances of pairwise cooperation. Combined Klf6 and Nr5a2 drove the strongest growth, and transcriptional profiling of CST neurons identified Klf6/Nr5a2-responsive gene networks involved in macromolecule biosynthesis and DNA repair. These data identify TF combinations that promote enhanced CST growth, clarify the transcriptional correlates, and provide a bioinformatics approach to detect TF cooperation.
Collapse
Affiliation(s)
- Ishwariya Venkatesh
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Matthew T Simpson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Erik Eastwood
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | | | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Derek Gross
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Michael Cabahug
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Greta Olson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Ohnmacht J, May P, Sinkkonen L, Krüger R. Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. J Neural Transm (Vienna) 2020; 127:729-748. [PMID: 32248367 PMCID: PMC7242266 DOI: 10.1007/s00702-020-02184-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete understanding of genotype-phenotype correlations, for example through differential regulation of gene expression. Here, the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.
Collapse
Affiliation(s)
- Jochen Ohnmacht
- LCSB, University of Luxembourg, Belvaux, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- LCSB, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- LCSB, University of Luxembourg, Belvaux, Luxembourg.
- Luxembourg Institute of Health (LIH), Transversal Translational Medicine, Strassen, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| |
Collapse
|
6
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
7
|
Verschuuren M, Verstraelen P, García-Díaz Barriga G, Cilissen I, Coninx E, Verslegers M, Larsen PH, Nuydens R, De Vos WH. High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathol Commun 2019; 7:93. [PMID: 31164177 PMCID: PMC6549294 DOI: 10.1186/s40478-019-0741-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic developments for neurodegenerative disorders are redirecting their focus to the mechanisms that contribute to neuronal connectivity and the loss thereof. Using a high-throughput microscopy pipeline that integrates morphological and functional measurements, we found that inhibition of dual leucine zipper kinase (DLK) increased neuronal connectivity in primary cortical cultures. This neuroprotective effect was not only observed in basal conditions but also in cultures depleted from antioxidants and in cultures in which microtubule stability was genetically perturbed. Based on the morphofunctional connectivity signature, we further showed that the effects were limited to a specific dose and time range. Thus, our results illustrate that profiling microscopy images with deep coverage enables sensitive interrogation of neuronal connectivity and allows exposing a pharmacological window for targeted treatments. In doing so, we revealed a broad-spectrum neuroprotective effect of DLK inhibition, which may have relevance to pathological conditions that ar.e associated with compromised neuronal connectivity.
Collapse
|
8
|
Raikwar SP, Thangavel R, Dubova I, Selvakumar GP, Ahmed ME, Kempuraj D, Zaheer SA, Iyer SS, Zaheer A. Targeted Gene Editing of Glia Maturation Factor in Microglia: a Novel Alzheimer's Disease Therapeutic Target. Mol Neurobiol 2019; 56:378-393. [PMID: 29704201 PMCID: PMC6344368 DOI: 10.1007/s12035-018-1068-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Smita A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.
- Harry S. Truman Memorial Veteran's Hospital, US Department of Veterans Affairs, Columbia, MO, USA.
| |
Collapse
|
9
|
Dorval T, Chanrion B, Cattin ME, Stephan JP. Filling the drug discovery gap: is high-content screening the missing link? Curr Opin Pharmacol 2018; 42:40-45. [DOI: 10.1016/j.coph.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
|
10
|
Venkatesh I, Mehra V, Wang Z, Califf B, Blackmore MG. Developmental Chromatin Restriction of Pro-Growth Gene Networks Acts as an Epigenetic Barrier to Axon Regeneration in Cortical Neurons. Dev Neurobiol 2018; 78:960-977. [PMID: 29786967 PMCID: PMC6204296 DOI: 10.1002/dneu.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age-dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome-wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub-networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro-regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth-associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro-regenerative interventions in the adult, while also pointing toward selected pioneer factors as high-priority candidates for future combinatorial experiments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201
| | | | | |
Collapse
|
11
|
Lerch JK, Buchser W. Functional Genomics and High Content Screening in the Nervous System. Mol Cell Neurosci 2018; 80:159-160. [PMID: 28413055 DOI: 10.1016/j.mcn.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jessica K Lerch
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460 W 12(th) Ave, 696 Biomedical Research Tower, Columbus, OH, 43210, United States.
| | - William Buchser
- Department of Biology, College of William & Mary, Integrated Science Center 2135 540 Landrum Drive, Williamsburg, VA, 23185, United States.
| |
Collapse
|
12
|
Pardieck J, Sakiyama-Elbert S. Genome engineering for CNS injury and disease. Curr Opin Biotechnol 2018; 52:89-94. [PMID: 29597076 DOI: 10.1016/j.copbio.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023]
Abstract
Recent developments in genome engineering methods have advanced our knowledge of central nervous system (CNS) function in both normal health and following disease or injury. This review discusses current literature using gene editing tools in CNS disease and injury research, such as improving viral-mediated targeting of cell populations, generating new methods for genome editing, reprogramming cells into CNS cell types, and using organoids as models of development and disease. Readers may gain inspiration for continuing research into new genome engineering methods and for therapies for CNS applications.
Collapse
Affiliation(s)
- Jennifer Pardieck
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|