1
|
Matsuoka T, Yoshida H, Kasai T, Tozawa T, Iehara T, Chiyonobu T. α-Synuclein pathology in Drosophila melanogaster is exacerbated by haploinsufficiency of Rop: connecting STXBP1 encephalopathy with α-synucleinopathies. Hum Mol Genet 2024; 33:1328-1338. [PMID: 38692286 DOI: 10.1093/hmg/ddae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Syntaxin-binding protein 1 (STXBP1) is a presynaptic protein that plays important roles in synaptic vesicle docking and fusion. STXBP1 haploinsufficiency causes STXBP1 encephalopathy (STXBP1-E), which encompasses neurological disturbances including epilepsy, neurodevelopmental disorders, and movement disorders. Most patients with STXBP1-E present with regression and movement disorders in adulthood, highlighting the importance of a deeper understanding of the neurodegenerative aspects of STXBP1-E. An in vitro study proposed an interesting new role of STXBP1 as a molecular chaperone for α-Synuclein (αSyn), a key molecule in the pathogenesis of neurodegenerative disorders. However, no studies have shown αSyn pathology in model organisms or patients with STXBP1-E. In this study, we used Drosophila models to examine the effects of STXBP1 haploinsufficiency on αSyn-induced neurotoxicity in vivo. We demonstrated that haploinsufficiency of Ras opposite (Rop), the Drosophila ortholog of STXBP1, exacerbates compound eye degeneration, locomotor dysfunction, and dopaminergic neurodegeneration in αSyn-expressing flies. This phenotypic aggravation was associated with a significant increase in detergent-insoluble αSyn levels in the head. Furthermore, we tested whether trehalose, which has neuroprotective effects in various models of neurodegenerative disorders, mitigates αSyn-induced neurotoxicity exacerbated by Rop haploinsufficiency. In flies expressing αSyn and carrying a heterozygous Rop null variant, trehalose supplementation effectively alleviates neuronal phenotypes, accompanied by a decrease in detergent-insoluble αSyn in the head. In conclusion, this study revealed that Rop haploinsufficiency exacerbates αSyn-induced neurotoxicity by altering the αSyn aggregation propensity. This study not only contributes to understanding the mechanisms of neurodegeneration in STXBP1-E patients, but also provides new insights into the pathogenesis of α-synucleinopathies.
Collapse
Affiliation(s)
- Taro Matsuoka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Kasai
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Guiberson NGL, Black LS, Haller JE, Brukner A, Abramov D, Ahmad S, Xie YX, Sharma M, Burré J. Disease-linked mutations in Munc18-1 deplete synaptic Doc2. Brain 2024; 147:2185-2202. [PMID: 38242640 PMCID: PMC11146428 DOI: 10.1093/brain/awae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons and heterologous cells, we found that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we found a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrated that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.
Collapse
Affiliation(s)
- Noah Guy Lewis Guiberson
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luca S Black
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aniv Brukner
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Saad Ahmad
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yan Xin Xie
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Kim JH, Chen W, Chao ES, Rivera A, Kaku HN, Jiang K, Lee D, Chen H, Vega JM, Chin TV, Jin K, Nguyen KT, Zou SS, Moin Z, Nguyen S, Xue 薛名杉 M. GABAergic/Glycinergic and Glutamatergic Neurons Mediate Distinct Neurodevelopmental Phenotypes of STXBP1 Encephalopathy. J Neurosci 2024; 44:e1806232024. [PMID: 38360746 PMCID: PMC10993039 DOI: 10.1523/jneurosci.1806-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Wu Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Armando Rivera
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Heet Naresh Kaku
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Dongwon Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Jaimie M Vega
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Teresa V Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kelly T Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Sheldon S Zou
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Zain Moin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Shawn Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Mingshan Xue 薛名杉
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
4
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
5
|
Dos Santos AB, Larsen SD, Guo L, Barbagallo P, Montalant A, Verhage M, Sørensen JB, Perrier JF. Microcircuit failure in STXBP1 encephalopathy leads to hyperexcitability. Cell Rep Med 2023; 4:101308. [PMID: 38086378 PMCID: PMC10772346 DOI: 10.1016/j.xcrm.2023.101308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 12/22/2023]
Abstract
De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.
Collapse
Affiliation(s)
- Altair Brito Dos Santos
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Silas Dalum Larsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Liangchen Guo
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Paola Barbagallo
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Alexia Montalant
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam and Amsterdam University Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam and Amsterdam University Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jakob Balslev Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
6
|
Freibauer A, Wohlleben M, Boelman C. STXBP1-Related Disorders: Clinical Presentation, Molecular Function, Treatment, and Future Directions. Genes (Basel) 2023; 14:2179. [PMID: 38137001 PMCID: PMC10742812 DOI: 10.3390/genes14122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the affordability and availability of genetic testing have led to its increased use in clinical care. The increased frequency of testing has led to STXBP1 variants being identified as one of the more common variants associated with neurological disorders. In this review, we aim to summarize the common clinical phenotypes associated with STXBP1 pathogenic variants, provide an overview of their known natural history, and discuss current research into the genotype to phenotype correlation. We will also provide an overview of the suspected normal function of the STXBP1-encoded Munc18-1 protein, animal models, and experimental techniques that have been developed to study its function and use this information to try to explain the diverse phenotypes associated with STXBP1-related disorders. Finally, we will explore current therapies for STXBP1 disorders, including an overview of treatment goals for STXBP1-related disorders, a discussion of the current evidence for therapies, and future directions of personalized medications for STXBP1-related disorders.
Collapse
Affiliation(s)
- Alexander Freibauer
- Division of Neurology, BC Children’s Hospital, Vancouver, BC V6H 3N1, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mikayla Wohlleben
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cyrus Boelman
- Division of Neurology, BC Children’s Hospital, Vancouver, BC V6H 3N1, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Fontana A, Consentino MC, Motta M, Costanza G, Lo Bianco M, Marino S, Falsaperla R, Praticò AD. Syntaxin Binding Protein 1 Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:256-263. [DOI: 10.1055/s-0041-1727259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSyntaxin binding protein 1 (STXBP1), commonly known as MUNC18–1, is a member of SEC1 family membrane trafficking proteins; their function consists in controlling the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex assembly, making them essentials regulators of vesicle fusion. The precise function and molecular mechanism through which Munc18–1 contributes to neurotransmitter releasing is not entirely understood, but several evidences suggest its probable role in exocytosis. In 2008, heterozygous de novo mutations in neuronal protein Munc18–1 were first referred as a cause of Ohtahara syndrome development. Currently, a wide examination of the published data proved that 3.1% of patients with severe epilepsy carry a pathogenic de novo mutation including STXBP1 and approximately 10.2% of early onset epileptic encephalopathy is due to an aberrant STXBP1 form codified by the mutated gene. STXBP1 mutations can be associated to a wide clinical heterogeneity. All affected individuals show developmental delay and approximately the 95% of cases have seizures and early onset epileptic encephalopathy, characterized by infantile spasms as the main consistent feature. Burst suppression pattern and hypsarrhythmia are the most frequent EEG anomalies. Other neuronal disorders include Rett syndrome and behavioral and movement disorders. Mild dysmorphic features have been detected in a small number of cases. No genotype–phenotype correlation has been reported. Management of STXBP1 encephalopathy requires a multidisciplinary approach, including epilepsy control and neurological rehabilitation. About 25% of patients are refractory to standard therapy. A single or combined antiepileptic drugs may be required. Several studies described vigabatrin, valproic acid, levetiracetam, topiramate, clobazam, and oxcarbazepine as effective in seizure control. Lamotrigine, zonisamide, and phenobarbital are also commonly used. To date, it remains unclear which therapy is the most effective. Severe morbidity and high mortality are inevitable consequences in some of these patients.
Collapse
Affiliation(s)
- Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Milena Motta
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | | | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
9
|
Baier MP, Nagaraja RY, Yarbrough HP, Owen DB, Masingale AM, Ranjit R, Stiles MA, Murphy A, Agbaga MP, Ahmad M, Sherry DM, Kinter MT, Van Remmen H, Logan S. Selective Ablation of Sod2 in Astrocytes Induces Sex-Specific Effects on Cognitive Function, d-Serine Availability, and Astrogliosis. J Neurosci 2022; 42:5992-6006. [PMID: 35760531 PMCID: PMC9351643 DOI: 10.1523/jneurosci.2543-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cognitive decline is a debilitating aspect of aging and neurodegenerative diseases such as Alzheimer's disease are closely associated with mitochondrial dysfunction, increased reactive oxygen species, neuroinflammation, and astrogliosis. This study investigated the effects of decreased mitochondrial antioxidant response specifically in astrocytes on cognitive performance and neuronal function in C57BL/6J mice using a tamoxifen-inducible astrocyte-specific knockout of manganese superoxide dismutase (aSOD2-KO), a mitochondrial matrix antioxidant that detoxifies superoxide generated during mitochondrial respiration. We reduced astrocyte SOD2 levels in male and female mice at 11-12 months of age and tested in an automated home cage (PhenoTyper) apparatus for diurnal patterns, spatial learning, and memory function at 15 months of age. aSOD2-KO impaired hippocampal-dependent spatial working memory and decreased cognitive flexibility in the reversal phase of the testing paradigm in males. Female aSOD2-KO showed no learning and memory deficits compared with age-matched controls despite significant reduction in hippocampal SOD2 expression. aSOD2-KO males further showed decreased hippocampal long-term potentiation, but paired-pulse facilitation was unaffected. Levels of d-serine, an NMDA receptor coagonist, were also reduced in aSOD2-KO mice, but female knockouts showed a compensatory increase in serine racemase expression. Furthermore, aSOD2-KO mice demonstrated increased density of astrocytes, indicative of astrogliosis, in the hippocampus compared with age-matched controls. These data demonstrate that reduction in mitochondrial antioxidant stress response in astrocytes recapitulates age-related deficits in cognitive function, d-serine availability, and astrogliosis. Therefore, improving astrocyte mitochondrial homeostasis may provide a therapeutic target for intervention for cognitive impairment in aging.SIGNIFICANCE STATEMENT Diminished antioxidant response is associated with increased astrogliosis in aging and in Alzheimer's disease. Manganese superoxide dismutase (SOD2) is an antioxidant in the mitochondrial matrix that detoxifies superoxide and maintains mitochondrial homeostasis. We show that astrocytic ablation of SOD2 impairs hippocampal-dependent plasticity in spatial working memory, reduces long-term potentiation of hippocampal neurons and levels of the neuromodulator d-serine, and increases astrogliosis, consistent with defects in advanced aging and Alzheimer's disease. Our data provide strong evidence for sex-specific effects of astrocytic SOD2 functions in age-related cognitive dysfunction.
Collapse
Affiliation(s)
- Matthew P Baier
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Raghavendra Y Nagaraja
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Hannah P Yarbrough
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Daniel B Owen
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Anthony M Masingale
- Department of Rehabilitation Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Rojina Ranjit
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Megan A Stiles
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ashley Murphy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Martin-Paul Agbaga
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma 73104
- Neuroscience Program, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Mohiuddin Ahmad
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - David M Sherry
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Neuroscience Program, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Neuroscience Program, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- VA Oklahoma City Medical Center, Oklahoma City, Oklahoma 73104
| | - Sreemathi Logan
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Rehabilitation Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Neuroscience Program, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
10
|
Fass DM, Lewis MC, Ahmad R, Szucs MJ, Zhang Q, Fleishman M, Wang D, Kim MJ, Biag J, Carr SA, Scolnick EM, Premont RT, Haggarty SJ. Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Mol Psychiatry 2022; 27:3272-3285. [PMID: 35505090 PMCID: PMC9630168 DOI: 10.1038/s41380-022-01557-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Despite tremendous effort, the molecular and cellular basis of cognitive deficits in schizophrenia remain poorly understood. Recent progress in elucidating the genetic architecture of schizophrenia has highlighted the association of multiple loci and rare variants that may impact susceptibility. One key example, given their potential etiopathogenic and therapeutic relevance, is a set of genes that encode proteins that regulate excitatory glutamatergic synapses in brain. A critical next step is to delineate specifically how such genetic variation impacts synaptic plasticity and to determine if and how the encoded proteins interact biochemically with one another to control cognitive function in a convergent manner. Towards this goal, here we study the roles of GPCR-kinase interacting protein 1 (GIT1), a synaptic scaffolding and signaling protein with damaging coding variants found in schizophrenia patients, as well as copy number variants found in patients with neurodevelopmental disorders. We generated conditional neural-selective GIT1 knockout mice and found that these mice have deficits in fear conditioning memory recall and spatial memory, as well as reduced cortical neuron dendritic spine density. Using global quantitative phospho-proteomics, we revealed that GIT1 deletion in brain perturbs specific networks of GIT1-interacting synaptic proteins. Importantly, several schizophrenia and neurodevelopmental disorder risk genes are present within these networks. We propose that GIT1 regulates the phosphorylation of a network of synaptic proteins and other critical regulators of neuroplasticity, and that perturbation of these networks may contribute specifically to cognitive deficits observed in schizophrenia and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Sage Therapeutics, Cambridge, MA, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Wyss Institute at Harvard University, Boston, MA, USA
| | - Matthew J. Szucs
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myung Jong Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan Biag
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Richard T. Premont
- Harrington Discovery Institute, Cleveland, OH, 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
11
|
Lu Z, He S, Jiang J, Zhuang L, Wang Y, Yang G, Jiang X, Nie Y, Fu J, Zhang X, Lu Y, Bian X, Chang HC, Xiong Z, Huang X, Liu Z, Sun Q. Base-edited Cynomolgus Monkeys mimic core symptoms of STXBP1 encephalopathy. Mol Ther 2022; 30:2163-2175. [DOI: 10.1016/j.ymthe.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
|
12
|
Houtman SJ, Lammertse HCA, van Berkel AA, Balagura G, Gardella E, Ramautar JR, Reale C, Møller RS, Zara F, Striano P, Misra-Isrie M, van Haelst MM, Engelen M, van Zuijen TL, Mansvelder HD, Verhage M, Bruining H, Linkenkaer-Hansen K. STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG. Front Physiol 2022; 12:775172. [PMID: 35002760 PMCID: PMC8733612 DOI: 10.3389/fphys.2021.775172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75–4.63 Hz, (ii) increased long-range temporal correlations in the 11–18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12–24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations.
Collapse
Affiliation(s)
- Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Hanna C A Lammertse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Annemiek A van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Member of the ERN EpiCARE
| | - Jennifer R Ramautar
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Chiara Reale
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Clinical and Experimental Medicine, Epilepsy Center, University Hospital of Messina, Messina, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Member of the ERN EpiCARE
| | - Federico Zara
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Titia L van Zuijen
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.,Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands.,Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
In vivo calcium imaging reveals disordered interictal network dynamics in epileptic stxbp1b zebrafish. iScience 2021; 24:102558. [PMID: 34142057 PMCID: PMC8184515 DOI: 10.1016/j.isci.2021.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
STXBP1 mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.e., interictal period) could provide a valuable step toward understanding epileptic networks. To study these networks in the context of STXBP1 mutations, we combine a larval zebrafish model with in vivo fast confocal calcium imaging and extracellular local field potential recordings. Stxbp1b mutants display transient periods of elevated activity among local clusters of interacting neurons. These network "cascade" events were significantly larger in size and duration in mutants. At mesoscale resolution, cascades exhibit neurodevelopmental abnormalities. At single-cell scale, we describe spontaneous hyper-synchronized neuronal ensembles. That calcium imaging reveals uniquely disordered brain states during periods between pathological ictal-like seizure events is striking and represents a potential interictal biomarker.
Collapse
|
14
|
Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, Taura Y, Yamashita S, Yoshida M, Morimoto M, Higurashi N, Yamamoto T, Okano H, Hirose S. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet 2021; 30:1337-1348. [PMID: 33961044 DOI: 10.1093/hmg/ddab113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Syntaxin-binding protein 1 (STXBP1; also called MUNC18-1), encoded by STXBP1, is an essential component of the molecular machinery that controls synaptic vesicle docking and fusion. De novo pathogenic variants of STXBP1 cause a complex set of neurological disturbances, namely STXBP1 encephalopathy (STXBP1-E) that includes epilepsy, neurodevelopmental disorders and neurodegeneration. Several animal studies have suggested the contribution of GABAergic dysfunction in STXBP1-E pathogenesis. However, the pathophysiological changes in GABAergic neurons of these patients are still poorly understood. Here, we exclusively generated GABAergic neurons from STXBP1-E patient-derived induced pluripotent stem cells (iPSCs) by transient expression of the transcription factors ASCL1 and DLX2. We also generated CRISPR/Cas9-edited isogenic iPSC-derived GABAergic (iPSC GABA) neurons as controls. We demonstrated that the reduction in STXBP1 protein levels in patient-derived iPSC GABA neurons was slight (approximately 20%) compared to the control neurons, despite a 50% reduction in STXBP1 mRNA levels. Using a microelectrode array-based assay, we found that patient-derived iPSC GABA neurons exhibited dysfunctional maturation with reduced numbers of spontaneous spikes and bursts. These findings reinforce the idea that GABAergic dysfunction is a crucial contributor to STXBP1-E pathogenesis. Moreover, gene expression analysis revealed specific dysregulation of genes previously implicated in epilepsy, neurodevelopment and neurodegeneration in patient-derived iPSC GABA neurons, namely KCNH1, KCNH5, CNN3, RASGRF1, SEMA3A, SIAH3 and INPP5F. Thus, our study provides new insights for understanding the biological processes underlying the widespread neuropathological features of STXBP1-E.
Collapse
Affiliation(s)
- Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Mami Shibata
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Medical Science, School of Nursing, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
15
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Orock A, Logan S, Deak F. Age-Related Cognitive Impairment: Role of Reduced Synaptobrevin-2 Levels in Deficits of Memory and Synaptic Plasticity. J Gerontol A Biol Sci Med Sci 2021; 75:1624-1632. [PMID: 30649208 DOI: 10.1093/gerona/glz013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairment in the aging population is quickly becoming a health care priority, for which currently no disease-modifying treatment is available. Multiple domains of cognition decline with age even in the absence of neurodegenerative diseases. The cellular and molecular changes leading to cognitive decline with age remain elusive. Synaptobrevin-2 (Syb2), the major vesicular SNAP receptor protein, highly expressed in the cerebral cortex and hippocampus, is essential for synaptic transmission. We have analyzed Syb2 protein levels in mice and found a decrease with age. To investigate the functional consequences of lower Syb2 expression, we have used adult Syb2 heterozygous mice (Syb2+/-) with reduced Syb2 levels. This allowed us to mimic the age-related decrease of Syb2 in the brain in order to selectively test its effects on learning and memory. Our results show that Syb2+/- animals have impaired learning and memory skills and they perform worse with age in the radial arm water maze assay. Syb2+/- hippocampal neurons have reduced synaptic plasticity with reduced release probability and impaired long-term potentiation in the CA1 region. Syb2+/- neurons also have lower vesicular release rates when compared to WT controls. These results indicate that reduced Syb2 expression with age is sufficient to cause cognitive impairment.
Collapse
Affiliation(s)
- Albert Orock
- Oklahoma Center for Neuroscience, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Sreemathi Logan
- Oklahoma Center for Neuroscience, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ferenc Deak
- Oklahoma Center for Neuroscience, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, Oklahoma City.,Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City.,Department of Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
17
|
Tang F, Xiao D, Chen L, Gao H, Li X. Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review). Mol Med Rep 2021; 23:198. [PMID: 33495808 PMCID: PMC7821349 DOI: 10.3892/mmr.2021.11837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinsons disease, Alzheimers disease, multiple sclerosis, Duchennes muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
Abramov D, Guiberson NGL, Daab A, Na Y, Petsko GA, Sharma M, Burré J. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med 2021; 13:e12354. [PMID: 33332765 PMCID: PMC7799358 DOI: 10.15252/emmm.202012354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Andrew Daab
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
University of BathBathUK
| | - Yoonmi Na
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Gregory A Petsko
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA, USA
| | - Manu Sharma
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Jacqueline Burré
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
19
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
20
|
Lammertse HCA, van Berkel AA, Iacomino M, Toonen RF, Striano P, Gambardella A, Verhage M, Zara F. Homozygous STXBP1 variant causes encephalopathy and gain-of-function in synaptic transmission. Brain 2020; 143:441-451. [PMID: 31855252 PMCID: PMC7009479 DOI: 10.1093/brain/awz391] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 11/14/2022] Open
Abstract
Heterozygous mutations in the STXBP1 gene encoding the presynaptic protein MUNC18-1 cause STXBP1 encephalopathy, characterized by developmental delay, intellectual disability and epilepsy. Impaired mutant protein stability leading to reduced synaptic transmission is considered the main underlying pathogenetic mechanism. Here, we report the first two cases carrying a homozygous STXBP1 mutation, where their heterozygous siblings and mother are asymptomatic. Both cases were diagnosed with Lennox-Gastaut syndrome. In Munc18-1 null mouse neurons, protein stability of the disease variant (L446F) is less dramatically affected than previously observed for heterozygous disease mutants. Neurons expressing Munc18L446F showed minor changes in morphology and synapse density. However, patch clamp recordings demonstrated that L446F causes a 2-fold increase in evoked synaptic transmission. Conversely, paired pulse plasticity was reduced and recovery after stimulus trains also. Spontaneous release frequency and amplitude, the readily releasable vesicle pool and the kinetics of short-term plasticity were all normal. Hence, the homozygous L446F mutation causes a gain-of-function phenotype regarding release probability and synaptic transmission while having less impact on protein levels than previously reported (heterozygous) mutations. These data show that STXBP1 mutations produce divergent cellular effects, resulting in different clinical features, while sharing the overarching encephalopathic phenotype (developmental delay, intellectual disability and epilepsy).
Collapse
Affiliation(s)
- Hanna C A Lammertse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Annemiek A van Berkel
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Michele Iacomino
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto G. Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pasquale Striano
- IRCCS Istituto "G. Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto G. Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
21
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
Zhu B, Mak JCH, Morris AP, Marson AG, Barclay JW, Sills GJ, Morgan A. Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans. Epilepsia 2020; 61:810-821. [PMID: 32112430 PMCID: PMC8614121 DOI: 10.1111/epi.16464] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Genetic variants in STXBP1, which encodes the conserved exocytosis protein Munc18-1, are associated with a variety of infantile epilepsy syndromes. We aimed to develop an in vivo Caenorhabditis elegans model that could be used to test the pathogenicity of such variants in a cost-effective manner. METHODS The CRISPR/Cas9 method was used to introduce a null mutation into the unc-18 gene (the C. elegans orthologue of STXBP1), thereby creating a paralyzed worm strain. We subsequently rescued this strain with transgenes encoding the human STXBP1/Munc18-1 protein (wild-type and eight different epilepsy-associated missense variants). The resulting humanized worm strains were then analyzed via behavioral, electrophysiological, and biochemical approaches. RESULTS Transgenic expression of wild-type human STXBP1 protein fully rescued locomotion in both solid and liquid media to the same level as the standard wild-type worm strain, Bristol N2. Six variant strains (E59K, V84D, C180Y, R292H, L341P, R551C) exhibited impaired locomotion, whereas two (P335L, R406H) were no different from worms expressing wild-type STXBP1. Electrophysiological recordings revealed that all eight variant strains displayed less frequent and more irregular pharyngeal pumping in comparison to wild-type STXBP1-expressing strains. Four strains (V84D, C180Y, R292H, P335L) exhibited pentylenetetrazol-induced convulsions in an acute assay of seizure-like activity, in contrast to worms expressing wild-type STXBP1. No differences were seen between wild-type and variant STXBP1 strains in terms of mRNA abundance. However, STXBP1 protein levels were reduced to 20%-30% of wild-type in all variants, suggesting that the mutations result in STXBP1 protein instability. SIGNIFICANCE The approach described here is a cost-effective in vivo method for establishing the pathogenicity of genetic variants in STXBP1 and potentially other conserved neuronal proteins. Furthermore, the humanized strains we created could potentially be used in the future for high-throughput drug screens to identify novel therapeutics.
Collapse
Affiliation(s)
- Bangfu Zhu
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jennifer C H Mak
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrew P Morris
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Chen W, Cai ZL, Chao ES, Chen H, Longley CM, Hao S, Chao HT, Kim JH, Messier JE, Zoghbi HY, Tang J, Swann JW, Xue M. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. eLife 2020; 9:e48705. [PMID: 32073399 PMCID: PMC7056272 DOI: 10.7554/elife.48705] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes encoding synaptic proteins cause many neurodevelopmental disorders, with the majority affecting postsynaptic apparatuses and much fewer in presynaptic proteins. Syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1) is an essential component of the presynaptic neurotransmitter release machinery. De novo heterozygous pathogenic variants in STXBP1 are among the most frequent causes of neurodevelopmental disorders including intellectual disabilities and epilepsies. These disorders, collectively referred to as STXBP1 encephalopathy, encompass a broad spectrum of neurologic and psychiatric features, but the pathogenesis remains elusive. Here we modeled STXBP1 encephalopathy in mice and found that Stxbp1 haploinsufficiency caused cognitive, psychiatric, and motor dysfunctions, as well as cortical hyperexcitability and seizures. Furthermore, Stxbp1 haploinsufficiency reduced cortical inhibitory neurotransmission via distinct mechanisms from parvalbumin-expressing and somatostatin-expressing interneurons. These results demonstrate that Stxbp1 haploinsufficient mice recapitulate cardinal features of STXBP1 encephalopathy and indicate that GABAergic synaptic dysfunction is likely a crucial contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Colleen M Longley
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- McNair Medical Institute, The Robert and Janice McNair FoundationHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jessica E Messier
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - John W Swann
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
24
|
Fallah MS, Eubanks JH. Seizures in Mouse Models of Rare Neurodevelopmental Disorders. Neuroscience 2020; 445:50-68. [PMID: 32059984 DOI: 10.1016/j.neuroscience.2020.01.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
25
|
Valcarcel-Ares MN, Tucsek Z, Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Galvan V, Ballabh P, Richardson A, Freeman WM, Wren JD, Deak F, Ungvari Z, Csiszar A. Obesity in Aging Exacerbates Neuroinflammation, Dysregulating Synaptic Function-Related Genes and Altering Eicosanoid Synthesis in the Mouse Hippocampus: Potential Role in Impaired Synaptic Plasticity and Cognitive Decline. J Gerontol A Biol Sci Med Sci 2019; 74:290-298. [PMID: 29893815 DOI: 10.1093/gerona/gly127] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/07/2023] Open
Abstract
There is strong evidence that obesity has deleterious effects on cognitive function of older adults. Previous preclinical studies demonstrate that obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption, promoting neuroinflammation and oxidative stress. To test the hypothesis that synergistic effects of obesity and aging on inflammatory processes exert deleterious effects on hippocampal function, young and aged C57BL/6 mice were rendered obese by chronic feeding of a high-fat diet followed by assessment of learning and memory function, measurement of hippocampal long-term potentiation (LTP), assessment of changes in hippocampal expression of genes relevant for synaptic function and determination of synaptic density. Because there is increasing evidence that altered production of lipid mediators modulate LTP, neuroinflammation and neurovascular coupling responses, the effects of obesity on hippocampal levels of relevant eicosanoid mediators were also assessed. We found that aging exacerbates obesity-induced microglia activation, which is associated with deficits in hippocampal-dependent learning and memory tests, impaired LTP, decreased synaptic density, and dysregulation of genes involved in regulation of synaptic plasticity. Obesity in aging also resulted in an altered hippocampal eicosanoid profile, including decreases in vasodilator and pro-LTP epoxy-eicosatrienoic acids (EETs). Collectively, our results taken together with previous findings suggest that obesity in aging promotes hippocampal inflammation, which in turn may contribute to synaptic dysfunction and cognitive impairment.
Collapse
Affiliation(s)
- Marta Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies and Department of Physiology, University of Texas Health Science Center at San Antonio
| | - Praveen Ballabh
- Division of Neonatology, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Oklahoma City VA Medical Center, Oklahoma City
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City
| | - Ferenc Deak
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Department of Medical Physics and Informatics, University of Szeged, Hungary
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.,Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
O'Brien S, Ng-Cordell E, Astle DE, Scerif G, Baker K. STXBP1-associated neurodevelopmental disorder: a comparative study of behavioural characteristics. J Neurodev Disord 2019; 11:17. [PMID: 31387522 PMCID: PMC6683428 DOI: 10.1186/s11689-019-9278-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND De novo loss of function mutations in STXBP1 are a relatively common cause of epilepsy and intellectual disability (ID). However, little is known about the types and severities of behavioural features associated with this genetic diagnosis. METHODS To address this, we collected systematic phenotyping data encompassing neurological, developmental, and behavioural characteristics. Participants were 14 individuals with STXBP1-associated neurodevelopmental disorder, ascertained from clinical genetics and neurology services UK-wide. Data was collected via standardised questionnaires administered to parents at home, supplemented by researcher observations. To isolate discriminating phenotypes, the STXBP1 group was compared to 33 individuals with pathogenic mutations in other ID-associated genes (ID group). To account for the potential impact of global cognitive impairment, a secondary comparison was made to an ability-matched subset of the ID group (low-ability ID group). RESULTS The STXBP1 group demonstrated impairments across all assessed domains. In comparison to the ID group, the STXBP1 group had more severe global adaptive impairments, fine motor difficulties, and hyperactivity. In comparison to the low-ability ID group, severity of receptive language and social impairments discriminated the STXBP1 group. A striking feature of the STXBP1 group, with reference to both comparison groups, was preservation of social motivation. CONCLUSIONS De novo mutations in STXBP1 are associated with complex and variable neurodevelopmental impairments. Consistent features, which discriminate this disorder from other monogenic causes of ID, are severe language impairment and difficulties managing social interactions, despite strong social motivation. Future work could explore the physiological mechanisms linking motor, speech, and social development in this disorder. Understanding the developmental emergence of behavioural characteristics can help to focus clinical assessment and management after genetic diagnosis, with the long-term aim of improving outcomes for patients and families.
Collapse
Affiliation(s)
- Sinéad O'Brien
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | | | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK. .,Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
27
|
Lanoue V, Chai YJ, Brouillet JZ, Weckhuysen S, Palmer EE, Collins BM, Meunier FA. STXBP1 encephalopathy. Neurology 2019; 93:114-123. [DOI: 10.1212/wnl.0000000000007786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/18/2019] [Indexed: 11/15/2022] Open
Abstract
De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also known as Munc18-1) lead to a range of early-onset neurocognitive conditions, most commonly early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1 encephalopathy), a severe form of epilepsy associated with developmental delay/intellectual disability. Other neurologic features include autism spectrum disorder and movement disorders. The progression of neurologic symptoms has been reported in a few older affected individuals, with the appearance of extrapyramidal features, reminiscent of early onset parkinsonism. Understanding the pathologic process is critical to improving therapies, as currently available antiepileptic drugs have shown limited success in controlling seizures in EIEE4 and there is no precision medication approach for the other neurologic features of the disorder. Basic research shows that genetic knockout of STXBP1 or other presynaptic proteins of the exocytic machinery leads to widespread perinatal neurodegeneration. The mechanism that regulates this effect is under scrutiny but shares intriguing hallmarks with classical neurodegenerative diseases, albeit appearing early during brain development. Most critically, recent evidence has revealed that STXBP1 controls the self-replicating aggregation of α-synuclein, a presynaptic protein involved in various neurodegenerative diseases that are collectively known as synucleinopathies, including Parkinson disease. In this review, we examine the tantalizing link among STXBP1 function, EIEE, and the neurodegenerative synucleinopathies, and suggest that neural development in EIEE could be further affected by concurrent synucleinopathic mechanisms.
Collapse
|
28
|
Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, Mazaki E, Raveau M, Ogiwara I, Oba-Asaka A, Hensch TK, Itohara S, Sakimura K, Kobayashi K, Kobayashi K, Yamakawa K. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun 2019; 10:1917. [PMID: 31015467 PMCID: PMC6478892 DOI: 10.1038/s41467-019-09954-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice. Spike and wave discharge (SWD) activity is seen during absence seizures and is thought to be thalamocortical in origin. Here, the authors show that SWDs are initiated through the impaired corticostriatal excitatory transmissions onto striatal fast spiking interneurons.
Collapse
Affiliation(s)
- Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Yamagata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Ikuo Ogiwara
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Atsuko Oba-Asaka
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.,Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Takao K Hensch
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,FIRST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
29
|
Lee YI, Kim YG, Pyeon HJ, Ahn JC, Logan S, Orock A, Joo KM, Lőrincz A, Deák F. Dysregulation of the SNARE-binding protein Munc18-1 impairs BDNF secretion and synaptic neurotransmission: a novel interventional target to protect the aging brain. GeroScience 2019; 41:109-123. [PMID: 31041658 PMCID: PMC6544690 DOI: 10.1007/s11357-019-00067-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
| | - Yun Gi Kim
- Department of Anatomy, College of Medicine, Dankook University, Cheonan, 330-714, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
| | - Hee Jang Pyeon
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, 330-714, South Korea
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Chul Ahn
- Department of Biomedical Science, Dankook University, Cheonan, 330-714, South Korea
- Biomedical Translational Research Institute, Dankook University, Cheonan, 330-714, South Korea
| | - Sreemathi Logan
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Albert Orock
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Andrea Lőrincz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Florida State College at Jacksonville, 4500 Capper Rd, Jacksonville, FL, 32218, USA
| | - Ferenc Deák
- Departments of Geriatric Medicine and Physiology, University Oklahoma HSC, Oklahoma City, OK, USA.
- Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, Oklahoma City, OK, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street/SLY-BRC 1309-B, Oklahoma City, OK, 73104-5419, USA.
| |
Collapse
|
30
|
Abstract
Infantile spasms are a devastating epileptic encephalopathy characterized by early life spasms and later seizures. Clinical outcomes of infantile spasms are poor and therapeutic options are limited with significant adverse effects. Therefore, new strategies to treat infantile spasms are of the utmost importance. Animals models of infantile spasms are a critical component of developing new therapies. Here, we review current chronic animal models of infantile spasms and consider future advances that may help improve patient care, as well as our scientific understanding of this debilitating disease.
Collapse
|