1
|
Liu YN, Chen WY, Yeh HL, Chen WH, Jiang KC, Li HR, Dung PVT, Chen ZQ, Lee WJ, Hsiao M, Huang J, Wen YC. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Sci Signal 2024; 17:eadc9142. [PMID: 38861615 DOI: 10.1126/scisignal.adc9142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Chen P, Dandekar R, Alvarenga BD, Browne WD, Pleasure SJ, Wilson MR, Spudich SS, Farhadian SF, Bartley CM. Anti-SARS-CoV-2 and Autoantibody Profiling of a COVID-19 Patient With Subacute Psychosis Who Remitted After Treatment With Intravenous Immunoglobulin. Biol Psychiatry 2023; 93:e25-e29. [PMID: 36481066 PMCID: PMC9722219 DOI: 10.1016/j.biopsych.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lindsay S McAlpine
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Brooke Lifland
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph R Check
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas T Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California
| | - Peixi Chen
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Ravi Dandekar
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Bonny D Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Weston D Browne
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Neurology, University of California, San Francisco, California
| | - Serena S Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Shelli F Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Christopher M Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California.
| |
Collapse
|
3
|
Téllez-Arreola JL, Martínez-Torres A, Flores-Moran AE, Lazaro-Guevara JM, Estrada-Mondragón A. Analysis of the MCTP Amino Acid Sequence Reveals the Conservation of Putative Calcium- and Lipid-Binding Pockets Within the C2 Domains In Silico. J Mol Evol 2022; 90:271-282. [PMID: 35604448 DOI: 10.1007/s00239-022-10057-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
MCTPs (Multiple C2 Domains and Transmembrane region Proteins) are evolutionarily and structurally related to other C2 proteins, which are central to exocytosis and membrane trafficking; however, their specific function has been little studied. MCTPs are associated with endosomes and the endoplasmic reticulum and possess three C2 domains (C2A-C2C) and two transmembrane regions (TMRs) well conserved in different species. Here, we generated structural models of the MCTP C2 domains of C. elegans and analyzed their putative function by docking, which revealed that these domains possess Ca2+- and lipid-binding pockets, suggesting that MCTPs play a significant, calcium-dependent role in membrane physiology.
Collapse
Affiliation(s)
- José Luis Téllez-Arreola
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, 76215, Juriquilla, Querétaro, México.
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, 76215, Juriquilla, Querétaro, México
| | - Adriana E Flores-Moran
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - José M Lazaro-Guevara
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Argel Estrada-Mondragón
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|