1
|
Moon J. Tandem repeat disorders: from diagnosis to emerging therapeutic strategies. ENCEPHALITIS 2025; 5:27-35. [PMID: 39654412 PMCID: PMC12042693 DOI: 10.47936/encephalitis.2024.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 04/18/2025] Open
Abstract
Tandem repeat disorders (TRDs) are genetic conditions characterized by the abnormal expansion of repetitive DNA sequences within specific genes. The growing number of identified TRDs highlights their complexity, with varied molecular mechanisms ranging from toxic protein production and repeat-associated non-AUG translation to RNA toxicity and epigenetic modifications. TRDs also exhibit unique clinical features such as reduced penetrance, anticipation, and repeat motif changes. Advances in molecular diagnostics such as long-read sequencing have significantly improved the detection of TRDs, especially for large or complex repeat expansions. Additionally, emerging therapeutic strategies, particularly antisense oligonucleotides (ASOs) and gene editing technologies, are showing great promise. ASOs in particular have demonstrated success through mechanisms like allele-specific knockdown and splice modulation. In this review, we explore the classification of TRDs, advances in diagnostics, molecular mechanisms, clinical features, and innovative therapeutic strategies, highlighting the need for further research to refine treatments and improve outcomes.
Collapse
Affiliation(s)
- Jangsup Moon
- Rare Disease Center, Department of Genomic Medicine; Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Goutman SA, Goyal NA, Payne K, Paisán‐Ruiz C, Kupelian V, Kang ML, Mitchell AA, Fecteau TE. ALS Identified: two-year findings from a sponsored ALS genetic testing program. Ann Clin Transl Neurol 2024; 11:2201-2211. [PMID: 39044379 PMCID: PMC11330217 DOI: 10.1002/acn3.52140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
OBJECTIVE To report initial results from the Amyotrophic Lateral Sclerosis (ALS) Identified genetic testing (GT) program on characteristics of individuals tested and frequency of reported disease-causing variants. METHODS ALS Identified used the Invitae Amyotrophic Lateral Sclerosis panel (Invitae, San Francisco, CA, USA) to assay 22 ALS-associated genes. Sponsored by Biogen (Cambridge, MA, USA), the program was launched in June 2021 and was available at no charge to individuals ≥18 years in the United States and Puerto Rico with an ALS diagnosis or a known family history of ALS. Deidentified data were available to Biogen. RESULTS As of 26 October 2023, 998 healthcare professionals ordered the panel at 681 unique care sites. Of 8054 individuals examined, 7483 (92.9%) were reported to have a clinical diagnosis of ALS, while 571 (7.1%) were asymptomatic relatives. Of the individuals with a clinical ALS diagnosis, 57.7% were male (n = 4319) and 42.3% female (n = 3164). Mean (SD) age at diagnosis is 62 (13) years. Out of the 7483 clinically diagnosed individuals, 1810 (24.2%) showed genetic variations in ALS-associated genes. Among these, 865 individuals (47.8%) carried pathogenic variants, and 44 (2.4%) had likely pathogenic variants, totaling 12.1% of the clinically diagnosed population. INTERPRETATION Since 2021 there has been robust uptake and sustained use of the ALS Identified program, one of the largest samples of people with ALS to date across the United States, demonstrating the interest and need for genetic ALS testing.
Collapse
|
3
|
Leighton DJ, Ansari M, Newton J, Cleary E, Stephenson L, Beswick E, Carod Artal J, Davenport R, Duncan C, Gorrie GH, Morrison I, Swingler R, Deary IJ, Porteous M, Chandran S, Pal S. Genotypes and phenotypes of motor neuron disease: an update of the genetic landscape in Scotland. J Neurol 2024; 271:5256-5266. [PMID: 38852112 PMCID: PMC11319561 DOI: 10.1007/s00415-024-12450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Using the Clinical Audit Research and Evaluation of Motor Neuron Disease (CARE-MND) database and the Scottish Regenerative Neurology Tissue Bank, we aimed to outline the genetic epidemiology and phenotypes of an incident cohort of people with MND (pwMND) to gain a realistic impression of the genetic landscape and genotype-phenotype associations. METHODS Phenotypic markers were identified from the CARE-MND platform. Sequence analysis of 48 genes was undertaken. Variants were classified using a structured evidence-based approach. Samples were also tested for C9orf72 hexanucleotide expansions using repeat-prime PCR methodology. RESULTS 339 pwMND donated a DNA sample: 44 (13.0%) fulfilled criteria for having a pathogenic variant/repeat expansion, 53.5% of those with a family history of MND and 9.3% of those without. The majority (30 (8.8%)) had a pathogenic C9orf72 repeat expansion, including two with intermediate expansions. Having a C9orf72 expansion was associated with a significantly lower Edinburgh Cognitive and Behavioural ALS Screen ALS-Specific score (p = 0.0005). The known pathogenic SOD1 variant p.(Ile114Thr), frequently observed in the Scottish population, was detected in 9 (2.7%) of total cases but in 17.9% of familial cases. Rare variants were detected in FUS and NEK1. One individual carried both a C9orf72 expansion and SOD1 variant. CONCLUSIONS Our results provide an accurate summary of MND demographics and genetic epidemiology. We recommend early genetic testing of people with cognitive impairment to ensure that C9orf72 carriers are given the best opportunity for informed treatment planning. Scotland is enriched for the SOD1 p.(Ile114Thr) variant and this has significant implications with regards to future genetically-targeted treatments.
Collapse
Affiliation(s)
- Danielle J Leighton
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK.
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TF, UK.
| | - Morad Ansari
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Judith Newton
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elaine Cleary
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Laura Stephenson
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Emily Beswick
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | | | - Richard Davenport
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - George H Gorrie
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, UK
| | - Robert Swingler
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mary Porteous
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Siddharthan Chandran
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Kojak N, Kuno J, Fittipaldi KE, Khan A, Wenger D, Glasser M, Donnianni RA, Tang Y, Zhang J, Huling K, Ally R, Mujica AO, Turner T, Magardino G, Huang PY, Kerk SY, Droguett G, Prissette M, Rojas J, Gomez T, Gagliardi A, Hunt C, Rabinowitz JS, Gong G, Poueymirou W, Chiao E, Zambrowicz B, Siao CJ, Kajimura D. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. Nucleic Acids Res 2024; 52:5732-5755. [PMID: 38597682 PMCID: PMC11162798 DOI: 10.1093/nar/gkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.
Collapse
Affiliation(s)
- Nada Kojak
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junko Kuno
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - David Wenger
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jade Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Katie Huling
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Pei Yi Huang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sze Yen Kerk
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Jose Rojas
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | |
Collapse
|
5
|
Borrego-Hernández D, Vázquez-Costa JF, Domínguez-Rubio R, Expósito-Blázquez L, Aller E, Padró-Miquel A, García-Casanova P, Colomina MJ, Martín-Arriscado C, Osta R, Cordero-Vázquez P, Esteban-Pérez J, Povedano-Panadés M, García-Redondo A. Intermediate Repeat Expansion in the ATXN2 Gene as a Risk Factor in the ALS and FTD Spanish Population. Biomedicines 2024; 12:356. [PMID: 38397958 PMCID: PMC10886453 DOI: 10.3390/biomedicines12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Intermediate CAG expansions in the gene ataxin-2 (ATXN2) are a known risk factor for ALS, but little is known about their role in FTD risk. Moreover, their contribution to the risk and phenotype of patients might vary in populations with different genetic backgrounds. The aim of this study was to assess the relationship of intermediate CAG expansions in ATXN2 with the risk and phenotype of ALS and FTD in the Spanish population. Repeat-primed PCR was performed in 620 ALS and 137 FTD patients in three referral centers in Spain to determine the exact number of CAG repeats. In our cohort, ≥27 CAG repeats in ATXN2 were associated with a higher risk of developing ALS (odds ratio [OR] = 2.666 [1.471-4.882]; p = 0.0013) but not FTD (odds ratio [OR] = 1.446 [0.558-3.574]; p = 0.44). Moreover, ALS patients with ≥27 CAG repeats in ATXN2 showed a shorter survival rate compared to those with <27 repeats (hazard ratio [HR] 1.74 [1.18, 2.56], p = 0.005), more frequent limb onset (odds ratio [OR] = 2.34 [1.093-4.936]; p = 0.028) and a family history of ALS (odds ratio [OR] = 2.538 [1.375-4.634]; p = 0.002). Intermediate CAG expansions of ≥27 repeats in ATXN2 are associated with ALS risk but not with FTD in the Spanish population. ALS patients carrying an intermediate expansion in ATXN2 show more frequent limb onset but a worse prognosis than those without expansions. In patients carrying C9orf72 expansions, the intermediate ATXN2 expansion might increase the penetrance and modify the phenotype.
Collapse
Affiliation(s)
- Daniel Borrego-Hernández
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Raúl Domínguez-Rubio
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Laura Expósito-Blázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Elena Aller
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Genetics Department, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ariadna Padró-Miquel
- Genetics Laboratory (LCTMS), Bellvitge University Hospital-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Pilar García-Casanova
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
| | - María J. Colomina
- Anesthesia Service Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | | | - Rosario Osta
- Laboratório de Genética e Biotecnologia (LAGENBIO), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Aragon Institute for Health Research (IIS Aragon), Zaragoza University, 50013 Zaragoza, Spain;
| | - Pilar Cordero-Vázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Jesús Esteban-Pérez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Mónica Povedano-Panadés
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Alberto García-Redondo
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
6
|
Roggenbuck J, Eubank BHF, Wright J, Harms MB, Kolb SJ. Evidence-based consensus guidelines for ALS genetic testing and counseling. Ann Clin Transl Neurol 2023; 10:2074-2091. [PMID: 37691292 PMCID: PMC10646996 DOI: 10.1002/acn3.51895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Advances in amyotrophic lateral sclerosis (ALS) gene discovery, ongoing gene therapy trials, and patient demand have driven increased use of ALS genetic testing. Despite this progress, the offer of genetic testing to persons with ALS is not yet "standard of care." Our primary goal is to develop clinical ALS genetic counseling and testing guidelines to improve and standardize genetic counseling and testing practice among neurologists, genetic counselors or any provider caring for persons with ALS. METHODS Core clinical questions were identified and a rapid review performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) 2015 method. Guideline recommendations were drafted and the strength of evidence for each recommendation was assessed by combining two systems: the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) System and the Evaluation of Genomic Applications in Practice and Prevention (EGAPP). A modified Delphi approach was used to reach consensus among a group of content experts for each guideline statement. RESULTS A total of 35 guideline statements were developed. In summary, all persons with ALS should be offered single-step genetic testing, consisting of a C9orf72 assay, along with sequencing of SOD1, FUS, and TARDBP, at a minimum. The key education and genetic risk assessments that should be provided before and after testing are delineated. Specific guidance regarding testing methods and reporting for C9orf72 and other genes is provided for commercial laboratories. INTERPRETATION These evidence-based, consensus guidelines will support all stakeholders in the ALS community in navigating benefits and challenges of genetic testing.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Breda H. F. Eubank
- Health & Physical Education Department, Faculty of Health, Community, & EducationMount Royal University4825 Mount Royal Gate SWCalgaryAlbertaCanada
| | - Joshua Wright
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Matthew B. Harms
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Stephen J. Kolb
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Biological Chemistry & PharmacologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
7
|
Li Y, Dou X, Liu J, Xiao Y, Zhang Z, Hayes L, Wu R, Fu X, Ye Y, Yang B, Ostrow LW, He C, Sun S. Globally reduced N 6-methyladenosine (m 6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci 2023; 26:1328-1338. [PMID: 37365312 PMCID: PMC11361766 DOI: 10.1038/s41593-023-01374-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we show that N6-methyladenosine (m6A), the most prevalent internal mRNA modification, is downregulated in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons and postmortem brain tissues. The global m6A hypomethylation leads to transcriptome-wide mRNA stabilization and upregulated gene expression, particularly for genes involved in synaptic activity and neuronal function. Moreover, the m6A modification in the C9ORF72 intron sequence upstream of the expanded repeats enhances RNA decay via the nuclear reader YTHDC1, and the antisense RNA repeats can also be regulated through m6A modification. The m6A reduction increases the accumulation of repeat RNAs and the encoded poly-dipeptides, contributing to disease pathogenesis. We further demonstrate that, by elevating m6A methylation, we could significantly reduce repeat RNA levels from both strands and the derived poly-dipeptides, rescue global mRNA homeostasis and improve survival of C9ORF72-ALS/FTD patient iPSC-derived neurons.
Collapse
Affiliation(s)
- Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoyang Dou
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsey Hayes
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiujuan Fu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, Bethesda, MD, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Leighton DJ, Ansari M, Newton J, Parry D, Cleary E, Colville S, Stephenson L, Larraz J, Johnson M, Beswick E, Wong M, Gregory J, Carod Artal J, Davenport R, Duncan C, Morrison I, Smith C, Swingler R, Deary IJ, Porteous M, Aitman TJ, Chandran S, Gorrie GH, Pal S. Genotype-phenotype characterisation of long survivors with motor neuron disease in Scotland. J Neurol 2023; 270:1702-1712. [PMID: 36515702 PMCID: PMC9971124 DOI: 10.1007/s00415-022-11505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND We investigated the phenotypes and genotypes of a cohort of 'long-surviving' individuals with motor neuron disease (MND) to identify potential targets for prognostication. METHODS Patients were recruited via the Clinical Audit Research and Evaluation for MND (CARE-MND) platform, which hosts the Scottish MND Register. Long survival was defined as > 8 years from diagnosis. 11 phenotypic variables were analysed. Whole genome sequencing (WGS) was performed and variants within 49 MND-associated genes examined. Each individual was screened for C9orf72 repeat expansions. Data from ancestry-matched Scottish populations (the Lothian Birth Cohorts) were used as controls. RESULTS 58 long survivors were identified. Median survival from diagnosis was 15.5 years. Long survivors were significantly younger at onset and diagnosis than incident patients and had a significantly longer diagnostic delay. 42% had the MND subtype of primary lateral sclerosis (PLS). WGS was performed in 46 individuals: 14 (30.4%) had a potentially pathogenic variant. 4 carried the known SOD1 p.(Ile114Thr) variant. Significant variants in FIG4, hnRNPA2B1, SETX, SQSTM1, TAF15, and VAPB were detected. 2 individuals had a variant in the SPAST gene suggesting phenotypic overlap with hereditary spastic paraplegia (HSP). No long survivors had pathogenic C9orf72 repeat expansions. CONCLUSIONS Long survivors are characterised by younger age at onset, increased prevalence of PLS and longer diagnostic delay. Genetic analysis in this cohort has improved our understanding of the phenotypes associated with the SOD1 variant p.(Ile114Thr). Our findings confirm that pathogenic expansion of C9orf72 is likely a poor prognostic marker. Genetic screening using targeted MND and/or HSP panels should be considered in those with long survival, or early-onset slowly progressive disease, to improve diagnostic accuracy and aid prognostication.
Collapse
Affiliation(s)
- Danielle J Leighton
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK.
| | - Morad Ansari
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Judith Newton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elaine Cleary
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Shuna Colville
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura Stephenson
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Juan Larraz
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Micheala Johnson
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Emily Beswick
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Michael Wong
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Jenna Gregory
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard Davenport
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, UK
| | - Colin Smith
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert Swingler
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mary Porteous
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - George H Gorrie
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
9
|
König T, Wurm R, Parvizi T, Silvaieh S, Hotzy C, Cetin H, Klotz S, Gelpi E, Bancher C, Benke T, Dal-Bianco P, Defrancesco M, Fischer P, Marksteiner J, Sutterlüty H, Ransmayr G, Schmidt R, Zimprich A, Stögmann E. C9orf72 repeat length might influence clinical sub-phenotypes in dementia patients. Neurobiol Dis 2022; 175:105927. [DOI: 10.1016/j.nbd.2022.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
10
|
Zhang W, Ma J, Shi J, Huang S, Zhao R, Pang X, Wang J, Guo J, Chang X. GGC repeat expansions in NOTCH2NLC causing a phenotype of lower motor neuron syndrome. J Neurol 2022; 269:4469-4477. [DOI: 10.1007/s00415-022-11092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
|
11
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
12
|
Matsubara T, Izumi Y, Oda M, Takahashi M, Maruyama H, Miyamoto R, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Saito Y, Murayama S. An autopsy report of a familial amyotrophic lateral sclerosis case carrying VCP Arg487His mutation with a unique TDP-43 proteinopathy. Neuropathology 2021; 41:118-126. [PMID: 33415820 DOI: 10.1111/neup.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.
Collapse
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuishin Izumi
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaya Oda
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chigusa Watanabe
- Department of Neurology, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Molecular Research Center for Children's Mental Development (Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders), United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Roggenbuck J. C9orf72 and the Care of the Patient With ALS or FTD: Progress and Recommendations After 10 Years. NEUROLOGY-GENETICS 2020; 7:e542. [PMID: 33575483 PMCID: PMC7862089 DOI: 10.1212/nxg.0000000000000542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
The 2011 discovery of the pathogenic hexanucleotide repeat expansion (HRE) in C9orf72, the leading genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), marked a breakthrough in the effort to unravel the etiology of these conditions. Ten years later, clinicians are still working to integrate the implications of this discovery into the care of individuals with ALS and/or FTD. Consensus management guidelines for ALS do not comprehensively address the issue of genetic testing, and questions remain about whom to test, what counseling should be provided before and after testing, laboratory methods, and test interpretation. These challenges have contributed to inconsistent clinical practices and present barriers to patients wishing to access testing. This review summarizes the clinical impact of the discovery of the C9orf72 HRE, outlines ongoing challenges, and provides recommendations for C9orf72 testing, counseling, and research.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Departments of Neurology and Internal Medicine, The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
14
|
Alva-Diaz C, Alarcon-Ruiz CA, Pacheco-Barrios K, Mori N, Pacheco-Mendoza J, Traynor BJ, Rivera-Valdivia A, Lertwilaiwittaya P, Bird TD, Cornejo-Olivas M. C9orf72 Hexanucleotide Repeat in Huntington-Like Patients: Systematic Review and Meta-Analysis. Front Genet 2020; 11:551780. [PMID: 33240313 PMCID: PMC7667021 DOI: 10.3389/fgene.2020.551780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/02/2020] [Indexed: 01/11/2023] Open
Abstract
Introduction: Patients with Huntington-Like disorders (HLD) comprise a variety of allelic disorders sharing a Huntington phenotype. The hexanucleotide repeat expansion of the C9orf72 gene could explain part of the HLD etiology. We aimed to conduct a systematic review and meta-analysis looking for the frequency of the hexanucleotide repeat expansion of the C9orf72 gene in HLD patients. Methods: The protocol was registered on the International Prospective Register of Systematic Reviews database (PROSPERO) (registration number: CRD42018105465). The search was carried out in Medline, Scopus, Web of Science, and Embase in April 2018, and updated in July 2020. Observational studies reporting patients with HLD carrying the hexanucleotide repeat expansion in the C9orf72 gene were selected and reviewed; this process was duplicated. The cutoff threshold for considering the hexanucleotide expansion as a pathogenic variant was equal to or >30 G4C2 repeats. Cases with intermediate alleles with 20-29 repeat are also analyzed. Pooled frequency and 95% CI were calculated using random-effects models. Results: Nine out of 219 studies were selected, reporting 1,123 affected individuals with HLD. Among them, 18 individuals carried C9orf72 expansion, representing 1% (95% CI: 0-2%, I 2 = 0%) of the pooled frequency. Seven selected studies came from European centers, one was reported at a US center, and one came from a South-African center. We identified five individuals carrying intermediate alleles representing 3% (95% CI: 0-14%, I 2 = 78.5%). Conclusions: The frequency of C9orf72 unstable hexanucleotide repeat expansion in HLD patients is very low. Further studies with more accurate clinical data and from different ethnic backgrounds are needed to confirm this observation.
Collapse
Affiliation(s)
- Carlos Alva-Diaz
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| | - Christoper A. Alarcon-Ruiz
- Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| | - Kevin Pacheco-Barrios
- Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nicanor Mori
- Servicio de Neurología, Departamento de Medicina, Hospital Nacional Daniel Alcides Carrión, Callao, Peru
| | - Josmel Pacheco-Mendoza
- Unidad de Investigación en Bibliometria, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute of Aging, NIH, Bethesda, MD, United States
| | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Fogarty Northern Pacific Global Health Fellows Program, Seattle, WA, United States
- Fogarty Interdisciplinary Cerebrovascular Diseases Training Program in South America, Lima, Peru
| | | | - Thomas D. Bird
- Department of Neurology, University of Washington, Seattle, WA, United States
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Survival and Motor Phenotypes in FVB C9-500 ALS/FTD BAC Transgenic Mice Reproduced by Multiple Labs. Neuron 2020; 108:784-796.e3. [PMID: 33022226 DOI: 10.1016/j.neuron.2020.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 09/04/2020] [Indexed: 01/21/2023]
Abstract
Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.
Collapse
|
16
|
Perrone B, Conforti FL. Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn 2020; 20:703-714. [PMID: 32497448 DOI: 10.1080/14737159.2020.1779060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease predominantly affecting upper and lower motor neurons. Diagnosis of this devastating pathology is very difficult because the high degree of clinical heterogeneity with which it occurs and until now, no truly effective treatment exists. AREAS COVERED Molecular diagnosis may be a valuable tool for dissecting out ALS complex heterogeneity and for identifying new molecular mechanisms underlying the characteristic selective degeneration and death of motor neurons. To date, pathogenic variants in ALS genes are known to be present in up to 70% of familial and 10% of apparently sporadic ALS cases and can be associated with risks for ALS only or risks for other neurodegenerative diseases. This paper shows the procedure currently used in diagnostic laboratories to investigate most frequent mutations in ALS and evaluating the utility of involved molecular techniques as potential tools to discriminate 'common mutations' in ALS patients. EXPERT OPINION Genetic testing may allow for establishing an accurate pathological diagnosis and a more precise stratification of patient groups in future drug trials.
Collapse
Affiliation(s)
- Benedetta Perrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| |
Collapse
|
17
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
McHutchison CA, Leighton DJ, McIntosh A, Cleary E, Warner J, Porteous M, Chandran S, Pal S, Abrahams S. Relationship between neuropsychiatric disorders and cognitive and behavioural change in MND. J Neurol Neurosurg Psychiatry 2020; 91:245-253. [PMID: 31871139 DOI: 10.1136/jnnp-2019-321737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In this population-based study, we aimed to determine whether neuropsychiatric history, medication or family history of neuropsychiatric disorders predicted cognitive and/or behavioural impairment in motor neuron disease (MND). METHODS People with MND (pwMND) on the Scottish Clinical, Audit, Research and Evaluation of MND (CARE-MND) register, diagnosed from January 2015 to January 2018, with cognitive and/or behavioural data measured using the Edinburgh Cognitive and Behavioural ALS Screen were included. Data were extracted on patient neuropsychiatric, medication and family history of neuropsychiatric disorders. We identified patients with cognitive impairment (motor neuron disease with cognitive impairment (MNDci)), behavioural impairment (motor neuron disease with behavioural impairment (MNDbi), both (motor neuron disease with cognitive and behavioural impairment (MNDcbi)) or motor neuron disease-frontotemporal dementia (MND-FTD). RESULTS Data were available for 305 pwMND (mean age at diagnosis=62.26 years, SD=11.40), of which 60 (19.7%) had a neuropsychiatric disorder. A family history of neuropsychiatric disorders was present in 36/231 (15.58%) of patients. Patient premorbid mood disorders were associated with increased apathy (OR=2.78, 95% CI 1.083 to 7.169). A family history of any neuropsychiatric disorder was associated with poorer visuospatial scores, MNDbi (OR=3.14, 95% CI 1.09 to 8.99) and MND-FTD (OR=5.08, 95% CI 1.26 to 20.40). A family history of mood disorders was associated with poorer overall cognition (exp(b)=0.725, p=0.026), language, verbal fluency and visuospatial scores, and MND-FTD (OR=7.57, 95% CI 1.55 to 46.87). A family history of neurotic disorders was associated with poorer language (exp(b)=0.362, p<0.001), visuospatial scores (exp(b)=0.625, p<0.009) and MND-FTD (OR=13.75, 95% CI 1.71 to 110.86). CONCLUSION Neuropsychiatric disorders in patients and their families are associated with cognitive and behavioural changes post-MND diagnosis, with many occurring independently of MND-FTD and C9orf72 status. These findings support an overlap between MND, frontotemporal dementia and neuropsychiatric disorders, particularly mood disorders.
Collapse
Affiliation(s)
- Caroline A McHutchison
- Human Cognitive Neurosciences, Department of Psychology, The University of Edinburgh, Edinburgh, UK .,Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Danielle Jane Leighton
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Andrew McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Division of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
| | - Elaine Cleary
- Centre for Genomic & Experimental Medicine, South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Jon Warner
- Centre for Genomic & Experimental Medicine, South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Mary Porteous
- Centre for Genomic & Experimental Medicine, South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sharon Abrahams
- Human Cognitive Neurosciences, Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Roggenbuck J, Palettas M, Vicini L, Patel R, Quick A, Kolb SJ. Incidence of pathogenic, likely pathogenic, and uncertain ALS variants in a clinic cohort. NEUROLOGY-GENETICS 2020; 6:e390. [PMID: 32042918 PMCID: PMC6984133 DOI: 10.1212/nxg.0000000000000390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Objective To determine the incidence of amyotrophic lateral sclerosis (ALS) genetic variants in a clinic-based population. Methods A prospective cohort of patients with definite or probable ALS was offered genetic testing using a testing algorithm based on family history and age at onset. Results The incidence of pathogenic (P) or likely pathogenic (LP) variants was 56.0% in familial ALS (fALS); 11.8% in patients with ALS with a family history of dementia, and 6.8% in sporadic ALS (p < 0.001). C9orf72 expansions accounted for the majority (79%) of P or LP variants in fALS cases. Variants of uncertain significance were identified in 20.0% of fALS cases overall and in 35.7% of C9orf72-negative cases. P or LP variants were detected in 18.5% of early-onset cases (onset age <50 years); the incidence of P or LP variants was not significantly different between family history types in this group. Conclusions Our data suggest that the incidence of P and LP variants in genes other than C9orf72 is lower than expected in Midwestern fALS cases compared with research cohorts and highlights the challenge of variant interpretation in ALS. An accurate understanding of the incidence of pathogenic variants in clinic-based ALS populations is necessary to prioritize targets for therapeutic intervention and inform clinical trial design.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| | - Marilly Palettas
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| | - Leah Vicini
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| | - Radha Patel
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| | - Adam Quick
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| | - Stephen J Kolb
- Department of Internal Medicine (J.R.) and Department of Neurology (J.R., A.Q., S.J.K.), The Ohio State University Wexner Medical Center; Department of Biomedical Informatics (M.P.), Center for Biostatistics, The Ohio State University Wexner Medical Center; College of Medicine (L.V., R.P.), The Ohio State University Wexner Medical Center; and Department of Biological Chemistry & Pharmacology (S.J.K.), The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
20
|
Deng J, Wu W, Xie Z, Gang Q, Yu M, Liu J, Wang Q, Lv H, Zhang W, Huang Y, Wang T, Yuan Y, Hong D, Wang Z. Novel and Recurrent Mutations in a Cohort of Chinese Patients With Young-Onset Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1289. [PMID: 31866807 PMCID: PMC6908997 DOI: 10.3389/fnins.2019.01289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. More than 25 ALS-related genes have been identified, accounting for approximately 10% of sporadic ALS (SALS) and two-thirds of familial ALS (FALS) cases. Several recent studies showed that genetic factors might have a larger contribution to young-onset ALS than to ALS cases overall. However, the genetic profile of young-onset ALS patients is not yet fully understood. Here, we investigated a cohort of 27 young-onset ALS patients (onset age < 45 years) through whole-exome sequencing (WES). Genetic analysis identified pathogenic variants of FUS (25.9%), SOD1 (22.2%), TARDBP (3.7%), and VCP (3.7%) in 27 young-onset ALS patients. Of 12 identified types of mutations, c.1528A > C in FUS and c.266G > A in VCP were novel. All of the cases in this study reflect a monogenic origin with an autosomal dominant mode of inheritance. Notably, a novel de novo missense mutation, c.1528A > C (p.K510Q), in FUS was identified in a 29-year-old ALS patient. Expression of the K510Q mutant FUS resulted in cytoplasmic mislocalization of FUS in cultured cells and induced neural toxicity in a fly model. This study provides further evidence of the genetic profile of young-onset ALS patients from China and expands the mutational spectrum of the FUS gene, with one new K510Q mutation identified.
Collapse
Affiliation(s)
- Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Wu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019; 14:42. [PMID: 31744522 PMCID: PMC6862823 DOI: 10.1186/s13024-019-0341-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background A subset of familial forms of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1). Mutant SOD1 proteins are susceptible to misfolding and abnormally accumulated in spinal cord, which is most severely affected in ALS. It, however, remains quite controversial whether misfolding of wild-type SOD1 is involved in more prevalent sporadic ALS (sALS) cases without SOD1 mutations. Methods Cerebrospinal fluid (CSF) from patients including sALS as well as several other neurodegenerative diseases and non-neurodegenerative diseases was examined with an immunoprecipitation assay and a sandwich ELISA using antibodies specifically recognizing misfolded SOD1. Results We found that wild-type SOD1 was misfolded in CSF from all sALS cases examined in this study. The misfolded SOD1 was also detected in CSF from a subset of Parkinson’s disease and progressive supranuclear palsy, albeit with smaller amounts than those in sALS. Furthermore, the CSF samples containing the misfolded SOD1 exhibited significant toxicity toward motor neuron-like NSC-34 cells, which was ameliorated by removal of the misfolded wild-type SOD1 with immunoprecipitation. Conclusions Taken together, we propose that misfolding of wild-type SOD1 in CSF is a common pathological process of ALS cases regardless of SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Yo-Ichi Takei
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan.,Department of Neurology, Iida Hospital, Iida, 395-8505, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.,Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
22
|
Alonso R, Pisa D, Carrasco L. Brain Microbiota in Huntington's Disease Patients. Front Microbiol 2019; 10:2622. [PMID: 31798558 PMCID: PMC6861841 DOI: 10.3389/fmicb.2019.02622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
One of the most important challenges facing medical science is to better understand the cause of neuronal pathology in neurodegenerative diseases. Such is the case for Huntington's disease (HD), a genetic disorder primarily caused by a triplet expansion in the Huntingtin gene (HTT). Although aberrant HTT is expressed from embryogenesis, it remains puzzling as to why the onset of disease symptoms manifest only after several decades of life. In the present study, we investigated the possibility of microbial infection in brain tissue from patients with HD, reasoning that perhaps mutated HTT could be deleterious for immune cells and neural tissue, and could facilitate microbial colonization. Using immunohistochemistry approaches, we observed a variety of fungal structures in the striatum and frontal cortex of seven HD patients. Some of these fungi were found in close proximity to the nucleus, or even as intranuclear inclusions. Identification of the fungal species was accomplished by next-generation sequencing (NGS). Interestingly, some genera, such as Ramularia, appeared unique to HD patients, and have not been previously described in other neurodegenerative diseases. Several bacterial species were also identified both by PCR and NGS. Notably, a curved and filamentous structure that immunoreacts with anti-bacterial antibodies was characteristic of HD brains and has not been previously observed in brain tissue from neurodegenerative patients. Prevalent bacterial genera included Pseudomonas, Acinetobacter, and Burkholderia. Collectively, our results represent the first attempt to identify the brain microbiota in HD. Our observations suggest that microbial colonization may be a risk factor for HD and might explain why the onset of the disease appears after several decades of life. Importantly, they may open a new field of investigation and could help in the design of new therapeutic strategies for this devastating disorder.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Crook A, McEwen A, Fifita JA, Zhang K, Kwok JB, Halliday G, Blair IP, Rowe DB. The C9orf72 hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:310-316. [PMID: 30907153 DOI: 10.1080/21678421.2019.1588904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C9orf72 hexanucleotide repeat expansions are the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Genetic testing for C9orf72 expansions in patients with ALS and/or FTD and their relatives has become increasingly available since hexanucleotide repeat expansions were first reported in 2011. The repeat number is highly variable and the threshold at which repeat size leads to neurodegeneration remains unknown. We present the case of an ALS patient who underwent genetic testing through our Motor Neurone Disease Clinic. We highlight current limitations to analysing and interpreting C9orf72 expansion test results and describe how this resulted in discordant reports of pathogenicity between testing laboratories that confounded the genetic counselling process. We conclude that patients with ALS or FTD and their at-risk family members, need to be adequately counselled about the limitations of current knowledge to ensure they are making informed decisions about genetic testing for C9orf72. Greater collaboration between clinicians, testing laboratories and researchers is required to ensure risks to patients and their families are minimised.
Collapse
Affiliation(s)
- Ashley Crook
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Alison McEwen
- c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Jennifer A Fifita
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Katharine Zhang
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - John B Kwok
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia.,e School of Medical Sciences , University of New South Wales , Sydney , Australia
| | - Glenda Halliday
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Ian P Blair
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Dominic B Rowe
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| |
Collapse
|
24
|
Alonso R, Pisa D, Carrasco L. Searching for Bacteria in Neural Tissue From Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:171. [PMID: 30863279 PMCID: PMC6399391 DOI: 10.3389/fnins.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Despite great efforts in the investigation, the exact etiology of amyotrophic lateral sclerosis (ALS) is a matter of intensive research. We recently advanced the idea that ALS might be caused by fungal infection. Indeed, fungal yeast and hyphal structures can be directly visualized in neural tissue of ALS patients, and a number of fungal species have been identified in the central nervous system (CNS). In the present work, we tested the possibility that bacterial infections can accompany these mycoses. Our findings establish the presence of bacterial DNA in different regions of the CNS from all ALS patients examined. Specifically, we used PCR and next generation sequencing (NGS) to precisely determine the bacterial species present in ALS tissue. Consistent with these findings, immunohistochemistry analysis of CNS sections using specific anti-bacterial antibodies identified prokaryotic cells in neural tissue. Finally, we assayed for the repeat expansion of the hexanucleotide repeat GGGGCC in C9orf72, which is considered the most common genetic cause of ALS in patients, using DNA extracted from ALS CNS tissue. We failed to find this repeated sequence in any of the eleven patients analyzed. Our results indicate that bacterial DNA and prokaryotic cells are present in CNS tissue, leading to the concept that both fungal and bacterial infections coexist in patients with ALS. These observations lay the groundwork for the use of appropriate therapies to eradicate the polymicrobial infections in ALS.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Leighton DJ, Newton J, Stephenson LJ, Colville S, Davenport R, Gorrie G, Morrison I, Swingler R, Chandran S, Pal S. Changing epidemiology of motor neurone disease in Scotland. J Neurol 2019; 266:817-825. [PMID: 30805795 DOI: 10.1007/s00415-019-09190-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Scotland benefits from an integrated national healthcare team for motor neurone disease (MND) and a tradition of rich clinical data capture using the Scottish MND Register (launched in 1989; one of the first national registers). The Scottish register was re-launched in 2015 as Clinical Audit Research and Evaluation of MND (CARE-MND), an electronic platform for prospective, population-based research. We aimed to determine if incidence of MND is changing over time. METHODS Capture-recapture methods determined the incidence of MND in 2015-2016. Incidence rates for 2015-2016 and 1989-1998 were direct age and sex standardised to allow time-period comparison. Phenotypic characteristics and socioeconomic status of the cohort are described. RESULTS Coverage of the CARE-MND platform was 99%. Crude incidence in the 2015-2017 period was 3.83/100,000 person-years (95% CI 3.53-4.14). Direct age-standardised incidence in 2015 was 3.42/100,000 (95% CI 2.99-3.91); in 2016, it was 2.89/100,000 (95% CI 2.50-3.34). The 1989-1998 direct standardised annual incidence estimate was 2.32/100,000 (95% CI 2.26-2.37). 2015-2016 standardised incidence was 66.9% higher than Northern European estimates. Socioeconomic status was not associated with MND. CONCLUSIONS Our data show a changing landscape of MND in Scotland, with a rise in incidence by 36.0% over a 25-year period. This is likely attributable to ascertainment in the context of improved neurological services in Scotland. Our data suggest that CARE-MND is a reliable national resource and findings can be extrapolated to the other Northern European populations.
Collapse
Affiliation(s)
- Danielle J Leighton
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Laura J Stephenson
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Shuna Colville
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Richard Davenport
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.,Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - George Gorrie
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Institute of Neurosciences, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, UK
| | - Robert Swingler
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.,Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building 49 Little France Crescent, Edinburgh, EH16 4TJ, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK. .,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK. .,Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK.
| | | |
Collapse
|
26
|
Theme 1 Genetics and genomics. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:91-111. [DOI: 10.1080/21678421.2018.1510210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
de Leeuw RH, Garnier D, Kroon RMJM, Horlings CGC, de Meijer E, Buermans H, van Engelen BGM, de Knijff P, Raz V. Diagnostics of short tandem repeat expansion variants using massively parallel sequencing and componential tools. Eur J Hum Genet 2018; 27:400-407. [PMID: 30455479 PMCID: PMC6460572 DOI: 10.1038/s41431-018-0302-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022] Open
Abstract
Short tandem repeats (STRs) are scattered throughout the human genome. Some STRs, like trinucleotide repeat expansion (TRE) variants, cause hereditable disorders. Unambiguous molecular diagnostics of TRE disorders is hampered by current technical limitations imposed by traditional PCR and DNA sequencing methods. Here we report a novel pipeline for TRE variant diagnosis employing the massively parallel sequencing (MPS) combined with an opensource software package (FDSTools), which together are designed to distinguish true STR sequences from STR sequencing artifacts. We show that this approach can improve TRE diagnosis, such as Oculopharyngeal muscular dystrophy (OPMD). OPMD is caused by a trinucleotide expansion in the PABPN1 gene. A short GCN expansion, (GCN[10]), coding for a 10 alanine repeat is not pathogenic, but an alanine expansion is pathogenic. Applying this novel procedure in a Dutch OPMD patient cohort, we found expansion variants from GCN[11] to GCN[16], with the GCN[16] as the most abundant variant. The repeat expansion length did not correlate with clinical features. However, symptom severity was found to correlate with age and with the initial affected muscles, suggesting that aging and muscle-specific factors can play a role in modulating OPMD.
Collapse
Affiliation(s)
- Rick H de Leeuw
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands
| | - Dominique Garnier
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands
| | - Rosemarie M J M Kroon
- Department of Rehabilitation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Corinne G C Horlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Emile de Meijer
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands
| | - Henk Buermans
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Bram E, Javanmardi K, Nicholson K, Culp K, Thibert JR, Kemppainen J, Le V, Schlageter A, Hadd A, Latham GJ. Comprehensive genotyping of the C9orf72 hexanucleotide repeat region in 2095 ALS samples from the NINDS collection using a two-mode, long-read PCR assay. Amyotroph Lateral Scler Frontotemporal Degener 2018; 20:107-114. [PMID: 30430876 DOI: 10.1080/21678421.2018.1522353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Expansion of the G4C2 repeat tract in the C9orf72 gene is linked to frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we provide comprehensive genotyping of the C9orf72 repeat region for the National Institute of Neurological Disorders and Stroke (NINDS) ALS collection (n = 2095), using a novel bimodal PCR assay capable of amplifying nearly 100% GC-rich sequences. METHODS A single-tube 3-primer PCR assay mode, resolved using capillary electrophoresis, was used for sizing up to 145 repeats with single-repeat accuracy, for detecting expansions irrespective of their overall size, and for flagging confounding 3' sequence variations (SVs). A modified two-primer PCR mode, resolved via agarose gel electrophoresis, provided further size information for hyper-expanded samples (>145 repeats) up to ∼5.8 kb amplicons (∼950 G4C2 repeats). RESULTS Within the evaluated cohort, 177 (8.4%) samples were expanded, with 175 (99%) samples being hyper-expanded. 3'-SVs were identified in 64 (3.1%) samples, and were most common in expanded alleles. Genotypes of all 606 (29%) homozygous samples were confirmed using an orthogonal PCR assay. CONCLUSION This study and PCR method may improve and standardize molecular characterization of the C9orf72 locus, and have the potential to inform phenotype-genotype correlations and therapeutic development in ALS/FTD.
Collapse
|
29
|
Corrado L, Tiloca C, Locci C, Bagarotti A, Hamzeiy H, Colombrita C, De marchi F, Barizzone N, Cotella D, Ticozzi N, Mazzini L, Nazli Basak AYSE, Ratti A, Silani V, D’alfonso S. Characterization of the c9orf72 GC-rich low complexity sequence in two cohorts of Italian and Turkish ALS cases. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:426-431. [DOI: 10.1080/21678421.2018.1440407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lucia Corrado
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,
| | - Clarissa Locci
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| | - Alessandra Bagarotti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| | - Hamid Hamzeiy
- Neurodegeneration Research Laboratory, Suna and Inan Kirac Foundation, Bogazici University, Istanbul, Turkey,
| | - Claudia Colombrita
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,
| | - Fabiola De marchi
- ALS Center, Department of Neurology, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy, and
| | - Nadia Barizzone
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| | - Diego Cotella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy, and
| | - AYSE Nazli Basak
- Neurodegeneration Research Laboratory, Suna and Inan Kirac Foundation, Bogazici University, Istanbul, Turkey,
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Sandra D’alfonso
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Universita’ del Piemonte Orientale, Novara, Italy,
| |
Collapse
|
30
|
Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135:213-226. [PMID: 29273900 PMCID: PMC5773656 DOI: 10.1007/s00401-017-1797-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022]
Abstract
In addition to motor neurone degeneration, up to 50% of amyotrophic lateral sclerosis (ALS) patients present with cognitive decline. Understanding the neurobiological changes underlying these cognitive deficits is critical, as cognitively impaired patients exhibit a shorter survival time from symptom onset. Given the pathogenic role of synapse loss in other neurodegenerative diseases in which cognitive decline is apparent, such as Alzheimer’s disease, we aimed to assess synaptic integrity in the ALS brain. Here, we have applied a unique combination of high-resolution imaging of post-mortem tissue with neuropathology, genetic screening and cognitive profiling of ALS cases. Analyses of more than 1 million synapses using two complimentary high-resolution techniques (electron microscopy and array tomography) revealed a loss of synapses from the prefrontal cortex of ALS patients. Importantly, synapse loss was significantly greater in cognitively impaired cases and was not due to cortical atrophy, nor associated with dementia-associated neuropathology. Interestingly, we found a trend between pTDP-43 pathology and synapse loss in the frontal cortex and discovered pTDP-43 puncta at a subset of synapses in the ALS brains. From these data, we postulate that synapse loss in the prefrontal cortex represents an underlying neurobiological substrate of cognitive decline in ALS.
Collapse
|
31
|
Aydin G, Dekomien G, Hoffjan S, Gerding WM, Epplen JT, Arning L. Frequency of SCA8, SCA10, SCA12, SCA36, FXTAS and C9orf72 repeat expansions in SCA patients negative for the most common SCA subtypes. BMC Neurol 2018; 18:3. [PMID: 29316893 PMCID: PMC5761156 DOI: 10.1186/s12883-017-1009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) subtypes are often caused by expansions in non-coding regions of genes like SCA8, SCA10, SCA12 and SCA36. Other ataxias are known to be associated with repeat expansions such as fragile X-associated tremor ataxia syndrome (FXTAS) or expansions in the C9orf72 gene. When no mutation has been identified in the aforementioned genes next-generation sequencing (NGS)-based diagnostics may also be applied. In order to define an optimal diagnostic strategy, more information about the frequency and phenotypic characteristics of rare repeat expansion disorders associated with ataxia should be at hand. METHODS We analyzed a consecutive cohort of 440 German unrelated patients with symptoms of cerebellar ataxia, dysarthria and other unspecific symptoms who were referred to our center for SCA diagnostics. They showed alleles in the normal range for the most common SCA subtypes SCA1-3, SCA6, SCA7 and SCA17. These patients were screened for expansions causing SCA8, SCA10, SCA12, SCA36 and FXTAS as well as for the pathogenic hexanucleotide repeat in the C9orf72 gene. RESULTS Expanded repeats for SCA10, SCA12 or SCA36 were not identified in the analyzed patients. Five patients showed expanded SCA8 CTA/CTG alleles with 92-129 repeats. One 51-year-old male with unclear dementia symptoms was diagnosed with a large GGGGCC repeat expansion in C9orf72. The analysis of the fragile X mental retardation 1 gene (FMR1) revealed one patient with a premutation (>50 CGG repeats) and seven patients with alleles in the grey zone (41 to 54 CGG repeats). CONCLUSIONS Altogether five patients showed 92 or more SCA8 CTA/CTG combined repeats. Our results support the assumption that smaller FMR1 gene expansions could be associated with the risk of developing neurological signs. The results do not support genetic testing for C9orf72 expansion in ataxia patients.
Collapse
Affiliation(s)
- Gülsah Aydin
- Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Strasse 50, 58448 Witten, Germany
| | - Gabriele Dekomien
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Wanda Maria Gerding
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jörg T. Epplen
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
- Faculty of Health, University Witten-Herdecke, Alfred-Herrhausen-Strasse 50, 58448 Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University, Gebäude MA5/39, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
32
|
Ng ASL, Tan EK. Intermediate C9orf72 alleles in neurological disorders: does size really matter? J Med Genet 2017; 54:591-597. [PMID: 28689190 PMCID: PMC5574395 DOI: 10.1136/jmedgenet-2017-104752] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
C9orf72 repeat expansions is a major cause of familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) worldwide. Sizes of <20 hexanucleotide repeats are observed in controls, while up to thousands associate with disease. Intermediate C9orf72 repeat lengths, however, remain uncertain. We systematically reviewed the role of intermediate C9orf72 alleles in C9orf72-related neurological disorders. We identified 49 studies with adequate available data on normal or intermediate C9orf72 repeat length, involving subjects with FTD, ALS, Parkinson’s disease (PD), atypical parkinsonism, Alzheimer’s disease (AD) and other aetiologies. We found that, overall, normal or intermediate C9orf72 repeat lengths are not associated with higher disease risk across these disorders, but intermediate allele sizes appear to associate more frequently with neuropsychiatric phenotypes. Intermediate sizes were detected in subjects with personal or family history of FTD and/or psychiatric illness, parkinsonism complicated by psychosis and rarely in psychiatric cohorts. Length of the hexanucleotide repeat may be influenced by ethnicity (with Asian controls displaying shorter normal repeat lengths compared with Caucasians) and underlying haplotype, with more patients and controls carrying the ‘risk’ haplotype rs3849942 displaying intermediate alleles. There is some evidence that intermediate alleles display increased methylation levels and affect normal transcriptional activity of the C9orf72 promoter, but the ‘critical’ repeat size required for initiation of neurodegeneration remains unknown and requires further study. In common neurological diseases, intermediate C9orf72 repeats do not influence disease risk but may associate with higher frequency of neuropsychiatric symptoms. This has important clinical relevance as intermediate carriers pose a challenge for genetic counselling.
Collapse
Affiliation(s)
- Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
33
|
Black HA, Leighton DJ, Cleary EM, Rose E, Stephenson L, Colville S, Ross D, Warner J, Porteous M, Gorrie GH, Swingler R, Goldstein D, Harms MB, Connick P, Pal S, Aitman TJ, Chandran S. Genetic epidemiology of motor neuron disease-associated variants in the Scottish population. Neurobiol Aging 2016; 51:178.e11-178.e20. [PMID: 28089114 PMCID: PMC5302213 DOI: 10.1016/j.neurobiolaging.2016.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 12/05/2022]
Abstract
Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population.
Collapse
Affiliation(s)
- Holly A Black
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Danielle J Leighton
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elaine M Cleary
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Elaine Rose
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Laura Stephenson
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shuna Colville
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Ross
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jon Warner
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Mary Porteous
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - George H Gorrie
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Robert Swingler
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David Goldstein
- Institute for Genomic Medicine, Columbia University, New York, USA
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia University, New York, USA
| | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Siddharthan Chandran
- The Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
34
|
Nordin A, Akimoto C, Wuolikainen A, Alstermark H, Forsberg K, Baumann P, Pinto S, de Carvalho M, Hübers A, Nordin F, Ludolph AC, Weishaupt JH, Meyer T, Grehl T, Schweikert K, Weber M, Burkhardt C, Neuwirth C, Holmøy T, Morita M, Tysnes OB, Benatar M, Wuu J, Lange DJ, Bisgård C, Asgari N, Tarvainen I, Brännström T, Andersen PM. Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation: a large multinational screening study. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:256-264. [PMID: 27936955 DOI: 10.1080/21678421.2016.1262423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting RP-PCR data. Our objective was to determine the properties of these sequence variations with regard to prevalence, the range of variation, and effect on disease prognosis. We screened a multi-national cohort (n = 6981) for the HREM and samples with deviant RP-PCR curves were identified. The deviant samples were subsequently sequenced to determine sequence alteration. Our results show that in the USA and European cohorts (n = 6508) 10.7% carried the HREM and 3% had a sequence variant, while no HREM or sequence variants were observed in the Japanese cohort (n = 473). Sequence variations were more common on HREM alleles; however, certain population specific variants were associated with a non-expanded allele.In conclusion, we identified 38 different sequence variants, most located within the first 50 bp downstream of the HREM region. Furthermore, the presence of an HREM was found to be coupled to a lower age of onset and a shorter disease survival, while sequence variation did not have any correlation with these parameters.
Collapse
Affiliation(s)
- Angelica Nordin
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Chizuru Akimoto
- b Division of Neurology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| | - Anna Wuolikainen
- c Department of Chemistry , Umeå University , Umeå , Sweden.,d Computational Life Science Cluster (CLIC) , Umeå University , Umeå , Sweden
| | - Helena Alstermark
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Karin Forsberg
- e Department of Medical Biosciences , Umeå University , Umeå , Sweden
| | - Peter Baumann
- f Department of Neurology , Central Hospital of Lapland , Rovaniemi , Finland
| | - Susana Pinto
- g Institute of Physiology and Institute of Molecular Medicine , University of Lisbon , Lisbon , Portugal
| | - Mamede de Carvalho
- g Institute of Physiology and Institute of Molecular Medicine , University of Lisbon , Lisbon , Portugal.,h Department of Neurosciences , Hospital de Santa Maria-CHLN , Lisbon , Portugal
| | | | - Frida Nordin
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | | | | | - Thomas Meyer
- j Outpatient Department for ALS and other Motor Neuron Diseases , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | | - Kathi Schweikert
- l Department of Neurology , Neuromuscular Center, Basel University Hospital, University Basel , Basel , Switzerland
| | - Markus Weber
- m Kantonsspital St. Gallen , Neuromuscular Disease Centre/ALS Clinic , Switzerland
| | - Christian Burkhardt
- m Kantonsspital St. Gallen , Neuromuscular Disease Centre/ALS Clinic , Switzerland
| | - Christoph Neuwirth
- m Kantonsspital St. Gallen , Neuromuscular Disease Centre/ALS Clinic , Switzerland
| | - Trygve Holmøy
- n Department of Neurology , Akershus University Hospital , Lørenskog , Norway.,o Institute of Clinical Medicine , University of Oslo , Norway
| | - Mitsuya Morita
- b Division of Neurology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| | - Ole-Bjørn Tysnes
- p Department of Neurology , Haukeland University Hospital , Bergen , Norway.,q Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Michael Benatar
- r Department of Neurology , University of Miami , Miami , FL , USA
| | - Joanne Wuu
- r Department of Neurology , University of Miami , Miami , FL , USA
| | - Dale J Lange
- s Department of Neurology , Hospital for Special Surgery , New York , USA.,t Department of Neurology , New York-Presbyterian Hospital, Weill-Cornell Medical Center , New York , USA
| | - Carsten Bisgård
- u Department of Neurology , Lillebælt Hospital , Vejle , Denmark
| | - Nasrin Asgari
- u Department of Neurology , Lillebælt Hospital , Vejle , Denmark.,v Department of Neurobiology , Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark , and
| | - Ilkka Tarvainen
- w Department of Neurology , Mikkeli Central Hospital , Finland
| | - Thomas Brännström
- e Department of Medical Biosciences , Umeå University , Umeå , Sweden
| | - Peter M Andersen
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden.,i Department of Neurology , Ulm University , Ulm , Germany
| |
Collapse
|
35
|
Biasiotto G, Archetti S, Di Lorenzo D, Merola F, Paiardi G, Borroni B, Alberici A, Padovani A, Filosto M, Bonvicini C, Caimi L, Zanella I. A PCR-based protocol to accurately size C9orf72 intermediate-length alleles. Mol Cell Probes 2016; 32:60-64. [PMID: 27765650 DOI: 10.1016/j.mcp.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022]
Abstract
Although large expansions of the non-coding GGGGCC repeat in C9orf72 gene are clearly defined as pathogenic for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), intermediate-length expansions have also been associated with those and other neurodegenerative diseases. Intermediate-length allele sizing is complicated by intrinsic properties of current PCR-based methodologies, in that somatic mosaicism could be suspected. We designed a protocol that allows the exact sizing of intermediate-length alleles, as well as the identification of large expansions.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Francesca Merola
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Giulia Paiardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Neurology Unit, Centre for Neuromuscular Diseases and Neuropathies, Civic Hospital of Brescia, Brescia, Italy
| | | | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy.
| |
Collapse
|