1
|
Liu Q, Lu C, Lv Q, Lei L. Emerging point-of-care testing technology for the detection of animal pathogenic microorganisms. CHEMICAL ENGINEERING JOURNAL 2025; 512:162548. [DOI: 10.1016/j.cej.2025.162548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Dhakal R, Chowdhury IA, Plaisance A, Yan G. Development of a Recombinase Polymerase Amplification Assay for Rapid Detection of the New Root-Lesion Nematode Pratylenchus dakotaensis on Soybean. PLANT DISEASE 2025; 109:603-614. [PMID: 39320378 DOI: 10.1094/pdis-05-24-1133-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Root-lesion nematodes, Pratylenchus spp., are reported to cause serious yield losses in various crops, including soybean. A new root-lesion nematode species was detected in 2015 in a soybean field in North Dakota (ND) and named Pratylenchus dakotaensis in 2021. Nematode detection and differentiation from other species are critical in management strategies. Thus, a recombinase polymerase amplification (RPA) assay was developed for rapid detection of this nematode from field soils under isothermal conditions. New primers and probes were designed from internal transcribed spacer-ribosomal DNA region of the nematode genome and tested for both specificity and sensitivity. The RPA assay was able to detect DNA from a single adult nematode at 39.5°C in 20 min using both TwistAmp Basic and Exo Kits. The specificity of the primers was initially confirmed through in silico analyses and followed by laboratory tests. The assay successfully amplified DNA from the target species, although no amplification occurred for other Pratylenchus spp. and non-Pratylenchus control species. Sensitivity testing with real-time RPA revealed its ability to detect DNA in dilutions equivalent to 1/32 of a single nematode from DNA extracted from inoculated sterile soil. To further validate the assay, it was tested with 19 field soil samples collected in ND. This assay amplified soil DNA extracts of all P. dakotaensis-infested field samples confirmed through conventional PCR. It did not amplify DNA from 13 other field soils infested with other Pratylenchus spp. This is the first report of RPA development for detecting a root-lesion nematode species. The RPA assay developed can help in the rapid detection of this nematode species for effective nematode management.
Collapse
Affiliation(s)
- Roshan Dhakal
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Intiaz Amin Chowdhury
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Addison Plaisance
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Guiping Yan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
3
|
Liang B, Wang C, Qu W, Xu R, Liu Y, Jia H, Tang X, Chen S, Li X, Wang Y, Li J, Liu Y, Wen D, Zha L. A rapid identification system for vaginal fluid stains based on nested recombinant polymerase amplification and lateral flow dipstick. Int J Legal Med 2025; 139:575-587. [PMID: 39661161 DOI: 10.1007/s00414-024-03392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
In forensic practice, identifying the species of unknown bodily fluid stains can provide assistance in the qualitative analysis and investigation of cases, and vaginal fluid stains, as one of the common bodily fluid stains, are most commonly seen at the scene of sexual assault. At present, the commonly used vaginal peptidase or microscopic detection methods currently have drawbacks such as high false negative rates, poor sensitivity, and high requirements for sample integrity and background color. However, in forensic investigations, the test materials have specificity and scarcity, making it difficult to ensure their quantity and quality. Thus, in order to achieve rapid and sensitive detection of vaginal fluid stains, in this study, we combined nested PCR and isothermal amplification technology to construct a rapid detection system for suspicious vaginal fluid stains using lateral flow dipstick. This system achieves detection by detecting the specific marker microbial community Lactobacillus crispatus in vaginal fluid, and has a high sensitivity and accuracy, which can achieve detection at template quantities as low as 2.31 copies. More importantly, the system can achieve detection at a constant temperature of 37 °C without the need for complex instruments. It can provide rapid and sensitive identification results, providing assistance for subsequent forensic material extraction and individual identification.
Collapse
Affiliation(s)
- Bin Liang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Weifeng Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Ruyi Xu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Yi Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Hongtao Jia
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Siqi Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Xue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yue Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Ying Liu
- Department of Oral Implantology, Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Road, Kaifu District, Changsha, Hunan Province, PR China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China.
| |
Collapse
|
4
|
Feng M, Ma J, Zhang Y, Wang D, Zhu L, Pan C, Wang H, Liu X, Wang Y, Meng Y, Lyu Y. Rapid detection assays for Bacillus anthracis, Yersinia pestis, and Brucella spp. via triplex-recombinase polymerase amplification. Mol Biol Rep 2025; 52:149. [PMID: 39841309 DOI: 10.1007/s11033-025-10265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp. are zoonotic bacteria that cause anthrax, plague, and brucellosis, respectively. Outbreaks typically occur in remote regions with poor transportation and limited laboratory testing. Therefore, a simple, sensitive, multiplex nucleic acid detection method is essential for effective disease management and control. METHODS Primers and probes for the three pathogens were designed to reduce interference from related strains. Three recombinase polymerase amplification (RPA) reactions were conducted at 39 °C for 10 min to produce species-specific fluorescence signals for the three pathogens. These were integrated, and conditions were optimized for rapid, sensitive triplex-RPA assays without cross-reactivity. A triplex-RPA reaction with lateral flow dipsticks (LFDs) was developed and applied to blood samples, newly isolated strains, and simulated samples. RESULTS Highly sensitive and specific primers and probes were developed, achieving a maximum sensitivity of 1 copy/µL in single-reaction RPA. The optimized triplex RPA detection technique, combined with fluorescence, effectively identified B. anthracis, Y. pestis, and Brucella spp. within 20 min, whereas LFDs achieved detection in 10 min. The assay also performed comparably to conventional polymerase chain reaction techniques when tested on blood samples, newly isolated strains, and simulated samples. CONCLUSIONS This study offers reliable methods for detecting B. anthracis, Y. pestis, and Brucella spp. in rural hospitals and public health initiatives.
Collapse
Affiliation(s)
- Meijie Feng
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Jinping Ma
- Wuzhong People's Hospital, 143 Xinmin Road, Litong District, Wuzhong City, Ningxia Hui Autonomous Region, 751100, China
| | - Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, 832002, China.
| | - Ying Meng
- Tongliao Center of Disease Control and Prevention, Keerqin District, Tongliao City, Inner Mongolia Autonomous Region, 028005, China.
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
5
|
Chang J, Wang N, Zhan JP, Zhang SJ, Zou DY, Li F, Zhang Y, Li YS, Hu P, Lu SY, Liu ZS, Ren HL. A recombinase polymerase amplification-SYBR Green I assay for the rapid and visual detection of Brucella. Folia Microbiol (Praha) 2024; 69:767-774. [PMID: 38041745 DOI: 10.1007/s12223-023-01115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.
Collapse
Affiliation(s)
- Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Nan Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Jun-Peng Zhan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
- College of Medicine, Dalian University, Dalian, China
| | - Shi-Jun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - De-Ying Zou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
- Panjin Center for Inspection and Testing, Panjin, China
| | - Feng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
- Shandong Binzhou Animal Science and Veterinary Medicine Institute, Binzhou, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Yan-Song Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Shi-Ying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Zeng-Shan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China
| | - Hong-Lin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Sun H, Fan J, Chu H, Gao Y, Fang J, Wu Q, Ding H, Zhuo X, Kong Q, Lv H, Zheng B, Lu S. RPA-CRISPR/Cas12a-LFA combined with a digital visualization instrument to detect Toxoplasma gondii in stray dogs and cats in Zhejiang province, China. Microbiol Spectr 2024; 12:e0399823. [PMID: 38809001 PMCID: PMC11218441 DOI: 10.1128/spectrum.03998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/14/2024] [Indexed: 05/30/2024] Open
Abstract
Toxoplasma gondii, which causes toxoplasmosis, is prevalent in warm-blooded animals, such as cats, dogs, and humans. T. gondii causes economic losses to livestock production and represents a potential risk to public health. Dogs and cats are common hosts in the epidemiology of toxoplasmosis. The current molecular diagnostic tools for T. gondii infection require high technical skills, a laboratory environment, and complex instruments. Herein, we developed a recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) assay to detect T. gondii. The lowest limit of detection of the assay was 31 copies/μL for the T. gondii B1 gene. In addition, we established a visual RPA-CRISPR/Cas12a lateral flow band assay (RPA-CRISPR/Cas12a-LFA) combined with a digital visualization instrument, which minimized the problem of false-negative results for weakly positive samples and avoided misinterpretation of the results by the naked eye, making the LFA assay results more accurate. The assay established in this study could identify T. gondii within 55 min with high accuracy and sensitivity, without cross-reaction with other tested parasites. The developed assay was validated by establishing a mouse model of toxoplasmosis. Finally, the developed assay was used to investigate the prevalence of T. gondii in stray cats and dogs in Zhejiang province, Eastern China. The positive rates of T. gondii infection in stray cats and dogs were 8.0% and 4.0%, respectively. In conclusion, the RPA-CRISPR/Cas12a-LFA is rapid, sensitive, and accurate for the early diagnosis of T. gondii, showing promise for on-site surveillance. IMPORTANCE Toxoplasma gondii is a virulent pathogen that puts millions of infected people at risk of chronic disease reactivation. Hosts of T. gondii are distributed worldwide, and cats and dogs are common hosts of T. gondii. Therefore, rapid diagnosis of early T. gondii infection and investigation of its prevalence in stray dogs and cats are essential. Here, we established a visual recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a-assay combined with a lateral flow band assay and a digital visualization instrument. Detailed analyses found that the assay could be used for the early diagnosis of T. gondii without false-negative results. Moreover, we detected the prevalence of T. gondii in stray cats and dogs in Zhejiang province, China. Our developed assay provides technical support for the early diagnosis of T. gondii and could be applied in prevalence surveys of T. gondii in stray dogs and cats.
Collapse
Affiliation(s)
- Hao Sun
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Jiyuan Fan
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Hongkun Chu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Yafan Gao
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Jiawen Fang
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Qinli Wu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - QingMing Kong
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - HangJun Lv
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Research Center of Novel Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Luo J, Xu D, Wang J, Liu H, Li Y, Zhang Y, Zeng H, Deng B, Liu X. A Dual-mode platform for the rapid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a and RPA. Anal Bioanal Chem 2024; 416:3509-3518. [PMID: 38647692 DOI: 10.1007/s00216-024-05301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a foodborne pathogenic microorganism that is commonly found in the environment and poses a significant threat to human health, public safety, and economic stability worldwide. Thus, early detection is essential for E. coli O157:H7 control. In recent years, a series of E. coli O157:H7 detection methods have been developed, but the sensitivity and portability of the methods still need improvement. Therefore, in this study, a rapid and efficient testing platform based on the CRISPR/Cas12a cleavage reaction was constructed. Through the integration of recombinant polymerase amplification and lateral flow chromatography, we established a dual-interpretation-mode detection platform based on CRISPR/Cas12a-derived fluorescence and lateral flow chromatography for the detection of E. coli O157:H7. For the fluorescence detection method, the limits of detection (LODs) of genomic DNA and E. coli O157:H7 were 1.8 fg/µL and 2.4 CFU/mL, respectively, within 40 min. Conversely, for the lateral flow detection method, LODs of 1.8 fg/µL and 2.4 × 102 CFU/mL were achieved for genomic DNA and E. coli O157:H7, respectively, within 45 min. This detection strategy offered higher sensitivity and lower equipment requirements than industry standards. In conclusion, the established platform showed excellent specificity and strong universality. Modifying the target gene and its primers can broaden the platform's applicability to detect various other foodborne pathogens.
Collapse
Affiliation(s)
- Jiawei Luo
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Danhong Xu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
- Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai, China
- School of Public Health, Academician Workstation, Changsha Medical University, Changsha, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - You Li
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Yan Zhang
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China.
- Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai, China.
- School of Public Health, Academician Workstation, Changsha Medical University, Changsha, China.
| | - Bo Deng
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, China.
| | - Xiaofeng Liu
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou, China.
| |
Collapse
|
8
|
Ma R, Li C, Gao A, Jiang N, Feng X, Li J, Hu W. Evidence-practice gap analysis in the role of tick in brucellosis transmission: a scoping review. Infect Dis Poverty 2024; 13:3. [PMID: 38191468 PMCID: PMC10773131 DOI: 10.1186/s40249-023-01170-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Brucellosis is a zoonotic affliction instigated by bacteria belonging to the genus Brucella and is characterized by a diverse range of pervasiveness, multiple transmission routes, and serious hazards. It is imperative to amalgamate the current knowledge and identify gaps pertaining to the role of ticks in brucellosis transmission. METHODS We systematically searched China National Knowledge Infrastructure (CNKI), WanFang, Google Scholar, and PubMed on the topic published until April 23, 2022. The procedure was performed in accordance with the Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The selected articles were categorized across three major topic areas, and the potential data was extracted to describe evidence-practice gaps by two reviewers. RESULTS The search identified 83 eligible studies for the final analyses. The results highlighted the potential capacity of ticks in brucellosis transmission as evidenced by the detection of Brucella in 16 different tick species. The pooled overall prevalence of Brucella in ticks was 33.87% (range: 0.00-87.80%). The review also revealed the capability of Brucella to circulate in parasitic ticks' different developmental stages, thus posing a potential threat to animal and human health. Empirical evidence from in vitro rodent infection experiments has revealed that ticks possess the capability to transmit Brucella to uninfected animals (range: 45.00-80.00%). Moreover, significant epidemiological associations have been found between the occurrence of brucellosis in animals and tick control in rangelands, which further suggests that ticks may serve as potential vectors for brucellosis transmission in ruminants. Notably, a mere three cases of human brucellosis resulting from potential tick bites were identified in search of global clinical case reports from 1963 to 2019. CONCLUSIONS It is imperative to improve the techniques used to identify Brucella in ticks, particularly by developing a novel, efficient, precise approach that can be applied in a field setting. Furthermore, due to the lack of adequate evidence of tick-borne brucellosis, it is essential to integrate various disciplines, including experimental animal science, epidemiology, molecular genetics, and others, to better understand the efficacy of tick-borne brucellosis. By amalgamating multiple disciplines, we can enhance our comprehension and proficiency in tackling tick-borne brucellosis.
Collapse
Affiliation(s)
- Rui Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunfu Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ai Gao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Na Jiang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xinyu Feng
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 20025, China.
| | - Jian Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi University of Chinese Medical, Nanning, 530005, Guangxi, China.
| | - Wei Hu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi University of Chinese Medical, Nanning, 530005, Guangxi, China.
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
9
|
Zhou J, Liu Y, Du X, Gui Y, He J, Xie F, Cai J. Recent Advances in Design and Application of Nanomaterials-Based Colorimetric Biosensors for Agri-food Safety Analysis. ACS OMEGA 2023; 8:46346-46361. [PMID: 38107919 PMCID: PMC10720297 DOI: 10.1021/acsomega.3c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A colorimetric sensor detects an analyte by utilizing the optical properties of the sensor unit, such as absorption or reflection, to generate a structural color that serves as the output signal to detect an analyte. Detecting the refractive index of an analyte by recording the color change of the sensor structure on its surface has several advantages, including simple operation, low cost, suitability for onsite analysis, and real-time detection. Colorimetric sensors have drawn much attention owing to their rapidity, simplicity, high sensitivity and selectivity. This Review discusses the use of colorimetric sensors in the food industry, including their applications for detecting food contaminants. The Review also provides insight into the scope of future research in this area.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuantao Liu
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoping Du
- Ankang
R&D Center for Se-enriched Products, Key Laboratory of Se-enriched
Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang Shaanxi 725000, China
| | - Yue Gui
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National
R&D Center for Se-Rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-Rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key
Laboratory for Deep Processing of Major Grain and Oil, Ministry of
Education, Hubei Key Laboratory for Processing and Transformation
of Agricultural Products, Wuhan Polytechnic
University, Wuhan 430023, China
| |
Collapse
|
10
|
Fan M, Yang J, Wang X, Xu Y, Li B, Yang H, Lu Q, Min X, Huang M, Huang J. Highly specific detection of Neisseria gonorrhoeae based on recombinase polymerase amplification-initiated strand displacement amplification. Anal Chim Acta 2023; 1283:341956. [PMID: 37977801 DOI: 10.1016/j.aca.2023.341956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Neisseria gonorrhoeae is the only pathogen that causes gonorrhea, and can have serious consequences if left untreated. A simple and accurate detection method for N. gonorrhoeae is essential for the diagnosis of gonorrhea and the appropriate prescription of antibiotics. The application of isothermal recombinase polymerase amplification (RPA) to detect this pathogen is advantageous because of its rapid performance, high sensitivity, and minimal dependency on equipment. However, this simplicity is offset by the risk of false-positive signals from primer-dimers and primer-probe dimers. In this study, RPA-initiated strand displacement amplification (SDA) was established for the detection of N. gonorrhoeae, and eliminated false-positive signals from primer-dimers and primer-probe dimers. The developed biosensor allows for the reduced generation of nonspecific RPA amplification through the design of enzyme cleavage sites on primers, introduction of SDA, and detection of the final product using a molecular beacon (MB). Using this system, the DNA double strand is transformed into single-stranded DNA following SDA, thereby providing a more suitable binding substrate and improving the efficiency of MB detection. Amplification can be conducted below 37 °C, and the process can be completed within 90 min. The limit of detection was determined to be 0.81 copies/μL. This system is highly specific for N. gonorrhoeae and exhibits no cross-reactivity with other common urogenital pathogens. The results of this study are consistent with those of real-time PCR performed on clinical specimens of urogenital secretions. In summary, the biosensor is a simple and specific detection method for N. gonorrhoeae.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaosu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Bing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
11
|
Rong Y, Zhang X, Chen X, Li J, Gong P, Wang X, Li X, Zhang X, Yue T, Zhang H, Zhou X, Zhang N. Development of an LFD-RPA Assay for Rapid Detection of Pentatrichomonas hominis Infection in Dogs. Curr Issues Mol Biol 2023; 45:9252-9261. [PMID: 37998756 PMCID: PMC10670101 DOI: 10.3390/cimb45110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Pentatrichomonas hominis is a trichomonad protozoan that infects the cecum and colon of humans and other mammals. It is a zoonotic pathogen that causes diarrhea in both animals and humans. As companion animals, dogs infected with P. hominis pose a risk of transmitting it to humans. Current methods, such as direct smears and polymerase chain reaction (PCR), used for P. hominis detection have limitations, including low detection rates and the need for specialized equipment. Therefore, there is an urgent need to develop rapid, sensitive, and simple detection methods for clinical application. Recombinase polymerase amplification (RPA) has emerged as a technology for rapid pathogen detection. In this study, we developed a lateral flow dipstick (LFD)-RPA method based on the highly conserved SPO11-1 gene for detecting P. hominis infection by optimizing the primers, probes, and reaction conditions, and evaluating cross-reactivity with genomes of Giardia duodenalis and other parasites. The LFD-RPA method was then used to test 128 dog fecal samples collected from Changchun. The results confirmed the high specificity of the method with no cross-reactivity with the five other parasites. The lowest detection limit of the method was 102 copies/µL, and its sensitivity was 100 times higher than that of the conventional PCR method. Consistent with the positivity rate observed using nested PCR, 12 samples (out of 128) tested positive using this method (positivity rate, 9.38%). In conclusion, the LFD-RPA method developed in this study represents a simple and sensitive assay that allows for the rapid detection of P. hominis infection in dogs, especially in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nan Zhang
- Key Laboratory of Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.R.); (X.Z.); (X.C.); (J.L.); (P.G.); (X.W.); (X.L.); (X.Z.); (T.Y.); (H.Z.); (X.Z.)
| |
Collapse
|
12
|
Dang S, Sui H, Zhang S, Wu D, Chen Z, Zhai J, Bai M. CRISPR-Cas12a test strip (CRISPR/CAST) package: In-situ detection of Brucella from infected livestock. BMC Vet Res 2023; 19:202. [PMID: 37833763 PMCID: PMC10571365 DOI: 10.1186/s12917-023-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Brucellosis is a common zoonotic disease caused by Brucella, which causes enormous economic losses and public burden to epidemic areas. Early and precise diagnosis and timely culling of infected animals are crucial to prevent the infection and spread of Brucella. In recent years, RNA-guided CRISPR/Cas12a(Clustered Regularly Interspaced Short Palindromic Repeats and its associated protein 12a) nucleases have shown great promise in nucleic acid detection. This research aims to develop a CRISPR/CAST (CRISPR/Cas12a Test strip) package that can rapidly detect Brucella nucleic acid during on-site screening, especially on remote family pastures. The CRISPR/Cas12a system combined with recombinase polymerase amplification (RPA), and lateral flow read-out. RESULTS We selected the conserved gene bp26, which commonly used in Brucella infection detection and compared on Genbank with other Brucella species. The genomes of Brucella abortus 2308, Brucella suis S2, Brucella melitansis 16 M, and Brucella suis 1330, et al. were aligned, and the sequences were found to be consistent. Therefore, the experiments were only performed on B. melitensis. With the CRISPR/CAST package, the assay of Brucella nucleic acid can be completed within 30 min under isothermal temperature conditions, with a sensitivity of 10 copies/μl. Additionally, no antigen cross-reaction was observed against Yersinia enterocolitica O:9, Escherichia coli O157, Salmonella enterica serovar Urbana O:30, and Francisella tularensis. The serum samples of 398 sheep and 100 cattle were tested by the CRISPR/CAST package, of which 31 sheep and 8 cattle were Brucella DNA positive. The detection rate was consistent with the qPCR results and higher than that of the Rose Bengal Test (RBT, 19 sheep and 5 cattle were serum positive). CONCLUSIONS The CRISPR/CAST package can accurately detect Brucella DNA in infected livestock within 30 min and exhibits several advantages, including simplicity, speed, high sensitivity, and strong specificity with no window period. In addition, no expensive equipment, standard laboratory, or professional operators are needed for the package. It is an effective tool for screening in the field and obtaining early, rapid diagnoses of Brucella infection. The package is an efficient tool for preventing and controlling epidemics.
Collapse
Affiliation(s)
- Sheng Dang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Humujile Sui
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Shuai Zhang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Dongxing Wu
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Zeliang Chen
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Jingbo Zhai
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
| | - Meirong Bai
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| |
Collapse
|
13
|
Milton AAP, Momin KM, Srinivas K, Priya GB, Ghatak S, Das S, Shakuntala I, Sen A, Baruah KK. Development of a novel visual isothermal amplification assay for rapid detection of Brucella spp. J Microbiol Methods 2023; 207:106695. [PMID: 36889600 DOI: 10.1016/j.mimet.2023.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Brucellosis is an economically important livestock disease worldwide besides having a noteworthy impact on human health. In this study, a rapid, simple, and ultra-sensitive nuclei-acid diagnostic technique was developed for the detection of brucellosis harnessing saltatory rolling circle amplification (SRCA). The diagnostic method was developed using World Organization for Animal Health (WOAH) approved primers targeting the bcsp31 gene of the Brucella genome. The assay can be accomplished within 90 min at a temperature of 65 °C without the requirement of sophisticated instrumentation. The result interpretation can be done with the naked eye with the aid of SYBR green dye. The developed technique displayed 100% specificity by amplifying only 10 reference and field strains of Brucella spp. and there was no cross-reactivity with the other tested pathogens. The lower limit of detections of SRCA and end-point PCR assays were 9.7 fg/μL (2.7 genome copies of Brucella) and 970 fg/μL, respectively. Thus, the developed SRCA assay was found to be 100× more sensitive than the end-point PCR assay. To the best of our knowledge, our study is the first one to develop an SRCA-based assay for the detection of brucellosis and it can be a diagnostic tool for resource-constrained laboratories and veterinary hospitals.
Collapse
Affiliation(s)
- A Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - K M Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - K Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - G Bhuvana Priya
- College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - I Shakuntala
- College of Veterinary Science and Animal Husbandry, Central Agricultural University (Imphal), Jalukie, Nagaland, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - K K Baruah
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
14
|
A recombinase polymerase amplification (RPA) combined with strip visualization method for RNA-based presumptive tests of saliva and vaginal secretion. Forensic Sci Int Genet 2023; 62:102788. [PMID: 36265335 DOI: 10.1016/j.fsigen.2022.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Identifying the origin of body fluids is a critical step in a forensic investigation. One widely used method to identify human body fluids is based on the color visualization of immune antigen detection strips for detecting hemoglobin in blood and prostate-specific antigen in semen. It is highly imperative to construct an easy-to-perform, mRNA-based method for the point-of-care identification of other human body fluids, such as saliva and vaginal secretion. Here, we established specific strips with the mRNA markers STATH (for saliva) and SPINK5 (for vaginal secretion) via reverse transcription recombinase polymerase amplification (RT-RPA) and lateral flow dipstick (LFD) assays (RT-RPA-LFD). RT-RPA could be accomplished in a single tube at a wide temperature range of 30-42 ℃ within 10-25 min if we do not count time for RNA extraction. The diluted RPA products were added onto the LFD strip pad to visually observe the color change of the Control/Test line. The tissue specificity and detection limit of the assays were evaluated using the optimized reaction conditions of RPA at 37 ℃ for 15 min. The positive signals of STATH were observed both in saliva and nasal secretions. SPINK5 was positive in a template-dependent manner in 4 out of 30 female urine samples in addition to vaginal secretion and menstrual blood samples. Cross-reactions were not detected in semen, skin swabs, sweat, or male urine. Both assays were capable of detecting aged samples, which were stored for 180 days (saliva) or 300 days (vaginal secretion) at room temperature. Moreover, saliva or vaginal secretion was successfully detected in all kinds of mixtures made from various body fluids. Overall, the rapid strip test method by the RT-RPA-LFD assay is simple, time-saving and highly sensitive for estimating the tissue origin of saliva and vaginal secretion. This method for the rapid RNA-based presumptive tests of the tissue type of body fluids is easy to perform prior to a multiplex mRNA analysis, which can demonstrate more reliable saliva or vaginal secretion identification.
Collapse
|
15
|
Sensitive and rapid detection of Babesia species in dogs by recombinase polymerase amplification with lateral flow dipstick (RPA-LFD). Sci Rep 2022; 12:20560. [PMID: 36446883 PMCID: PMC9707278 DOI: 10.1038/s41598-022-25165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Canine babesiosis is a tick-borne disease caused by Babesia spp., which infects and destroys healthy erythrocytes, leading to mortality and morbidity in dogs. The diagnosis of babesiosis is tedious and time-consuming, especially in latent and chronic infections. Here, a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay was developed for rapid and accurate detection of Babesia spp. in canine blood specimens based on the 18S rRNA region. The RPA-LFD assay using rpaBab264 gave specificity to Babesia spp. in dogs (B. vogeli and B. gibsoni) without cross-amplification to other parasites (apicomplexans and non-apicomplexans), with detection limit of at least 22.5 copies/μl (0.1 fg/µl) at 40 °C for at least 10 min. The whole process of DNA amplification by RPA and readout by LFD did not exceed 30 min. To determine the performance of the RPA-LFD assay, a total of 30 clinical samples was examined and compared with conventional PCR (cPCR) and multiplex HRM (mHRM). Eight dogs (26.67%) were detected as positive by RPA-LFD, while seven and six were found positive by cPCR and mHRM, respectively. RPA-LFD and cPCR showed high agreement with Babesia spp. detection with kappa > 0.9. We confirmed that the dogs were infected by B. vogeli from sequences of positive PCR results. Our findings suggested that RPA-LFD using the rpaBab264 assay offered a rapid, accurate, cost-effective and simple method for Babesia spp. detection that is feasibly applicable to be rapid kit at a pet hospital or point-of-care testing.
Collapse
|
16
|
Tan M, Liao C, Liang L, Yi X, Zhou Z, Wei G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol 2022; 12:1019071. [PMID: 36519130 PMCID: PMC9742450 DOI: 10.3389/fcimb.2022.1019071] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
After the outbreak of SARS-CoV-2, nucleic acid testing quickly entered people's lives. In addition to the polymerase chain reaction (PCR) which was commonly used in nucleic acid testing, isothermal amplification methods were also important nucleic acid testing methods. Among several common isothermal amplification methods like displaced amplification, rolling circle amplification, and so on, recombinase polymerase amplification (RPA) was recently paid more attention to. It had the advantages like a simple operation, fast amplification speed, and reaction at 37-42°C, et al. So it was very suitable for field detection. However, there were still some disadvantages to RPA. Herein, our review mainly summarized the principle, advantages, and disadvantages of RPA. The specific applications of RPA in bacterial detection, fungi detection, virus detection, parasite detection, drug resistance gene detection, genetically modified food detection, and SARS-CoV-2 detection were also described. It was hoped that the latest research progress on RPA could be better delivered to the readers who were interested in RPA.
Collapse
|
17
|
Jiao J, Qi Y, He P, Wan W, OuYang X, Yu Y, Wen B, Xiong X. Development of a Lateral Flow Strip-Based Recombinase-Aided Amplification for Active Chlamydia psittaci Infection. Front Microbiol 2022; 13:928025. [PMID: 35770169 PMCID: PMC9234530 DOI: 10.3389/fmicb.2022.928025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci is the causative agent of psittacosis, a worldwide zoonotic disease. A rapid, specific, and sensitive diagnostic assay would be benefit for C. psittaci infection control. In this study, an assay combining recombinase-aided amplification and a lateral flow strip (RAA-LF) for the detection of active C. psittaci infection was developed. The RAA-LF assay targeted the CPSIT_RS02830 gene of C. psittaci and could be accomplished in 15 min at a single temperature (39°C). The analytical sensitivity of the assay was as low as 1 × 100 copies/μl and no cross-reaction with some other intracellular pathogens was observed. Moreover, all feces samples from mice infected with C. psittaci at day-1 post-infection were positive in the RAA-LF assay. In conclusion, the RAA-LF assay provides a convenient, rapid, specific and sensitive method for detection of active C. psittaci infection and it is also suitable for C. psittaci detection in field.
Collapse
Affiliation(s)
- Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Peisheng He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Xiaolu Xiong,
| |
Collapse
|
18
|
Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, Chhabra R, Karthik K, Patel SK, Pathak M, Iqbal Yatoo M, Gupta VK, Dhama K, Sah R, Chaicumpa W. Bovine brucellosis - a comprehensive review. Vet Q 2021; 41:61-88. [PMID: 33353489 PMCID: PMC7833053 DOI: 10.1080/01652176.2020.1868616] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a zoonotic disease of great animal welfare and economic implications worldwide known since ancient times. The emergence of brucellosis in new areas as well as transmission of brucellosis from wild and domestic animals is of great significance in terms of new epidemiological dimensions. Brucellosis poses a major public health threat by the consumption of non-pasteurized milk and milk products produced by unhygienic dairy farms in endemic areas. Regular and meticulous surveillance is essentially required to determine the true picture of brucellosis especially in areas with continuous high prevalence. Additionally, international migration of humans, animals and trade of animal products has created a challenge for disease spread and diagnosis in non-endemic areas. Isolation and identification remain the gold standard test, which requires expertise. The advancement in diagnostic strategies coupled with screening of newly introduced animals is warranted to control the disease. Of note, the diagnostic value of miRNAs for appropriate detection of B. abortus infection has been shown. The most widely used vaccine strains to protect against Brucella infection and related abortions in cattle are strain 19 and RB51. Moreover, it is very important to note that no vaccine, which is highly protective, safe and effective is available either for bovines or human beings. Research results encourage the use of bacteriophage lysates in treatment of bovine brucellosis. One Health approach can aid in control of this disease, both in animals and man.
Collapse
Affiliation(s)
| | - Anju Sehrawat
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Baldev Gulati
- ICAR-National Research Centre on Equine, Hisar, India
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rajesh Chhabra
- Department of Veterinary Microbiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Gumaa MM, Li Z, Cao X, Zhang N, Lou Z, Zhou J, Fu B. Specific Detection and Differentiation Between Brucella melitensis and Brucella abortus by a Duplex Recombinase Polymerase Amplification Assay. Front Vet Sci 2020; 7:539679. [PMID: 33330681 PMCID: PMC7732630 DOI: 10.3389/fvets.2020.539679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
Brucellosis is a highly contagious zoonosis caused by a species under the genus Brucella. A duplex recombinase polymerase amplification (Duplex RPA) assay for the specific detection of Brucella melitensis and Brucella abortus was developed in this study. Primers were designed targeting hypothetical protein genes and membrane transporter genes of B. melitensis and B. abortus, respectively. The newly developed assay was validated for its analytical sensitivity and specificity. Different samples were collected from the Qinghai, Inner Mongolia, and Xinjiang provinces. After DNA extraction, the samples were analyzed by Duplex RPA, real-time PCR, and multiplex AMOS PCR to estimate the prevalence of brucellosis in sheep and yak in West China. The analytical sensitivities of Duplex RPA were 9 × 102 plasmid copies of B. melitensis and 9 × 101 plasmid copies of B. abortus, but by mixing the reaction tubes after 4 min of incubation, the sensitivities were 4 × 100 and 5 × 100 copies of B. melitensis and B. abortus, respectively. There was no cross-reactivity with Brucella suis, Chlamydia abortus, Salmonella typhimurium, Escherichia coli, and Toxoplasma gondii. The screening of field samples by Duplex RPA revealed that the prevalence of B. melitensis in sheep and yak was 75.8% and the prevalence of B. abortus was 4.8%. Multiplex AMOS PCR showed that the prevalence of B. melitensis was 19.3%, and that of B. abortus was 4.8%. It was concluded that the developed Duplex RPA is sensitive and specific to the detection of and differentiation between B. melitensis and B. abortus which will be useful in epidemiological surveillance and in the clinical settings.
Collapse
Affiliation(s)
- M M Gumaa
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Kassala Veterinary Research Laboratory, Central Veterinary Research Laboratory, Animal Resources Research Corporation, Khartoum, Sudan
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongzi Lou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jizhang Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
20
|
Zhu Y, Zeng F, Sun J, Liu X, Wu M, Huang B, Lian Y, Xiao L, Ma L, Zhang S, Cong F. Application of recombinase polymerase amplification method for rapid detection of infectious laryngotracheitis virus. Mol Cell Probes 2020; 54:101646. [PMID: 32758643 DOI: 10.1016/j.mcp.2020.101646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Infectious laryngotracheitis is a significant respiratory disease of chickens that causes huge economic losses due to high morbidity and mortality and reduced egg production. A real-time recombinase polymerase amplification (RPA) assay was developed to accurately detect ILTV. The specific probe and primer sets were carefully designed and screened. The real-time RPA assay was carried out at 39 °C for 30 min, and results were obtained within 15 min. The results of the specificity assay showed no fluorescence signals with other avian-related viruses. The sensitivity of the assay was 1 × 102 copies/μL. The low CV value showed that the assay was reproducible. A total of 115 clinical samples were tested using the real-time RPA assay and the real-time PCR assay in parallel; the coincidence rates of the two detection methods were 100%. The results indicated that the real-time RPA assay is a specific, sensitive, rapid, and useful tool for epidemiological studies and clinical diagnosis, especially in the field and in resource-poor areas.
Collapse
Affiliation(s)
- Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Fanwen Zeng
- College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Xiangnan Liu
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, 510640, China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Li Xiao
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Lei Ma
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Shouquan Zhang
- College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| |
Collapse
|
21
|
Behrmann O, Hügle M, Eckardt F, Bachmann I, Heller C, Schramm M, Turner C, Hufert FT, Dame G. 3D Printed Monolithic Microreactors for Real-Time Detection of Klebsiella pneumoniae and the Resistance Gene blaNDM-1 by Recombinase Polymerase Amplification. MICROMACHINES 2020; 11:mi11060595. [PMID: 32560308 PMCID: PMC7344889 DOI: 10.3390/mi11060595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/07/2023]
Abstract
We investigate the compatibility of three 3D printing materials towards real-time recombinase polymerase amplification (rtRPA). Both the general ability of the rtRPA reaction to occur while in contact with the cured 3D printing materials as well as the residual autofluorescence and fluorescence drift in dependence on post curing of the materials is characterized. We 3D printed monolithic rtRPA microreactors and subjected the devices to different post curing protocols. Residual autofluorescence and drift, as well as rtRPA kinetics, were then measured in a custom-made mobile temperature-controlled fluorescence reader (mTFR). Furthermore, we investigated the effects of storage on the devices over a 30-day period. Finally, we present the single- and duplex rtRPA detection of both the organism-specific Klebsiella haemolysin (khe) gene and the New Delhi metallo-β-lactamase 1 (blaNDM-1) gene from Klebsiella pneumoniae. Results: No combination of 3D printing resin and post curing protocol completely inhibited the rtRPA reaction. The autofluorescence and fluorescence drift measured were found to be highly dependent on printing material and wavelength. Storage had the effect of decreasing the autofluorescence of the investigated materials. Both khe and blaNDM-1 were successfully detected by single- and duplex-rtRPA inside monolithic rtRPA microreactors printed from NextDent Ortho Clear (NXOC). The reaction kinetics were found to be close to those observed for rtRPA performed in a microcentrifuge tube without the need for mixing during amplification. Singleplex assays for both khe and blaNDM-1 achieved a limit of detection of 2.5 × 101 DNA copies while the duplex assay achieved 2.5 × 101 DNA copies for khe and 2.5 × 102 DNA copies for blaNDM-1. Impact: We expand on the state of the art by demonstrating a technology that can manufacture monolithic microfluidic devices that are readily suitable for rtRPA. The devices exhibit very low autofluorescence and fluorescence drift and are compatible with RPA chemistry without the need for any surface pre-treatment such as blocking with, e.g., BSA or PEG.
Collapse
Affiliation(s)
- Ole Behrmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Matthias Hügle
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Franz Eckardt
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Cecilia Heller
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Marina Schramm
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Carrie Turner
- National Infections Service, Public Health England, Porton Down SP4 0JG, UK;
| | - Frank T. Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Correspondence:
| |
Collapse
|