1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:487-521. [PMID: 39723231 PMCID: PMC11666855 DOI: 10.1007/s43657-023-00153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2024]
Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.
Collapse
Affiliation(s)
- Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
- Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
- International Human Phenome Institutes, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
3
|
Kahn RA, Virk H, Laflamme C, Houston DW, Polinski NK, Meijers R, Levey AI, Saper CB, Errington TM, Turn RE, Bandrowski A, Trimmer JS, Rego M, Freedman LP, Ferrara F, Bradbury ARM, Cable H, Longworth S. Antibody characterization is critical to enhance reproducibility in biomedical research. eLife 2024; 13:e100211. [PMID: 39140332 PMCID: PMC11324233 DOI: 10.7554/elife.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the 'antibody characterization crisis', and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders - researchers, universities, journals, antibody vendors and repositories, scientific societies and funders - to increase the reproducibility of studies that rely on antibodies.
Collapse
Affiliation(s)
- Richard A Kahn
- Department of Biochemistry, Emory University School of MedicineAtlantaUnited States
| | - Harvinder Virk
- Department of Respiratory Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Douglas W Houston
- The Development Studies Hybridoma Databank, University of IowaIowa CityUnited States
| | - Nicole K Polinski
- The Michael J Fox Foundation for Parkinson’s ResearchNew YorkUnited States
| | - Rob Meijers
- Institute for Protein InnovationBostonUnited States
| | - Allan I Levey
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
| | - Clifford B Saper
- Department of Neurology and Program in Neuroscience, Harvard Medical School and Beth Israel Deaconess Medical CenterBostonUnited States
| | | | - Rachel E Turn
- Department of Microbiology and Immunology, Stanford University School of MedicineStanfordUnited States
| | - Anita Bandrowski
- Department of Neuroscience, University of California, San DiegoLa JollaUnited States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California, Davis School of MedicineDavisUnited States
| | | | | | | | | | - Hannah Cable
- Department of Research and Development, AbcamCambridgeUnited Kingdom
| | | |
Collapse
|
4
|
Prisby R, Luchini A, Liotta LA, Solazzo C. Wheat-Based Glues in Conservation and Cultural Heritage: (Dis)solving the Proteome of Flour and Starch Pastes and Their Adhering Properties. J Proteome Res 2024; 23:1649-1665. [PMID: 38574199 PMCID: PMC11077587 DOI: 10.1021/acs.jproteome.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).
Collapse
Affiliation(s)
- Rocio Prisby
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Caroline Solazzo
- Independent
Researcher for Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746, United States
| |
Collapse
|
5
|
Omenn GS, Lane L, Overall CM, Lindskog C, Pineau C, Packer NH, Cristea IM, Weintraub ST, Orchard S, Roehrl MHA, Nice E, Guo T, Van Eyk JE, Liu S, Bandeira N, Aebersold R, Moritz RL, Deutsch EW. The 2023 Report on the Proteome from the HUPO Human Proteome Project. J Proteome Res 2024; 23:532-549. [PMID: 38232391 PMCID: PMC11026053 DOI: 10.1021/acs.jproteome.3c00591] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | - Christopher M. Overall
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada, Yonsei University Republic of Korea
| | | | - Charles Pineau
- University Rennes, Inserm U1085, Irset, 35042 Rennes, France
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | | | - Michael H. A. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Pavilion, 9th Floor, Los Angeles, CA, 90048, United States
| | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
- University of Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
6
|
Zubair H, Azim S, Maluf DG, Mas VR, Martins PN. Contribution of Proteomics in Transplantation: Identification of Injury and Rejection Markers. Transplantation 2023; 107:2143-2154. [PMID: 36814094 DOI: 10.1097/tp.0000000000004542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Solid organ transplantation saves thousands of lives suffering from end-stage diseases. Although early transplants experienced acute organ injury, medical breakthroughs, such as tissue typing, and use of immunosuppressive agents have considerably improved graft survival. However, the overall incidence of allograft injury and chronic rejection remains high. Often the clinical manifestations of organ injury or rejection are nonspecific and late. Current requirement for successful organ transplantation is the identification of reliable, accurate, disease-specific, noninvasive methods for the early diagnosis of graft injury or rejection. Development of noninvasive techniques is important to allow routine follow-ups without the discomfort and risks associated with a graft biopsy. Multiple biofluids have been successfully tested for the presence of potential proteomic biomarkers; these include serum, plasma, urine, and whole blood. Kidney transplant research has provided significant evidence to the potential of proteomics-based biomarkers for acute and chronic kidney rejection, delayed graft function, early detection of declining allograft health. Multiple proteins have been implicated as biomarkers; however, recent observations implicate the use of similar canonical pathways and biofunctions associated with graft injury/rejection with altered proteins as potential biomarkers. Unfortunately, the current biomarker studies lack high sensitivity and specificity, adding to the complexity of their utility in the clinical space. In this review, we first describe the high-throughput proteomics technologies and then discuss the outcomes of proteomics profiling studies in the transplantation of several organs. Existing literature provides hope that novel biomarkers will emerge from ongoing efforts and guide physicians in delivering specific therapies to prolong graft survival.
Collapse
Affiliation(s)
- Haseeb Zubair
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD
| | - Daniel G Maluf
- Program in Transplantation, University of Maryland Medical System, Baltimore, MD
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, University of Massachusetts, UMass Memorial Hospital, University of Massachusetts, Worcester, MA
| |
Collapse
|
7
|
Tornyi I, Lazar J, Pettko-Szandtner A, Hunyadi-Gulyas E, Takacs L. Epitomics: Analysis of Plasma C9 Epitope Heterogeneity in the Plasma of Lung Cancer Patients and Control Subjects. Int J Mol Sci 2023; 24:14359. [PMID: 37762663 PMCID: PMC10531758 DOI: 10.3390/ijms241814359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The human proteome is more complex than the genetic code predicts it to be. Epitomics, or protein epitome profiling, is a tool for understanding sub-protein level variation. With the ultimate goal to explore C9 proteoforms and their relevance to lung cancer, here we report plasma C9 epitope-associated molecular heterogeneity in plasma samples of lung cancer patients and control subjects. We show three C9 epitopes (BSI0449, BSI0581, BSI0639) with markedly different association with lung cancer ("unaltered", "upregulated" and "downregulated"). In order to exclude confounding effects, we show first that the three epitope-defining mAbs recognize C9 in purified form and in the natural context, in the human plasma. Then, we present data demonstrating the lack of major epitope interdependence or overlap. The next experiments represent a quest toward the understanding of the molecular basis of apparent disparate association with lung cancer. Using immunochemistry, SDS PAGE and LC-MS/MS technologies, we demonstrate that epitope-specific immunoprecipitates of plasma C9 seem identical regarding peptide sequence. However, we found epitope-specific posttranslational modification and coprecipitated protein composition differences with respect to control and lung cancer plasma. Epitope profiling enabled the classification of hypothetical C9 proteoforms through differential association with lung cancer.
Collapse
Affiliation(s)
- Ilona Tornyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Biosystems Immunolab Zrt., 4025 Debrecen, Hungary;
| | - Jozsef Lazar
- Biosystems Immunolab Zrt., 4025 Debrecen, Hungary;
- Biosystems International Kft., 4025 Debrecen, Hungary
| | - Aladar Pettko-Szandtner
- Proteomics Laboratory, Biological Research Center, 6726 Szeged, Hungary; (A.P.-S.); (E.H.-G.)
| | - Eva Hunyadi-Gulyas
- Proteomics Laboratory, Biological Research Center, 6726 Szeged, Hungary; (A.P.-S.); (E.H.-G.)
| | - Laszlo Takacs
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
8
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Omenn GS, Lane L, Overall CM, Pineau C, Packer NH, Cristea IM, Lindskog C, Weintraub ST, Orchard S, Roehrl MH, Nice E, Liu S, Bandeira N, Chen YJ, Guo T, Aebersold R, Moritz RL, Deutsch EW. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J Proteome Res 2023; 22:1024-1042. [PMID: 36318223 PMCID: PMC10081950 DOI: 10.1021/acs.jproteome.2c00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | | | - Charles Pineau
- French Institute of Health and Medical Research, 35042 RENNES Cedex, France
| | - Nicolle H. Packer
- Macquarie University, Sydney, NSW 2109, Australia
- Griffith University’s Institute for Glycomics, Sydney, NSW 2109, Australia
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | - Sandra Orchard
- EMBL-EBI, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Michael H.A. Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States
| | | | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tiannan Guo
- Westlake University Guomics Laboratory of Big Proteomic Data, Hangzhou 310024, Zhejiang Province, China
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
10
|
Gatto L, Aebersold R, Cox J, Demichev V, Derks J, Emmott E, Franks AM, Ivanov AR, Kelly RT, Khoury L, Leduc A, MacCoss MJ, Nemes P, Perlman DH, Petelski AA, Rose CM, Schoof EM, Van Eyk J, Vanderaa C, Yates JR, Slavov N. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat Methods 2023; 20:375-386. [PMID: 36864200 PMCID: PMC10130941 DOI: 10.1038/s41592-023-01785-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023]
Abstract
Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .
Collapse
Affiliation(s)
- Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Juergen Cox
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Alexander M Franks
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Luke Khoury
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - David H Perlman
- Merck Exploratory Science Center, Merck Sharp & Dohme Corp., Cambridge, MA, USA
| | - Aleksandra A Petelski
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
- Parallel Squared Technology Institute, Watertown, MA, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Christophe Vanderaa
- Computational Biology and Bioinformatics Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - John R Yates
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, La Jolla, CA, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single-Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA.
- Parallel Squared Technology Institute, Watertown, MA, USA.
| |
Collapse
|
11
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
12
|
Johns A, Higuchi-Sanabria R, Thorwald MA, Vilchez D. A tale of two pathways: Regulation of proteostasis by UPR mt and MDPs. Curr Opin Neurobiol 2023; 78:102673. [PMID: 36621224 PMCID: PMC9845188 DOI: 10.1016/j.conb.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Mitochondrial fitness is critical to organismal health and its impairment is associated with aging and age-related diseases. As such, numerous quality control mechanisms exist to preserve mitochondrial stability, including the unfolded protein response of the mitochondria (UPRmt). The UPRmt is a conserved mechanism that drives the transcriptional activation of mitochondrial chaperones, proteases, autophagy (mitophagy), and metabolism to promote restoration of mitochondrial function under stress conditions. UPRmt has direct ramifications in aging, and its activation is often ascribed to improve health whereas its dysfunction tends to correlate with disease. This review pairs a description of the most recent findings within the field of UPRmt with a more poorly understood field: mitochondria-derived peptides (MDPs). Similar to UPRmt, MDPs are microproteins derived from the mitochondria that can impact organismal health and longevity. We then highlight a tantalizing interconnection between UPRmt and MDPs wherein both mechanisms may be efficiently coordinated to maintain organismal health.
Collapse
Affiliation(s)
- Angela Johns
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. https://twitter.com/AngyJohns
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
14
|
Pino L, Banarjee R, Basisty N. A bright future for proteomics of health and disease. Introduction to the US HUPO 2021 themed issue - proteomics from single cell to systems biology in health and disease. Mol Omics 2022; 18:894-895. [PMID: 36168986 DOI: 10.1039/d2mo90026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this themed issue of Molecular Omics, in partnership with the U.S. Human Proteome Organization, we are proud to present the latest research featured at the 17th Annual US HUPO conference: Proteomics from Single Cell to Systems Biology in Health and Disease. This issue is a testament to the continuing contributions of proteomic research, particularly the application of modern mass spectrometry-based proteomic workflows, to the advancement of our understanding of the underlying human biology and mechanisms of disease.
Collapse
Affiliation(s)
- Lindsay Pino
- Talus Bioscience, Inc., 550 17th Ave, Suite 550, Seattle, WA 98122, USA.
| | - Reema Banarjee
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
15
|
Sampath G. A binary/digital approach to amino acid identification and its application to peptide sequencing and protein identification. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:94. [PMID: 36445647 DOI: 10.1140/epje/s10189-022-00246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
A binary/digital method is proposed in theory for the identification of single amino acids (AAs) in the bulk or with a few molecules from a single binary measurement. Combined with Edman degradation (or other cleaving method), it can be used to sequence a peptide or identify the parent protein from a partial sequence. The approach is centered on the superspecificity property of transfer RNAs (tRNAs). Markedly different from conventional and recent single molecule (SM) sequencing methods based on analog measurements, it changes the analytical question 'Which AA is it?' to the much simpler one 'Is there an AA in the detection space?'. Each of 20 terminal residues cleaved from 20 copies of a peptide enters a different cavity with a unique tRNA; tRNA charging (or binding with AA) occurs only in the cavity with the cognate AA. The bound AA or the AA separated from the tRNA is detected with a single binary measurement; its identity is known from the position of the single high bit in the resulting 20-bit output. Alternatively, a 20-stage pipeline can be used with sparse samples. Detection of the bound AA can be done optically by tagging the AAs with a fluorescent dye, or of the freed AA electrically with a nanopore. Necessary conditions for accurate AA identification are satisfied in principle; related computations and simulation results are presented. A modified version that can be used for de novo sequencing in parallel of large numbers of peptides immobilized on a glass slide with the tRNAs carrying a fluorescent tag is also proposed. Both methods can be used for protein identification from partial sequences containing 2 or 3 AA types by using only the corresponding tRNAs. Experiments may be performed to validate them, followed by translation into practice with existing technology; potential implementation issues are discussed. Binary/digital amino acid identification for peptide sequencing.
Collapse
|
16
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|
17
|
Ilgisonis EV, Pogodin PV, Kiseleva OI, Tarbeeva SN, Ponomarenko EA. Evolution of Protein Functional Annotation: Text Mining Study. J Pers Med 2022; 12:jpm12030479. [PMID: 35330478 PMCID: PMC8952229 DOI: 10.3390/jpm12030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Within the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it. We proposed using a retrospective analysis of the key HPP repository, the neXtProt database, to identify the most frequently used experimental and bioinformatic methods for analyzing protein functions, and the dynamics of accumulation of functional annotations. It has been shown that the dynamics of the increase in the number of proteins with known functions are greater than the progress made in the experimental confirmation of the existence of questionable proteins in the framework of the missing-protein challenge. At the same time, the functional annotation is based on the guilty-by-association postulate, according to which, based on large-scale experiments on API-MS and Y2H, proteins with unknown functions are most likely mapped through “handshakes” to biochemical processes.
Collapse
|
18
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
19
|
How Far Are We from the Completion of the Human Protein Interactome Reconstruction? Biomolecules 2022; 12:biom12010140. [PMID: 35053288 PMCID: PMC8774112 DOI: 10.3390/biom12010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
After more than fifteen years from the first high-throughput experiments for human protein–protein interaction (PPI) detection, we are still wondering how close the completion of the genome-scale human PPI network reconstruction is, what needs to be further explored and whether the biological insights gained from the holistic investigation of the current network are valid and useful. The unique structure of PICKLE, a meta-database of the human experimentally determined direct PPI network developed by our group, presently covering ~80% of the UniProtKB/Swiss-Prot reviewed human complete proteome, enables the evaluation of the interactome expansion by comparing the successive PICKLE releases since 2013. We observe a gradual overall increase of 39%, 182%, and 67% in protein nodes, PPIs, and supporting references, respectively. Our results indicate that, in recent years, (a) the PPI addition rate has decreased, (b) the new PPIs are largely determined by high-throughput experiments and mainly concern existing protein nodes and (c), as we had predicted earlier, most of the newly added protein nodes have a low degree. These observations, combined with a largely overlapping k-core between PICKLE releases and a network density increase, imply that an almost complete picture of a structurally defined network has been reached. The comparative unsupervised application of two clustering algorithms indicated that exploring the full interactome topology can reveal the protein neighborhoods involved in closely related biological processes as transcriptional regulation, cell signaling and multiprotein complexes such as the connexon complex associated with cancers. A well-reconstructed human protein interactome is a powerful tool in network biology and medicine research forming the basis for multi-omic and dynamic analyses.
Collapse
|
20
|
Reis-de-Oliveira G, Smith BJ, Martins-de-Souza D. Postmortem Brains: What Can Proteomics Tell us About the Sources of Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:1-13. [DOI: 10.1007/978-3-030-97182-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Omenn GS, Lane L, Overall CM, Paik YK, Cristea IM, Corrales FJ, Lindskog C, Weintraub S, Roehrl MHA, Liu S, Bandeira N, Srivastava S, Chen YJ, Aebersold R, Moritz RL, Deutsch EW. Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project. J Proteome Res 2021; 20:5227-5240. [PMID: 34670092 PMCID: PMC9340669 DOI: 10.1021/acs.jproteome.1c00590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Young-Ki Paik
- Yonsei Proteome Research Center and Yonsei University, Seoul 03722, Korea
| | - Ileana M Cristea
- Princeton University, Princeton, New Jersey 08544, United States
| | | | | | - Susan Weintraub
- University of Texas Health, San Antonio, San Antonio, Texas 78229-3900, United States
| | - Michael H A Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | | | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ruedi Aebersold
- ETH-Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
22
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
23
|
Boschetti E, Zilberstein G, Righetti PG. Combinatorial peptides: A library that continuously probes low-abundance proteins. Electrophoresis 2021; 43:355-369. [PMID: 34498305 DOI: 10.1002/elps.202100131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
After a decade of experimental applications, it is the objective of this review to make a point on combinatorial peptide ligand libraries dedicated to low-abundance proteins from animals to plants and to microorganism proteomics. It is, thus, at the light of the recent technical developments and applications that we will examine the state of the art, its usage within the scientific community, and its openness to unexplored fields. The improvements of the methodology and its implementation in connection with analytical determinations of combinatorial peptide ligand library (CPLL)-treated samples are extensively reviewed and commented upon. Relevant examples covering few critical aspects describe the performance of the technology. Finally, a reflection on the technological future is attempted in particular by involving new concepts adapted to the limited availability of certain biological samples.
Collapse
Affiliation(s)
| | | | - Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
24
|
A Multi-Omics Study of Human Testis and Epididymis. Molecules 2021; 26:molecules26113345. [PMID: 34199411 PMCID: PMC8199593 DOI: 10.3390/molecules26113345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The human testis and epididymis play critical roles in male fertility, including the spermatogenesis process, sperm storage, and maturation. However, the unique functions of the two organs had not been systematically studied. Herein, we provide a systematic and comprehensive multi-omics study between testis and epididymis. RNA-Seq profiling detected and quantified 19,653 in the testis and 18,407 in the epididymis. Proteomic profiling resulted in the identification of a total of 11,024 and 10,386 proteins in the testis and epididymis, respectively, including 110 proteins that previously have been classified as MPs (missing proteins). Furthermore, Five MPs expressed in testis were validated by the MRM method. Subsequently, multi-omcis between testis and epididymis were performed, including biological functions and pathways of DEGs (Differentially Expressed Genes) in each group, revealing that those differences were related to spermatogenesis, male gamete generation, as well as reproduction. In conclusion, this study can help us find the expression regularity of missing protein and help related scientists understand the physiological functions of testis and epididymis more deeply.
Collapse
|