1
|
Hadpech S, Peerapen P, Rattananinsruang P, Detsangiamsak S, Phuangkham S, Chotikawanich E, Sritippayawan S, Thongboonkerd V. Comprehensive identification of stone-promoting proteins in the urine of kidney stone formers. Int J Biol Macromol 2025; 310:143251. [PMID: 40253023 DOI: 10.1016/j.ijbiomac.2025.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Urinary proteins have crucial roles in modulating kidney stone formation. While stone-inhibiting urinary proteins are well characterized, stone-promoting urinary proteins are insufficiently explored. This knowledge gap limits our ability to fully comprehend the pathogenic mechanisms underlying nephrolithiasis and hampers the development of targeted therapeutic/preventive interventions. Therefore, we systematically identified stone-promoting proteins from the urine of 30 calcium oxalate (CaOx) nephrolithiatic patients (stone formers). Urinary proteins were fractionated by anion exchange and size-exclusion chromatography. A total of 15 protein fractions (SF1-SF15) were tested for their modulating activities on CaOx crystals by various assays compared with the control. The fractions with net CaOx-promoting activities were then identified by nanoLC-ESI-Qq-TOF MS/MS. From 15 fractions, 9 had net CaOx-promoting activities in all crystal assays. Among 3-99 proteins identified from these fractions, alpha-1acid glycoprotein 2, alpha-1-antitrypsin, apolipoprotein D, CD44 antigen, endosialin, fibrinogen alpha chain, interleukin-18-binding protein, kallikrein-1, retinol-binding protein 4, and titin have been found to increase in the urine of stone formers compared with controls, reinforcing their potential roles as CaOx stone promoters. This study offers the largest collection of CaOx stone-promoting proteins that will shed light on pathogenic mechanisms of nephrolithiasis and may allow further development of new drug targets to treat/prevent nephrolithiasis.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasinun Detsangiamsak
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ekkarin Chotikawanich
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchai Sritippayawan
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Suttapitugsakul S, Sassanarakkit S, Peerapen P, Thongboonkerd V. Integrated proteomics reveals enrichment of oxidative stress and inflammatory proteins in the urine and stone matrix of calcium oxalate stone formers. Urolithiasis 2025; 53:25. [PMID: 39912926 DOI: 10.1007/s00240-025-01697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Nephrolithiasis is a multifactorial disease associated with urinary and matrix proteins that become a focal point of research for diagnostic and preventative strategies. The functional relevance of these proteins in lithogenesis, along with their origins and impacts, remains a major subject of ongoing lithogenic research. Here, an integrated analysis was done on multiple proteome datasets compiled from various studies of normal urine (NU), urine from calcium oxalate stone formers (SFU), and calcium oxalate stone matrix (SM). Functional annotation and network analysis revealed the profound enrichment of proteins associated with oxidative stress and inflammation only in the stone-related samples (both "SFU but not NU" and "SM but not NU" cohorts). The oxidative stress and inflammation-related proteins were most abundant in the "SM but not NU" cohort and had higher proportions in the "SFU but not NU" cohort than the "NU only" cohort. KEGG pathway analysis corroborated such observation and highlighted the inclusion of proteins in the complement and coagulation pathways, particularly in SM. The findings of this study inform some mechanistic insights into the roles of calcium oxalate stone-related proteins and may help develop effective prevention and treatment strategies for nephrolithiasis.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Supatcha Sassanarakkit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Hadpech S, Chaiyarit S, Phuangkham S, Sukphan S, Thongboonkerd V. The modulatory effects of large and small extracellular vesicles from normal human urine on calcium oxalate crystallization, growth, aggregation, adhesion on renal cells, and invasion through extracellular matrix: An in vitro study. Biomed Pharmacother 2024; 173:116393. [PMID: 38461684 DOI: 10.1016/j.biopha.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Chaiyarit S, Phuangkham S, Thongboonkerd V. Quercetin inhibits calcium oxalate crystallization and growth but promotes crystal aggregation and invasion. Curr Res Food Sci 2023; 8:100650. [PMID: 38145155 PMCID: PMC10733680 DOI: 10.1016/j.crfs.2023.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Recent evidence has shown an association between kidney stone pathogenesis and oxidative stress. Many anti-oxidants have been studied with an aim for stone prevention. Quercetin, a natural flavonol, is one among those eminent anti-oxidants with satisfactory anti-inflammatory property to cope with renal tissue injury in kidney stone disease. Nevertheless, its direct effect (if any) on calcium oxalate (CaOx) crystals and the stone formation mechanism had not been previously explored. This study has addressed the ability of quercetin at various concentrations (2.5, 5, 10, 20, 40, 80 and 160 μM) to directly modulate CaOx crystallization, growth, aggregation, adhesion on kidney cells, and invasion through the matrix. The data have shown that quercetin significantly inhibits CaOx crystallization and crystal growth but promotes crystal aggregation in concentration-dependent manner. However, quercetin at all these concentrations do not affect CaOx adhesion on kidney cells. For the invasion, quercetin at all concentrations constantly promotes CaOx invasion through the matrix without concentration-dependent pattern. These discoveries have demonstrated for the first time that quercetin has direct but dual modulatory effects on CaOx crystals. While quercetin inhibits CaOx crystallization and growth, on the other hand, it promotes CaOx crystal aggregation and invasion through the matrix. These data highlight the role for quercetin in direct modulation of the CaOx crystals that may intervene the stone pathogenesis.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Peerapen P, Boonmark W, Putpeerawit P, Sassanarakkit S, Thongboonkerd V. Proteomic and computational analyses followed by functional validation of protective effects of trigonelline against calcium oxalate-induced renal cell deteriorations. Comput Struct Biotechnol J 2023; 21:5851-5867. [PMID: 38074474 PMCID: PMC10697849 DOI: 10.1016/j.csbj.2023.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 05/07/2025] Open
Abstract
Trigonelline is a phytoalkaloid commonly found in green and roasted coffee beans. It is also found in decaffeinated coffee. Previous report has shown that extract from trigonelline-rich plant exhibits anti-lithiatic effects in a nephrolithiatic rat model. Nevertheless, cellular mechanisms underlying the anti-lithiatic properties of trigonelline remain hazy. Herein, we used nanoLC-ESI-Qq-TOF MS/MS and MaxQuant-based quantitative proteomics to identify trigonelline-induced changes in protein expression in MDCK renal cells. From a total of 1006 and 1011 proteins identified from control and trigonelline-treated cells, respectively, levels of 62 (23 upregulated and 39 downregulated) proteins were significantly changed by trigonelline. Functional enrichment and reactome pathway analyses suggested that these 62 altered proteins were related to stress response, cell cycle and cell polarity. Functional validation by corresponding experimental assays revealed that trigonelline prevented calcium oxalate monohydrate crystal-induced renal cell deteriorations by inhibiting crystal-induced overproduction of intracellular reactive oxygen species, G0/G1 to G2/M cell cycle shift, tight junction disruption, and epithelial-mesenchymal transition. These findings provide cellular mechanisms and convincing evidence for the renoprotective effects of trigonelline, particularly in kidney stone prevention.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattaranit Putpeerawit
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supatcha Sassanarakkit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. Caffeine causes cell cycle arrest at G0/G1 and increases of ubiquitinated proteins, ATP and mitochondrial membrane potential in renal cells. Comput Struct Biotechnol J 2023; 21:4552-4566. [PMID: 37799542 PMCID: PMC10550404 DOI: 10.1016/j.csbj.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Caffeine is a well-known purine alkaloid commonly found in coffee. Several lines of previous and recent evidence have shown that habitual coffee drinking is associated with lower risks for chronic kidney disease (CKD) and nephrolithiasis. However, cellular and molecular mechanisms underlying its renoprotective effects remain largely unknown due to a lack of knowledge on cellular adaptive response to caffeine. This study investigated cellular adaptive response of renal tubular cells to caffeine at the protein level. Cellular proteome of MDCK cells treated with caffeine at a physiologic concentration (100 μM) for 24 h was analyzed comparing with that of untreated cells by label-free quantitative proteomics. From a total of 936 proteins identified, comparative analysis revealed significant changes in levels of 148 proteins induced by caffeine. These significantly altered proteins were involved mainly in proteasome, ribosome, tricarboxylic acid (TCA) (or Krebs) cycle, DNA replication, spliceosome, biosynthesis of amino acid, carbon metabolism, nucleocytoplasmic transport, cell cycle, cytoplasmic translation, translation initiation, and mRNA metabolic process. Functional validation by various assays confirmed that caffeine decreased cell population at G2/M, increased cell population at G0/G1, increased level of ubiquitinated proteins, increased intracellular ATP and enhanced mitochondrial membrane potential in MDCK cells. These data may help unravelling molecular mechanisms underlying the biological effects of caffeine on renal tubular cells at cellular and protein levels.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chonnicha Subkod
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supanan Nanthawuttiphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Hadpech S, Chaiyarit S, Thongboonkerd V. Calcineurin B inhibits calcium oxalate crystallization, growth and aggregation via its high calcium-affinity property. Comput Struct Biotechnol J 2023; 21:3854-3864. [PMID: 37593722 PMCID: PMC10427926 DOI: 10.1016/j.csbj.2023.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
Calcineurin inhibitors (CNIs) are widely used in organ transplantation to suppress immunity and prevent allograft rejection. However, some transplant patients receiving CNIs have hypocitraturia, hyperoxaluria and kidney stone with unclear mechanism. We hypothesized that CNIs suppress activities of urinary calcineurin, which may serve as the stone inhibitor. This study aimed to investigate effects of calcineurin B (CNB) on calcium oxalate monohydrate (COM) stone formation. Sequence and structural analyses revealed that CNB contained four EF-hand (Ca2+-binding) domains, which are known to regulate Ca2+ homeostasis and likely to affect COM crystals. Various crystal assays revealed that CNB dramatically inhibited COM crystallization, crystal growth and crystal aggregation. At an equal amount, degrees of its inhibition against crystallization and crystal growth were slightly inferior to total urinary proteins (TUPs) from healthy subjects that are known to strongly inhibit COM stone formation. Surprisingly, its inhibitory effect against crystal aggregation was slightly superior to TUPs. While TUPs dramatically inhibited crystal-cell adhesion, CNB had no effect on this process. Ca2+-affinity assay revealed that CNB strongly bound Ca2+ at a comparable degree as of TUPs. These findings indicate that CNB serves as a novel inhibitor of COM crystallization, growth and aggregation via its high Ca2+-affinity property.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Zhang XZ, Lei XX, Jiang YL, Zhao LM, Zou CY, Bai YJ, Li YX, Wang R, Li QJ, Chen QZ, Fan MH, Song YT, Zhang WQ, Zhang Y, Li-Ling J, Xie HQ. Application of metabolomics in urolithiasis: the discovery and usage of succinate. Signal Transduct Target Ther 2023; 8:41. [PMID: 36681678 PMCID: PMC9867757 DOI: 10.1038/s41392-023-01311-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Urinary stone is conceptualized as a chronic metabolic disorder punctuated by symptomatic stone events. It has been shown that the occurrence of calcium oxalate monohydrate (COM) during stone formation is regulated by crystal growth modifiers. Although crystallization inhibitors have been recognized as a therapeutic modality for decades, limited progress has been made in the discovery of effective modifiers to intervene with stone disease. In this study, we have used metabolomics technologies, a powerful approach to identify biomarkers by screening the urine components of the dynamic progression in a bladder stone model. By in-depth mining and analysis of metabolomics data, we have screened five differential metabolites. Through density functional theory studies and bulk crystallization, we found that three of them (salicyluric, gentisic acid and succinate) could effectively inhibit nucleation in vitro. We thereby assessed the impact of the inhibitors with an EG-induced rat model for kidney stones. Notably, succinate, a key player in the tricarboxylic acid cycle, could decrease kidney calcium deposition and injury in the model. Transcriptomic analysis further showed that the protective effect of succinate was mainly through anti-inflammation, inhibition of cell adhesion and osteogenic differentiation. These findings indicated that succinate may provide a new therapeutic option for urinary stones.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-Xing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming-Hui Fan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medical Genetics, West China Second University Hospital, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
11
|
Noonin C, Peerapen P, Thongboonkerd V. Contamination of bacterial extracellular vesicles (bEVs) in human urinary extracellular vesicles (uEVs) samples and their effects on uEVs study. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e69. [PMID: 38938597 PMCID: PMC11080850 DOI: 10.1002/jex2.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/29/2024]
Abstract
Bacterial overgrowth is common for improperly stored urine. However, its effects on human urinary extracellular vesicles (uEVs) study had not been previously examined nor documented. This study investigated the presence of bacterial EVs (bEVs) contaminated in uEVs samples and their effects on uEVs study. Nanoscale uEVs were isolated from normal human urine immediately after collection (0-h) or after 25°C-storage with/without preservative (10 mM NaN3) for up to 24-h. Turbidity, bacterial count and total uEVs proteins abnormally increased in the 8-h and 24-h-stored urine without NaN3. NanoLC-ESI-LTQ-Orbitrap MS/MS identified 6-13 bacterial proteins in these contaminated uEVs samples. PCR also detected bacterial DNAs in these contaminated uEVs samples. Besides, uEVs derived from 8-h and 24-h urine without NaN3 induced macrophage activation (CD11b and phagocytosis) and secretion of cytokines (IFN-α, IL-8, and TGF-β) from macrophages and renal cells (HEK-293, HK-2, and MDCK). All of these effects induced by bacterial contamination were partially/completely prevented by NaN3. Interestingly, macrophage activation and cytokine secretion were also induced by bEVs purified from Escherichia coli. This study clearly shows evidence of bEVs contamination and their effects on human uEVs study when the urine samples were inappropriately stored, whereas NaN3 can partially/completely prevent such effects from the contaminated bEVs.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
12
|
Wuttimongkolchai N, Kanlaya R, Nanthawuttiphan S, Subkod C, Thongboonkerd V. Chlorogenic acid enhances endothelial barrier function and promotes endothelial tube formation: A proteomics approach and functional validation. Biomed Pharmacother 2022; 153:113471. [DOI: 10.1016/j.biopha.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022] Open
|
13
|
Chaiyarit S, Thongboonkerd V. Oxidized forms of uromodulin promote calcium oxalate crystallization and growth, but not aggregation. Int J Biol Macromol 2022; 214:542-553. [PMID: 35752338 DOI: 10.1016/j.ijbiomac.2022.06.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022]
Abstract
Roles of an abundant human urinary protein, uromodulin (UMOD), in kidney stone disease were previously controversial. Recently, we have demonstrated that oxidative modification reverses overall modulatory activity of whole urinary proteins, from inhibition to promotion of calcium oxalate (CaOx) stone-forming processes. We thus hypothesized that oxidation is one of the factors causing those previously controversial UMOD data on stone modulation. Herein, we addressed effects of performic-induced oxidation on CaOx crystal modulatory activity of UMOD. Sequence analyses revealed two EGF-like calcium-binding domains (65th-107th and 108th-149th), two other calcium-binding motifs (65th-92nd and 108th-135th), and three oxalate-binding motifs (199th-207th, 361st-368th and 601st-609th) in UMOD molecule. Analysis of tandem mass spectrometric dataset of whole urinary proteins confirmed marked increases in oxidation, dioxidation and trioxidation of UMOD in the performic-modified urine samples. UMOD was then purified from the normal urine and underwent performic-induced oxidative modification, which was confirmed by Oxyblotting. The oxidized UMOD significantly promoted CaOx crystallization and crystal growth, whereas the unmodified native UMOD inhibited CaOx crystal growth. However, the oxidized UMOD did not affect CaOx crystal aggregation. Therefore, our data indicate that oxidized forms of UMOD promote CaOx crystallization and crystal growth, which are the important processes for CaOx kidney stone formation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed Pharmacother 2022; 149:112876. [PMID: 35367760 DOI: 10.1016/j.biopha.2022.112876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Trigonelline is the second most abundant bioactive alkaloid found in coffee. It is classified as a phytoestrogen with similar structure as of estradiol and exhibits an estrogenic effect. A previous study has reported that fenugreek seed extract rich with trigonelline can reduce renal crystal deposition in ethylene glycol-induced nephrolithiatic rats. However, direct evidence of such anti-lithogenic effects of trigonelline and underlying mechanisms have not previously been reported. Our study therefore addressed the protective effects and mechanisms of trigonelline against kidney stone-forming processes using crystallization, crystal growth, aggregation and crystal-cell adhesion assays. Also, proteomics was applied to identify changes in receptors for calcium oxalate monohydrate (COM), the most common stone-forming crystal, on apical membranes of trigonelline-treated renal tubular cells. The analyses revealed that trigonelline significantly reduced COM crystal size, number and mass during crystallization. Additionally, trigonelline dose-dependently inhibited crystal growth and crystal-cell adhesion, but did not affect crystal aggregation. Mass spectrometric protein identification showed the smaller number of COM crystal receptors on apical membranes of the trigonelline-treated cells. Western blotting confirmed the decreased levels of some of these crystal receptors by trigonelline. These data highlight the protective mechanisms of trigonelline against kidney stone development by inhibiting COM crystallization, crystal growth and crystal-cell adhesion via downregulation of the crystal receptors on apical membranes of renal tubular cells.
Collapse
|