1
|
Yang Q, Zhang Y, Zhang H, Yang Z, Feng Y, Ye B, Gong P, Qian G, Li D. Advanced N-glycoproteomics and proteomics approach revealed sexually dimorphic molecular signatures in primary mouse hepatocyte. Anal Bioanal Chem 2025:10.1007/s00216-025-05912-1. [PMID: 40410350 DOI: 10.1007/s00216-025-05912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/25/2025]
Abstract
Sexual dimorphism plays a critical role in disease pathophysiology, but the subtlety and complexity of these differences, along with a lack of precise comparative methods, hinder the advancement of precision medicine and drug development. This limitation is particularly evident in metabolic dysfunction-associated steatotic liver disease (MASLD), where sex-specific molecular mechanisms remain insufficiently understood. To address this gap, we employed an advanced integrative N-glycoproteomics and proteomics approach to systematically analyze sex-biased molecular signatures in primary mouse hepatocytes (PMHs) under healthy and MASLD conditions. Our analysis identified 280 sex-biased proteins and 39 sex-biased N-glycosites, and KEGG enrichment revealed that female-biased molecules were primarily involved in lipid metabolism, while male-biased molecules were associated with inflammation and cytoskeletal remodeling. A combined dataset of 302 sex-biased molecules was further analyzed using protein-protein interaction (PPI) analysis and Rc value calculations, resulting in the identification of 21 hub proteins and 2 hub N-glycosites as MASLD-associated sex-biased signatures. Notably, MASLD amplified proteomic sex differences while attenuating them in N-glycosylation. Western blot validation of key signatures, including female-biased MVK and male-biased LGALS3, highlighted distinct molecular adaptations between the sexes in MASLD progression. Our study introduced an advanced analytical framework for high-resolution comparative molecular profiling by integrating N-glycoproteomics with proteomics, providing valuable insights into sex-biased molecular signatures, enhancing preclinical model development, and advancing sex-specific therapeutic strategies in MASLD research and broader biological systems.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanruyu Feng
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Ninth People's Hospital of Zhengzhou, Zhengzhou, 45000, China
| | - Bengui Ye
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Medical College of Tibet University, Lhasa, 850002, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Guangsheng Qian
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zanini BM, Ávila BM, Hense JD, Garcia DN, Ashiqueali S, Alves PIC, Oliveira TL, Collares TV, Brieño-Enríquez MA, Mason JB, Masternak MM, Schneider A. Extracellular vesicles from cyclic mice modulate liver transcriptome in estroupause mice independent of age. Mol Cell Endocrinol 2025; 600:112508. [PMID: 40015357 PMCID: PMC11892024 DOI: 10.1016/j.mce.2025.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Extracellular vesicles (EVs) of different sizes are secreted by cells and may contain microRNAs (miRNAs) among its cargo. These miRNAs in EVs can induce changes in gene expression and function of recipient cells. In different cells EVs content can change with age and physiological state affecting tissue function. Based on this, the aim of this study was to characterize the miRNA content and role of small EVs (sEVs) from cyclic female mice in the modulation of liver transcriptome in estropausal mice. Two-month-old female mice were induced to estropause using 4-vinylcyclohexene diepoxide (VCD). At six months of age, VCD-treated mice were divided into placebo group (VCD) and sEVs treated group (VCD + sEVs), which received 10 injections at 3-day intervals of sEVs isolated from serum of donor cyclic female mice. A group of cyclic mice also received placebo injection and served as controls (CTL). sEVs injection in mice undergoing estropause had no effect on body mass, insulin sensitivity or organ weight. We observed ten miRNAs differentially regulated in serum sEVs of VCD compared to CTL mice. In the liver we observed 931 genes differentially expressed in VCD + sEVs compared to VCD mice. Interestingly, eight pathways were up-regulated in liver by VCD treatment and down-regulated by sEVs treatment, indicating that sEVs from cyclic mice can reverse changes promoted by estropause in liver. The expression of Cyp4a12a, which is male-specific, was elevated in VCD females but not normalized by sEVs treatment. Our findings indicate that miRNA content in sEVs is regulated by estropause in mice independent of age. Additionally, treatment of estropausal mice with sEVs from cyclic mice can partially reverse changes in the liver transcriptome.
Collapse
Affiliation(s)
- Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianca M Ávila
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Sarah Ashiqueali
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Pâmela I C Alves
- Programa de Pós-Graduação Em Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas -RS, Brazil
| | - Thais L Oliveira
- Laboratório de Biotecnologia Do Câncer, Programa de Pós-Graduação Em Biotecnologia, Universidade Federal de Pelotas - RS, Brazil
| | - Tiago V Collares
- Laboratório de Biotecnologia Do Câncer, Programa de Pós-Graduação Em Biotecnologia, Universidade Federal de Pelotas - RS, Brazil
| | - Miguel A Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Hanamatsu H, Suda G, Ohara M, Ogawa K, Tamaki N, Hikita H, Haga H, Maekawa S, Sugiyama M, Kakisaka T, Nakai M, Sho T, Miura N, Kurosaki M, Asahina Y, Taketomi A, Ueno Y, Takehara T, Nishikaze T, Furukawa JI, Sakamoto N. Elevated A2F bisect N-glycans of serum IgA reflect progression of liver fibrosis in patients with MASLD. J Gastroenterol 2025; 60:456-468. [PMID: 39849179 PMCID: PMC11922979 DOI: 10.1007/s00535-024-02206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Advanced liver fibrosis in cases of metabolic dysfunction-associated steatotic liver disease (MASLD) leads to cirrhosis and hepatocellular carcinoma. The current gold standard for liver fibrosis is invasive liver biopsy. Therefore, a less invasive biomarker that accurately reflects the stage of liver fibrosis is highly desirable. METHODS This study enrolled 269 patients with liver biopsy-proven MASLD. Patients were divided into three groups (F0/1 (n = 41/85), F2 (n = 47), and F3/4 (n = 72/24)) according to fibrosis stage. We performed serum N-glycomics and identified glycan biomarker for fibrosis stage. Moreover, we explored the carrier proteins and developed a sandwich ELISA to measure N-glycosylation changes of carrier protein. RESULTS Comprehensive N-glycomic analysis revealed significant changes in the expression of A2F bisect and its precursors as fibrosis progressed. The sum of neutral N-glycans carrying bisecting GlcNAc and core Fuc (neutral sum) had a better diagnostic performance to evaluate advanced liver fibrosis (AUC = 0.804) than conventional parameters (FIB4 index, aspartate aminotransferase-to-alanine aminotransferase ratio (AAR), and serum level of Mac-2-binding protein glycol isomer (M2BPGi). The combination of the neutral sum and FIB4 index enhanced diagnostic performance (AUC = 0.840). IgM, IgA, and complement C3 were identified as carrier proteins with A2F bisect N-glycan. A sandwich ELISA based on N-glycans carrying bisecting GlcNAc and IgA showed similar diagnostic performance than the neutral sum. CONCLUSIONS A2F bisect N-glycan and its precursors are promising candidate biomarkers for advanced fibrosis in MASLD patients. Analysis of these glycan alterations on IgA may have the potential to serve as a novel ELISA diagnostic tool for MASLD in routine clinical practice. CLINICAL TRIAL NUMBER UMIN000030720.
Collapse
Affiliation(s)
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Nobuaki Miura
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Aichi, Japan.
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
4
|
Zanini BM, Ávila BM, Hense JD, Garcia DN, Ashiqueali S, Alves PIC, Oliveira TL, Collares TV, Brieño-Enríquez MA, Mason JB, Masternak MM, Schneider A. EXOSOMES FROM CYCLIC MICE MODULATE LIVER TRANSCRIPTOME IN ESTROUPAUSE MICE INDEPENDENT OF AGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621842. [PMID: 39574609 PMCID: PMC11580851 DOI: 10.1101/2024.11.04.621842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Exosomes are extracellular vesicles secreted by cells that contain microRNAs (miRNAs). These miRNAs can induce changes in gene expression and function of recipient cells. In different cells exosome content can change with age and physiological state affecting tissues function and health. Aims Therefore, the aim of this study was to characterize the miRNA content and role of exosomes from cyclic female mice in the modulation of liver transcriptome in estropausal mice. Main Methods Two-month-old female mice were induced to estropause using 4-vinylcyclohexene diepoxide (VCD). At six months of age VCD-treated mice were divided in control group (VCD) and exosome treated group (VCD+EXO), which received 10 injections at 3-day intervals of exosomes extracted from serum of cyclic female mice (CTL). Key findings Exosome injection in estropausal mice had no effect on body mass, insulin sensitivity or organ weight. We observed ten miRNAs differentially regulated in serum exosomes of VCD compared to CTL mice. In the liver we observed 931 genes differentially expressed in VCD+EXO compared to VCD mice. Interestingly, eight pathways were up-regulated in liver by VCD treatment and down-regulated by exosome treatment, indicating that exosomes from cyclic mice can reverse changes promoted by estropause in liver. Cyp4a12a expression which is male-specific was increased in VCD females and not reversed by exosome treatment. Significance Our findings indicate that miRNAs content in exosomes is regulated by estropause in mice independent of age. Additionally, treatment of estropausal mice with exosomes from cyclic mice can partially reverse changes in liver transcriptome.
Collapse
Affiliation(s)
- Bianka M. Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Bianca M. Ávila
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Jéssica D. Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Driele N. Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Pâmela I. C. Alves
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas -RS, Brasil
| | - Thais L. Oliveira
- Centro de Biotecnologia, Universidade Federal de Pelotas – RS, Brasil
| | - Tiago V. Collares
- Centro de Biotecnologia, Universidade Federal de Pelotas – RS, Brasil
| | - Miguel A. Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey B. Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M. Masternak
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| |
Collapse
|
5
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
6
|
Palomino TV, Muddiman DC. Mass spectrometry imaging of N-linked glycans: Fundamentals and recent advances. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21895. [PMID: 38934211 PMCID: PMC11671621 DOI: 10.1002/mas.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
With implications in several medical conditions, N-linked glycosylation is one of the most important posttranslation modifications present in all living organisms. Due to their nontemplate synthesis, glycan structures are extraordinarily complex and require multiple analytical techniques for complete structural elucidation. Mass spectrometry is the most common way to investigate N-linked glycans; however, with techniques such as liquid-chromatography mass spectrometry, there is complete loss of spatial information. Mass spectrometry imaging is a transformative analytical technique that can visualize the spatial distribution of ions within a biological sample and has been shown to be a powerful tool to investigate N-linked glycosylation. This review covers the fundamentals of mass spectrometry imaging and N-linked glycosylation and highlights important findings of recent key studies aimed at expanding and improving the glycomics imaging field.
Collapse
Affiliation(s)
- Tana V. Palomino
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
9
|
Liu X, Fu B, Chen J, Sun Z, Zheng D, Li Z, Gu B, Zhang Y, Lu H. High-throughput intact Glycopeptide quantification strategy with targeted-MS (HTiGQs-target) reveals site-specific IgG N-glycopeptides as biomarkers for hepatic disorder diagnosis and staging. Carbohydr Polym 2024; 325:121499. [PMID: 38008487 DOI: 10.1016/j.carbpol.2023.121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/28/2023]
Abstract
Liver disease is one of the leading causes of global mortality, and identifying biomarkers for diagnosing the progression of liver diseases is crucial for improving its outcomes. Targeted mass spectrometry technology is a powerful tool with unique advantages for verifying biomarker candidates and clinical applications. It is particularly useful in validating protein biomarkers with post-translational modifications, eliminating the need for site-specific antibodies. Especially, targeted mass spectrometry technique is particularly critical for translation of glycoproteins into clinical applications as there are no site-specific antibodies for N-glycosylation. Nevertheless, its limitation in analyzing only one sample per run has become apparent when dealing with a large number of clinical samples. Herein, we developed a high-throughput intact N-glycopeptides quantification strategy with targeted-MS (HTiGQs-Target), which allows the validation of 20 samples per run with an average analysis time of only 3 min per sample. We applied HTiGQs-Target in a cohort of 461 serum samples (including 120 healthy controls (HC), 127 chronic hepatitis B (CHB) cases, 106 liver cirrhosis (LC) cases, and 108 hepatocellular carcinomas (HCC) cases) and found that a panel of 10 IgG N-glycopeptides have strong clinical utility in evaluating the severity of the liver disease.
Collapse
Affiliation(s)
- Xuejiao Liu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Jierong Chen
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Zhenyu Sun
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhonghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bing Gu
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China.
| | - Ying Zhang
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Djambazova KV, van Ardenne JM, Spraggins JM. Advances in Imaging Mass Spectrometry for Biomedical and Clinical Research. Trends Analyt Chem 2023; 169:117344. [PMID: 38045023 PMCID: PMC10688507 DOI: 10.1016/j.trac.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.
Collapse
Affiliation(s)
- Katerina V. Djambazova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacqueline M. van Ardenne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Ochoa-Rios S, Blaschke CR, Wang M, Peterson KD, DelaCourt A, Grauzam SE, Lewin D, Angel P, Roberts LR, Drake R, Mehta AS. Analysis of N-linked Glycan Alterations in Tissue and Serum Reveals Promising Biomarkers for Intrahepatic Cholangiocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:383-394. [PMID: 36890858 PMCID: PMC9987250 DOI: 10.1158/2767-9764.crc-22-0422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
There is an urgent need for the identification of reliable prognostic biomarkers for patients with intrahepatic cholangiocarcinoma (iCCA) and alterations in N-glycosylation have demonstrated an immense potential to be used as diagnostic strategies for many cancers, including hepatocellular carcinoma (HCC). N-glycosylation is one of the most common post-translational modifications known to be altered based on the status of the cell. N-glycan structures on glycoproteins can be modified based on the addition or removal of specific N-glycan residues, some of which have been linked to liver diseases. However, little is known concerning the N-glycan alterations that are associated with iCCA. We characterized the N-glycan modifications quantitatively and qualitatively in three cohorts, consisting of two tissue cohorts: a discovery cohort (n = 104 cases) and a validation cohort (n = 75), and one independent serum cohort consisting of patients with iCCA, HCC, or benign chronic liver disease (n = 67). N-glycan analysis in situ was correlated to tumor regions annotated on histopathology and revealed that bisected fucosylated N-glycan structures were specific to iCCA tumor regions. These same N-glycan modifications were significantly upregulated in iCCA tissue and serum relative to HCC and bile duct disease, including primary sclerosing cholangitis (PSC) (P < 0.0001). N-glycan modifications identified in iCCA tissue and serum were used to generate an algorithm that could be used as a biomarker of iCCA. We demonstrate that this biomarker algorithm quadrupled the sensitivity (at 90% specificity) of iCCA detection as compared with carbohydrate antigen 19-9, the current "gold standard" biomarker of CCA. Significance This work elucidates the N-glycan alterations that occur directly in iCCA tissue and utilizes this information to discover serum biomarkers that can be used for the noninvasive detection of iCCA.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Calvin R.K. Blaschke
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Kendell D. Peterson
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew DelaCourt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Richard Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|