1
|
Aller EJ, Nair HB, Vadlamudi RK, Viswanadhapalli S. Significance of Midkine Signaling in Women's Cancers: Novel Biomarker and Therapeutic Target. Int J Mol Sci 2025; 26:4809. [PMID: 40429950 PMCID: PMC12112249 DOI: 10.3390/ijms26104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Midkine (MDK) is a multifunctional protein that is secreted into the extracellular space. It functions as a cytokine or growth factor, modulating a variety of signaling pathways implicated in angiogenesis, antitumor immunity, metastasis, and therapy resistance. MDK overexpression has been documented in a variety of cancers, including those that affect women. MDK mediates its effects through activation of key signaling pathways such as MAPK/ERK, PI3K/AKT, and STAT3, which are pivotal for cell cycle progression, survival, and maintenance of stemness. Obesity and estrogen signaling, a known critical driver of women's cancer, further elevate the levels of MDK. MDK's effects are mediated by a variety of membrane receptors, such as integrins, protein tyrosine phosphatase ζ (PTPζ), anaplastic lymphoma kinase (ALK), and neurogenic locus notch homolog protein 2 (Notch2). Recently published studies have indicated that MDK is a potential therapeutic target and a biomarker for the progression of women's cancer. In this review, we have provided a concise summary of the most recent papers that have examined the potential biomarker and therapeutic utility of MDK signaling in women's cancer.
Collapse
Affiliation(s)
- Emily J. Aller
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
| | - Hareesh B. Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (E.J.A.); (H.B.N.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Zhang Y, Wan P, Wang L, Ren R. Construction of a novel CD8T cell-related index for predicting clinical outcomes and immune landscape in ovarian cancer by combined single-cell and RNA-sequencing analysis. Discov Oncol 2025; 16:738. [PMID: 40354001 PMCID: PMC12069775 DOI: 10.1007/s12672-025-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND CD8T cells, also known as cytotoxic T lymphocytes, play a key role in the tumor immune microenvironment (TME) and immune response. The aim of this study was to explore the potential role of CD8T cell-associated biomarkers in predicting prognosis and immunotherapy efficacy in ovarian cancer. METHODS The single-cell sequencing data from the EMTAB8107 cohort were used to identify CD8 T-cell subtypes. The TCGA-OV cohort was involved in constructing a machine learning-based CD8T cell-associated index (CCAI). Additionally, independent ovarian cancer cohorts GSE26712 and GSE26193 were used to validate the predictive validity of CCAI. Multifactorial Cox regression and ROC analysis were applied to assess CCAI. The STRING database was used to clarify the interactions of CD8 T-cell-associated molecules. Furthermore, immune landscape analysis was performed using CIBERSORT, ssGSEA, TIMER, and ESTIMATE algorithms. Tumor mutation burden (TMB) analysis and drug sensitivity analysis were used to evaluate the potential predictive value of CCAI. RESULTS The CCAI, comprising LRP1, PLAUR, OGN, TAP1, ISG20, CXCR4, IL2RG, LCK, and CD3G, serves as a reliable prognostic marker for ovarian cancer patients, demonstrating robust predictive accuracy across various patient cohorts. Notably, individuals with low CCAI tend to exhibit immunoinflammatory tumor characteristics. CONCLUSIONS The developed CCAI serves as a promising prognostic biomarker for ovarian cancer, accurately predicting patient outcomes. Additionally, it differentiates between patients with distinct immune landscape profiles. This insight enables personalized treatment strategies and facilitates the exploration of underlying mechanisms involving CCAI-related molecules.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| | - Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ruiping Ren
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Madhu I, Kannan A. Exosomal 4EBP1 promotes head and neck cancer progression via regulating mitochondrial fission. Biochem Biophys Res Commun 2025; 761:151735. [PMID: 40188596 DOI: 10.1016/j.bbrc.2025.151735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer around the globe with raised incidence and mortality. Despite the advancement in diagnostic and therapeutic approaches the burden of HNC has not reduced. Therefore, investigation on key molecular mechanisms that contributes to the progression of HNC is required to identify promising therapeutic targets. Exosomes are nanosized vesicles and recently emerged as a carrier of tumorigenic proteins essential for cancer progression. However, the role of exosomal proteins in HNC progression remains largely unclear. Eukaryotic Initiation Factor 4E-Binding protein 1 (4EBP1) regulates the protein synthesis and plays a crucial role in the progression of different forms of cancer. Our current study revealed that 4EBP1 is carried in human serum exosomes and upregulated in HNC serum exosomes than healthy controls (HC) and we observed that coculturing the 4EBP1 upregulated HNC serum exosomes (HNC Exo) promoted the growth and migration of HEp-2 cells. Further, we examined the underlying mechanism by knockdown of 4EBP1 in HEp-2 cells (4EBP1 KD). Our results showed that knockdown of 4EBP1 have suppressed the migration and progression of cancer cells. Mechanistically, knockdown of 4EBP1 downregulated mitochondrial fission modulators DRP1 and FIS1 and attenuated the migration of HNC cancer cells by suppressing TGFβ and upregulating PTEN. Together our findings suggest that 4EBP1 is upregulated in circulating exosomes and promotes HNC progression via modulating mitochondrial fission and could be a potential therapeutic target for HNC.
Collapse
Affiliation(s)
- Iyyannar Madhu
- Cancer and Exosome Biology Laboratory, Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anbarasu Kannan
- Cancer and Exosome Biology Laboratory, Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Wen Z, Zhang W, Wu W. The latest applications of exosome-mediated drug delivery in anticancer therapies. Colloids Surf B Biointerfaces 2025; 249:114500. [PMID: 39799609 DOI: 10.1016/j.colsurfb.2025.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
In recent years, the significant role of anticancer drugs in cancer treatment has garnered considerable attention. However, the application of these drugs is largely limited by their short half-life in blood circulation, low cellular uptake efficiency, and off-target effects. Exosomes, which serve as crucial messengers in intercellular communication, exhibit unique advantages in molecular delivery compared to traditional synthetic carriers, thereby offering new possibilities for modern drug delivery systems. Exosomes possess organotropic functions and are naturally produced by cells, making them promising candidates for natural drug delivery systems with organotropic properties and minimal side effects. These naturally derived carriers can achieve stable, efficient, and selective delivery of anticancer drugs, thereby enhancing the efficacy and potential of anticancer agents in cancer immunotherapy. This review provides a concise overview of the unique characteristics of exosomes related to anticancer drug delivery, strategies for utilizing exosomes as carriers in cancer therapy, and the latest advancements in the field.
Collapse
Affiliation(s)
- Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Chowdhury S, Ferri-Borgogno S, Yang P, Wang W, Peng J, C Mok S, Wang P. Learning directed acyclic graphs for ligands and receptors based on spatially resolved transcriptomic data of ovarian cancer. Brief Bioinform 2025; 26:bbaf085. [PMID: 40062614 PMCID: PMC11891659 DOI: 10.1093/bib/bbaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.
Collapse
Affiliation(s)
- Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1399 Park Ave, New York, NY 10029, United States
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1155 Pressler St., Houston, TX 77030, United States
| | - Peng Yang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, TX, United States
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, TX, United States
| | - Jie Peng
- Department of Statistics, University of California Davis, 399 Crocker Ln, Davis, CA 95616, United States
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1155 Pressler St., Houston, TX 77030, United States
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1399 Park Ave, New York, NY 10029, United States
| |
Collapse
|
6
|
Pei J, Qiu H, Wang W, Wang Y, Wang M, Wang D, Li J, Qin Y. The Contribution and Perspectives of Proteomics to Epithelial Ovarian Cancer. Proteomics Clin Appl 2025; 19:e202300220. [PMID: 39865556 DOI: 10.1002/prca.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy which mainly consists of serous, mucinous, clear cell, and endometrioid subtypes. Due to the lack of classic symptoms at an early stage, EOC usually presented as advanced tumors with local and/or distant metastasis. Although a large portion of EOC was initially platinum-sensitive, most patients would acquire resistance to common chemotherapeutic agents. These aforementioned issues lead to a challenge for clinical treatments and unsatisfying outcomes. Previous studies have demonstrated the genetic features of EOC are hard to target and the alterations at DNA and RNA levels are not fully represented at the protein expression profiles which made it more complex. In recent years, a panel of studies attempted to explore the key proteins involved in the development and progression of EOC using high-throughput proteomic technologies. We herein summarized them to provide a full view of this topic.
Collapse
Affiliation(s)
- Jiayu Pei
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haifeng Qiu
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenjia Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yulu Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dian Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanru Qin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Guo X, Yang F, Liu T, Chen A, Liu D, Pu J, Jia C, Wu Y, Yuan J, Ouyang N, Herz J, Ding Y. Loss of LRP1 Promotes Hepatocellular Carcinoma Progression via UFL1-Mediated Activation of NF-κB Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401672. [PMID: 39405202 PMCID: PMC11615765 DOI: 10.1002/advs.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/11/2024] [Indexed: 12/06/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is thought to be correlated with hepatocellular carcinoma (HCC) invasion and metastasis. However, the precise mechanism through which LRP1 contributes to HCC progression remains unclear. Here, lower LRP1 levels are associated with malignant progression, and poor prognosis in patients with HCC is shown. LRP1 knockdown enhances the tumorigenicity of HCC cells in vitro and in vivo, whereas overexpression of either LRP1 or its β-chain has the opposite effect. Mechanistically, LRP1 knockdown promotes the binding of ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) to OGA and accelerates ubiquitin-mediated OGA degradation, leading to increased O-GlcNAcylation of nuclear factor-kappa B (NF-κB) and subsequent inhibition of pro-apoptotic gene expression. Conversely, exogenously expressed truncated β-chain (β∆) stabilizes OGA by disrupting the association between UFL1 and OGA, consequently abolishing the anti-apoptotic effects of O-GlcNAcylated NF-κB. The findings identify LRP1, particularly its β-chain, as a novel upstream control factor that facilitates the stabilization of the OGA protein, thereby suppressing NF-κB signaling and attenuating HCC progression, thus suggesting a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Amei Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing400030China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Yuanhong Wu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Junfeng Yuan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Nan Ouyang
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Joachim Herz
- Department of Molecular GeneticsDepartment of NeuroscienceDepartment of Neurology & NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| |
Collapse
|
9
|
Dai W, Zhou J, Chen T. Unraveling the extracellular vesicle network: insights into ovarian cancer metastasis and chemoresistance. Mol Cancer 2024; 23:201. [PMID: 39285475 PMCID: PMC11404010 DOI: 10.1186/s12943-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal gynecological malignancies, with high mortality primarily due to its aggressive nature, frequent metastasis, and resistance to standard therapies. Recent research has highlighted the critical role of extracellular vesicles (EVs) in these processes. EVs, secreted by living organisms and carrying versatile and bioactive cargoes, play a vital role in intercellular communication. Functionally, the transfer of cargoes orchestrates multiple processes that actively affect not only the primary tumor but also local and distant pre-metastatic niche. Furthermore, their unique biological properties position EVs as novel therapeutic targets and promising drug delivery systems, with potential profound implications for cancer patients.This review summarizes recent progress in EV biology, delving into the intricate mechanisms by which EVs contribute to OC metastasis and drug resistance. It also explores the latest advances and therapeutic potential of EVs in the clinical context of OC. Despite the progress made, EV research in OC remains in its nascent stages. Consequently, this review presents existing research limitations and suggests avenues for future investigation. Altogether, the review aims to elucidate the critical roles of EVs in OC and spotlight their promising potential in this field.
Collapse
Affiliation(s)
- Wei Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China.
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
10
|
Zhao J, Shen F, Hu YM, Yin K, Chen Y, Chen YJ, Hu QC, Liang L. Prognostic value and microenvironmental crosstalk of exosome-related signatures in human epidermal growth factor receptor 2 positive breast cancer. Open Life Sci 2024; 19:20220899. [PMID: 39071494 PMCID: PMC11282918 DOI: 10.1515/biol-2022-0899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
This study aimed to determine the prognostic value and microenvironmental crosstalk of exosome-related signatures in human epidermal growth factor receptor 2 positive breast cancer (HER2+ BC). Transcriptome sequencing and clinicopathological data were downloaded from the Cancer Genome Atlas. The 10X single cell sequencing dataset was downloaded from the National Center for Biotechnology Information Gene Expression Omnibus. Exosomes-Related Genes were extracted from the ExoCarta and Gene Set Enrichment Analysis databases. FGF9, SF3B4, and EPCAM were found and deemed the most accurate predictive signatures. Patients with HER2+ BC were subtyped into three groupings by exosome prognostic gene (EPGs). The expression of SF3B4 was positively linked with the infiltration of macrophages, neutrophils, and CD4+ T cells. The expression characteristics of EPGs were associated with the biological process of "response to xenobiotic stimuli." Interactions were relatively high between malignant epithelial cells and fibroblasts, endothelial cells, monocytes, and macrophages. Malignant epithelial cells interact more with fibroblasts and endothelial cells. The migration inhibitory factor pathway was the primary outgoing signaling pattern, while the C-C motif chemokine ligand pathway was the primary incoming signaling pattern for communication between malignant epithelial cells and macrophages. This study described the role of exosome signatures in the prognosis and microenvironment of HER2+ BC and provided a basis for future research.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Breast Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People’s Republic of China
| | - Yue-Mei Hu
- Department of Pathology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Kai Yin
- Department of Breast Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Ying Chen
- Department of Radiation Oncology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai, 200336, People’s Republic of China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital (Xiamen), Fudan University, No. 668, Jinhu Road, Huli District, Xiamen, 361015, People’s Republic of China
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Xuhui District, Shanghai200032, People’s Republic of China
| | - Qun-Chao Hu
- Department of Radiation Oncology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai, 200336, People’s Republic of China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
11
|
Wolde T, Bhardwaj V, Reyad-ul-Ferdous M, Qin P, Pandey V. The Integrated Bioinformatic Approach Reveals the Prognostic Significance of LRP1 Expression in Ovarian Cancer. Int J Mol Sci 2024; 25:7996. [PMID: 39063239 PMCID: PMC11276689 DOI: 10.3390/ijms25147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated bioinformatics approach to determine which immune-related genes (IRGs) modulate the TME and further assess their potential theragnostic (therapeutic + diagnostic) significance in OC progression. Using a robust approach, we developed a predictive risk model to retrospectively examine the clinicopathological parameters of OC patients from The Cancer Genome Atlas (TCGA) database. The validity of the prognostic model was confirmed with data from the International Cancer Genome Consortium (ICGC) cohort. Our approach identified nine IRGs, AKT2, FGF7, FOS, IL27RA, LRP1, OBP2A, PAEP, PDGFRA, and PI3, that form a prognostic model in OC progression, distinguishing patients with significantly better clinical outcomes in the low-risk group. We validated this model as an independent prognostic indicator and demonstrated enhanced prognostic significance when used alongside clinical nomograms for accurate prediction. Elevated LRP1 expression, which indicates poor prognosis in bladder cancer (BLCA), OC, low-grade gliomas (LGG), and glioblastoma (GBM), was also associated with immune infiltration in several other cancers. Significant correlations with immune checkpoint genes (ICGs) highlight the potential importance of LRP1 as a biomarker and therapeutic target. Furthermore, gene set enrichment analysis highlighted LRP1's involvement in metabolism-related pathways, supporting its prognostic and therapeutic relevance also in BLCA, OC, low-grade gliomas (LGG), GBM, kidney cancer, OC, BLCA, kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and stomach and oesophageal carcinoma (STES). Our study has generated a novel signature of nine IRGs within the TME across cancers, that could serve as potential prognostic predictors and provide a valuable resource to improve the prognosis of OC.
Collapse
Affiliation(s)
- Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Md. Reyad-ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
12
|
Meng Q, Zheng W, Jiao R, Cui R, Deng Y, Liu R, Wang J, Bai H. MicroRNA 421 induces the formation of high-invasive cell subsets of ovarian cancer from low-invasive cell subsets mediated by exosomes by activating the PI3K/AKT pathway. Am J Cancer Res 2024; 14:2643-2660. [PMID: 38859864 PMCID: PMC11162662 DOI: 10.62347/uhey7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Intratumoral heterogeneity (ITH) results in treatment failure in ovarian cancer (OC). Exosomes are related to the formation of a heterogeneous tumor microenvironment, and microRNAs play a crucial role in the progression of OC. Therefore, we aimed to explore the effect of exosomes and microRNA 421 (miR-421), which is mediated by exosomes, on ITH and the diagnosis of OC. Exosomes derived from A2780 cells with the highest (AHC) or lowest (ALC) invasive/migratory capacity cells (AHE/ALE) were extracted by differential centrifugation. We conducted a series of experiments to verify the role of AHE and miR-421 in promoting the transformation of low-invasive cells to high-invasive cells by regulating the PI3K/AKT pathway, and we also measured the levels of CA125 in serum exosomes. The results of assays showed that the AHE and miR-421, mediated by exosomes, significantly increased the malignancy of ALC cells by activating the PI3K/AKT pathway. The expression of miR-421 was significantly increased in the serum exosomes derived from high-grade serous ovarian cancer (HGSOC) patients. Our findings indicate that MiR-421, mediated by exosomes, could induce the transformation of highly invasive cell subpopulations from subpopulations of OC cells with low invasive potential by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qianlong Meng
- Department of Gynecology, Fuxing Hospital, Capital Medical UniversityBeijing, China
- Department of Diagnostics of Clinical Laboratory, Zhejiang HospitalHangzhou, Zhejiang, China
| | - Wei Zheng
- Department of Gynecology, Fuxing Hospital, Capital Medical UniversityBeijing, China
| | - Ruili Jiao
- Department of Obstetrics and Gynecology, Beijing Chaoyang District Maternal and Child Health HospitalBeijing, China
| | - Ran Cui
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| | - Yunhan Deng
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Ruizhen Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Jing Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijing, China
| | - Huimin Bai
- Department of Gynecology, Fuxing Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
13
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Wang L, Chen X, Song L, Zou H. Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer. Anal Cell Pathol (Amst) 2023; 2023:7365503. [PMID: 37868825 PMCID: PMC10586435 DOI: 10.1155/2023/7365503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Background Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response in cancer. Methods The prognostic cell death signature (CDS) was constructed with an integrative machine learning procedure, including 10 methods, using TCGA, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082 datasets. Several methods and single-cell analysis were used to explore the correlation between CDS and the ecosystem and therapy response of OC patients. Results The prognostic CDS constructed by the combination of StepCox (n = both) + Enet (alpha = 0.2) acted as an independent risk factor for the overall survival (OS) of OC patients and showed stable and powerful performance in predicting the OS rate of OC patients. Compared with tumor grade, clinical stage, and many developed signatures, the CDS had a higher C-index. OC patients with low CDS score had a higher level of CD8+ cytotoxic T, B cell, and M1-like macrophage, representing a related immunoactivated ecosystem. A low CDS score indicated a higher PD1 and CTLA4 immunophenoscore, higher tumor mutation burden score, lower tumor immune dysfunction and exclusion score, and lower tumor escape score in OC, demonstrating a better immunotherapy response. OC patients with high CDS score had a higher gene set score of cancer-related hallmarks, including angiogenesis, epithelial-mesenchymal transition, hypoxia, glycolysis, and notch signaling. Conclusion The current study constructed a novel CDS for OC, which could serve as an indicator for predicting the prognosis, ecosystem, and immunotherapy benefits of OC patients.
Collapse
Affiliation(s)
- Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xi Chen
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Hua Zou
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
15
|
Karimi F, Azadbakht O, Veisi A, Sabaghan M, Owjfard M, Kharazinejad E, Dinarvand N. Liquid biopsy in ovarian cancer: advantages and limitations for prognosis and diagnosis. Med Oncol 2023; 40:265. [PMID: 37561363 DOI: 10.1007/s12032-023-02128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Ovarian cancer (OC) is a highly fatal gynecologic malignancy, often diagnosed at an advanced stage which presents significant challenges for disease management. The clinical application of conventional tissue biopsy methods and serological biomarkers has limitations for the diagnosis and prognosis of OC patients. Liquid biopsy is a novel sampling method that involves analyzing distinctive tumor elements secreted into the peripheral blood. Growing evidence suggests that liquid biopsy methods such as circulating tumor cells, cell-free RNA, circulating tumor DNA, exosomes, and tumor-educated platelets may improve early prognosis and diagnosis of OC, leading to enhanced therapeutic management of the disease. This study reviewed the evidence demonstrating the utility of liquid biopsy components in OC prognosis and diagnosis, and evaluated the current advantages and limitations of these methods. Additionally, the existing obstacles and crucial topics for future studies utilizing liquid biopsy in OC patients were discussed.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Omid Azadbakht
- Department of Radiology Technology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Sabaghan
- Department of Parasitology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|