1
|
Khazzar S, Segato S, Riuzzi G, Serva L, Garbin E, Gerardi G, Tenti S, Mirisola M, Catellani P. Influence of Ageing Time and Method on Beef Quality and Safety. Foods 2023; 12:3250. [PMID: 37685182 PMCID: PMC10486688 DOI: 10.3390/foods12173250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The effectiveness of dry ageing with regard to retaining meat quality is still subject to debate. At 4 d post mortem, samples of boneless strip loins were excised from young Charolais carcasses and then stored for a further 26 d in a cooler, either vacuum-packaged (VP) or dried-aged (DA). Loin samples were also dissected 7 d post mortem as a control treatment (CT). Chemical, instrumental and microbiological data (n = 18) were determined in longissimus dorsi and underwent ANOVA to estimate the differences in the ageing fixed factor split into two orthogonal contrasts: control vs. aged and VP vs. DA. Ageing loss (both surface dehydration and water purge) was greater in DA compared to VP samples, resulting in the lowest moisture content and highest crude protein and fat percentage in DA loins. The ageing method did not affect meat surface colour, except for redness, which had the lowest value in DA samples. Meat tenderness improved a similar amount following both VP and DA ageing treatments. Compared to the control, prolonged ageing raised both the peroxide value and the total microbial count, especially in DA samples, though both remained within the recommended limits. In summation, both ageing methods improved beef meat tenderisation, preserving its shelf life.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Serva
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Padova, Italy; (S.K.); (S.S.); (G.R.); (E.G.); (G.G.); (S.T.); (M.M.); (P.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Canzoneri F, Leoni V, Rosso G, Risso D, Menta R, Poli G. Oxysterols as Reliable Markers of Quality and Safety in Cholesterol Containing Food Ingredients and Products. Front Nutr 2022; 9:853460. [PMID: 35252316 PMCID: PMC8890664 DOI: 10.3389/fnut.2022.853460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is a lipid of high nutritional value that easily undergoes oxidation through enzymatic and non-enzymatic pathways, leading to a wide variety of cholesterol oxidation products (COPs), more commonly named oxysterols. The major oxysterols found in animal products are 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 5α,6α-epoxycholesterol, 5β,6β-epoxycholesterol, cholestan-3β,5α,6β-triol, and 25-hydroxycholesterol. They are all produced by cholesterol autoxidation, thus belonging to the non-enzymatic oxysterol subfamily, even if 7α-hydroxycholesterol and 25-hydroxycholesterol are, in part, generated enzymatically as well. A further oxysterol of the full enzymatic origin has recently been detected for the first time in milk of both human and bovine origin, namely 27-hydroxycholesterol. Nowadays, gas or liquid chromatography combined to mass spectrometry allows to measure all these oxysterols accurately in raw and in industrially processed food. While non-enzymatic oxysterols often exhibited in vitro relevant cytotoxicity, above all 7β-hydroxycholesterol and 7-ketocholesterol, 27-hydroxycholesterol, as well as 25-hydroxycholesterol, shows a broad spectrum in vitro antiviral activity, inhibition of SARS-CoV-2 included, and might contribute to innate immunity. Quantification of oxysterols was afforded over the years, almost always focused on a few family's compounds. More comprehensive COPs measurements, also including oxysterols of enzymatic origin, are, nowadays, available, which better display the many advantages of systematically adopting this family of compounds as markers of quality, safety, and nutritional value in the selection of ingredients in processing and storage. Regarding foodstuff shelf life, COPs monitoring already provided useful hints for more suitable packaging. The identification of a subset of non-enzymatic and enzymatic oxysterols to be routinely assessed in food production and storage is proposed.
Collapse
Affiliation(s)
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, ASST Brianza, School of Medicine and Surgery, Hospital of Desio, University of Milano Bicocca, Milan, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, Alba, Italy
| | | | - Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
4
|
Man KY, Chan CO, Tang HH, Dong NP, Capozzi F, Wong KH, Kwok KWH, Chan HM, Mok DKW. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chem 2020; 338:127847. [PMID: 32947119 DOI: 10.1016/j.foodchem.2020.127847] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Beef is a common staple food in many countries, and there is a growing concern over misinformation of beef products, such as false claims of origin, species and production methods. In this study, we used a mass spectrometry-based metabolomics approach to study the metabolite profiles of beef samples purchased from local retailers in Hong Kong. Using multivariate analysis, beef samples from different a) geographical origins, namely the United States (US), Japan and Australia, and b) feeding regimes could be differentiated. We identified twenty-four metabolites to distinguish beef samples from different countries, ten metabolites to identify Angus beef samples from others and seven metabolites to discriminate Australian beef produced by the organic farming from that produced using other farming modes. Based on results of this study, it is concluded that metabolomics provides an efficient strategy for tracing and authenticating beef products to ensure their quality and to protect consumer rights.
Collapse
Affiliation(s)
- Ka-Yi Man
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hok-Him Tang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Nai-Ping Dong
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena FC, Italy.
| | - Ka-Hing Wong
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kevin Wing Hin Kwok
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hing Man Chan
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa K1N 6N5, Canada.
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Miranda-Díaz AG, García-Sánchez A, Cardona-Muñoz EG. Foods with Potential Prooxidant and Antioxidant Effects Involved in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6281454. [PMID: 32832004 PMCID: PMC7424374 DOI: 10.1155/2020/6281454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays a fundamental role in the pathogenesis of Parkinson's disease (PD). Oxidative stress appears to be responsible for the gradual dysfunction that manifests via numerous cellular pathways throughout PD progression. This review will describe the prooxidant effect of excessive consumption of processed food. Processed meat can affect health due to its high sodium content, advanced lipid oxidation end-products, cholesterol, and free fatty acids. During cooking, lipids can react with proteins to form advanced end-products of lipid oxidation. Excessive consumption of different types of carbohydrates is a risk factor for PD. The antioxidant effects of some foods in the regular diet provide an inconclusive interpretation of the environment's mechanisms with the modulation of oxidation stress-induced PD. Some antioxidant molecules are known whose primary mechanism is the neuroprotective effect. The melatonin mechanism consists of neutralizing reactive oxygen species (ROS) and inducing antioxidant enzyme's expression and activity. N-acetylcysteine protects against the development of PD by restoring levels of brain glutathione. The balanced administration of vitamin B3, ascorbic acid, vitamin D and the intake of caffeine every day seem beneficial for brain health in PD. Excessive chocolate intake could have adverse effects in PD patients. The findings reported to date do not provide clear benefits for a possible efficient therapeutic intervention by consuming the nutrients that are consumed regularly.
Collapse
Affiliation(s)
| | - Andrés García-Sánchez
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Mordenti AL, Brogna N, Merendi F, Formigoni A, Sardi L, Cardenia V, Rodriguez-Estrada MT. Effect of dietary inclusion of different lipid supplements on quality and oxidative susceptibility of beef meat. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1485517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- A. L. Mordenti
- Department of Veterinary Medical Sciences, Università di Bologna (DIMEVET; Via Tolara di sopra 50; 40064, Ozzano Emilia, Bologna), Italy
| | - N. Brogna
- Department of Veterinary Medical Sciences, Università di Bologna (DIMEVET; Via Tolara di sopra 50; 40064, Ozzano Emilia, Bologna), Italy
| | - F. Merendi
- Department of Veterinary Medical Sciences, Università di Bologna (DIMEVET; Via Tolara di sopra 50; 40064, Ozzano Emilia, Bologna), Italy
| | - A. Formigoni
- Department of Veterinary Medical Sciences, Università di Bologna (DIMEVET; Via Tolara di sopra 50; 40064, Ozzano Emilia, Bologna), Italy
| | - L. Sardi
- Department of Veterinary Medical Sciences, Università di Bologna (DIMEVET; Via Tolara di sopra 50; 40064, Ozzano Emilia, Bologna), Italy
| | - V. Cardenia
- Department of Agricultural and Food Sciences, Università di Bologna (DISTAL; Viale G. Fanin 40; 40127, Bologna), Italy
| | - M. T. Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Università di Bologna (DISTAL; Viale G. Fanin 40; 40127, Bologna), Italy
| |
Collapse
|
7
|
Marzocchi S, Pasini F, Baldinelli C, Caboni MF. Value-addition of Beef Meat By-products: Lipid Characterization by Chromatographic Techniques. J Oleo Sci 2018; 67:143-150. [DOI: 10.5650/jos.ess17139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Silvia Marzocchi
- Department of Agricultural and Food Sciences and Technologies, University of Bologna
| | - Federica Pasini
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI AgriFood), University of Bologna
| | | | - Maria Fiorenza Caboni
- Department of Agricultural and Food Sciences and Technologies, University of Bologna
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI AgriFood), University of Bologna
| |
Collapse
|
8
|
Chandra Mohan C, Rakhavan K, Radha Krishnan K, Babuskin S, Sudharsan K, Azhagu Saravana Babu P, Sukumar M. Development of predictive preservative model for shelf life parameters of beef using response surface methodology. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
10
|
Cardenia V, Massimini M, Poerio A, Venturini MC, Rodriguez-Estrada MT, Vecchia P, Lercker G. Effect of dietary supplementation on lipid photooxidation in beef meat, during storage under commercial retail conditions. Meat Sci 2015; 105:126-35. [DOI: 10.1016/j.meatsci.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/01/2022]
|
11
|
Medina ME, Galano A, Trigos Á. Theoretical study on the oxidative damage to cholesterol induced by peroxyl radicals. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manuel E. Medina
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas Xalapa Veracruz 91190 Mexico
| | - Annia Galano
- Departamento de Química, División de Ciencias Básica e Ingeniería; Universidad Autónoma Metropolitana-Iztapalapa; Av. San Rafael Atlixco No. 186, Col. Vicentina México D. F. 09340 Mexico
| | - Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa; Universidad Veracruzana; Calle Médicos 5, Col. Unidad del Bosque Xalapa Veracruz 91010 Mexico
| |
Collapse
|
12
|
Hur SJ, Lee SY, Lee SJ. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion. Food Chem 2015; 166:254-260. [DOI: 10.1016/j.foodchem.2014.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/25/2014] [Accepted: 06/03/2014] [Indexed: 11/28/2022]
|
13
|
Medina-Meza IG, Rodriguez-Estrada MT, Lercker G, Barnaba C, García HS. Kinetics of 25-hydroperoxycholesterol formation during photo-oxidation of crystalline cholesterol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1543-1551. [PMID: 24166010 DOI: 10.1002/jsfa.6455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND 25-Hydroxycholesterol (25-OH), a side-chain product of cholesterol oxidation, has emerged as one of the important issues in food chemistry and biochemistry, because of its involvement in several human pathologies. This oxysterol is derived from both enzymatic and non-enzymatic pathways. However, the latter mechanism has been scarcely studied in either food or model systems. In this work, a kinetic model was developed to evaluate the formation of 25-OH and its precursor 25-hydroperoxycholesterol (25-OOH) during photo-oxidation of cholesterol for 28 days under fluorescent light. 25-OOH was estimated by an indirect method, using thin-layer chromatography coupled with gas chromatography-mass spectrometry. RESULTS Peroxide value (POV) and cholesterol oxidation products (COPs) were determined. POV showed a hyperbolic behavior, typical of a crystalline system in which the availability of cholesterol is the limiting factor. Further reactions of hydroperoxides were followed; in particular, after photo-oxidation, 25-OOH (0.55 mg g(-1) ) and 25-OH (0.08 mg g(-1) ) were found in cholesterol, as well as seven other oxysterols, including 7-hydroxy and 5,6-epoxy derivatives. The application of kinetic models to the data showed good correlation with theoretical values, allowing derivation of the kinetic parameters for each oxidation route. CONCLUSIONS The results of this work confirm that cholesterol in the crystalline state involves different oxidation patterns as compared to cholesterol in solution. Moreover, the numerical fit proved that hydroperoxidation is the rate-limiting step in 25-OH formation.
Collapse
Affiliation(s)
- Ilce Gabriela Medina-Meza
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA
| | | | | | | | | |
Collapse
|
14
|
Alemany L, Barbera R, Alegría A, Laparra JM. Plant sterols from foods in inflammation and risk of cardiovascular disease: a real threat? Food Chem Toxicol 2014; 69:140-9. [PMID: 24747512 DOI: 10.1016/j.fct.2014.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
Abstract
High dietary intakes of cholesterol together with sedentary habits have been identified as major contributors to atherosclerosis. The latter has long been considered a cholesterol storage disease; however, today atherosclerosis is considered a more complex disease in which both innate and adaptive immune-inflammatory mechanisms as well as bacteria play a major role, in addition to interactions between the arterial wall and blood components. This scenario has promoted nutritional recommendations to enrich different type of foods with plant sterols (PS) because of their cholesterol-lowering effects. In addition to cholesterol, PS can also be oxidized during food processing or storage, and the oxidized derivatives, known as phytosterol oxidation products (POPs), can make an important contribution to the negative effects of both cholesterol and cholesterol oxidation oxides (COPs) in relation to inflammatory disease onset and the development of atherosclerosis. Most current research efforts have focused on COPs, and evaluations of the particular role and physiopathological implications of specific POPs have been only inferential. Appreciation of the inflammatory role described for both COPs and POPs derived from foods also provides additional reasons for safety studies after long-term consumption of PS. The balance and relevance for health of all these effects deserves further studies in humans. This review summarizes current knowledge about the presence of sterol oxidation products (SOPs) in foods and their potential role in inflammatory process and cardiovascular disease.
Collapse
Affiliation(s)
- L Alemany
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - R Barbera
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - A Alegría
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - J M Laparra
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
15
|
Rodriguez-Estrada MT, Garcia-Llatas G, Lagarda MJ. 7-Ketocholesterol as marker of cholesterol oxidation in model and food systems: When and how. Biochem Biophys Res Commun 2014; 446:792-7. [DOI: 10.1016/j.bbrc.2014.02.098] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023]
|
16
|
Sample preparation: A critical step in the analysis of cholesterol oxidation products. Food Chem 2014; 145:918-26. [DOI: 10.1016/j.foodchem.2013.08.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/28/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
|
17
|
Medina-Meza IG, Barnaba C. Kinetics of Cholesterol Oxidation in Model Systems and Foods: Current Status. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9069-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Cholesterol photosensitized oxidation in food and biological systems. Biochimie 2013; 95:473-81. [DOI: 10.1016/j.biochi.2012.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
|
19
|
Cholesterol and Lipid Peroxides in Animal Products and Health Implications - A Review. ANNALS OF ANIMAL SCIENCE 2012. [DOI: 10.2478/v10220-012-0003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cholesterol and Lipid Peroxides in Animal Products and Health Implications - A ReviewThe level of oxysterols in animal products depends on the temperature used in food processing, duration of heating, and storage time and conditions. High temperature, oxygen, exposure to light, chemical composition of the product and low level of antioxidants accelerate the formation of cholesterol oxidation products (COPs). Also the high content of polyunsaturated fatty acids in meat and eggs favours the formation of oxysterols. Dairy products are characterized by the lowest content of COPs of all animal products. The most common oxysterols present in products of animal origin are 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol and α, β-epoxycholesterol. Numerous studies have confirmed the adverse effects of COPs on animal and human health. They exhibit mutagenic, carcinogenic, angiogenic and toxic action, damage cell membranes, and inhibit cholesterol biosynthesis. The use of certain antioxidants in animal nutrition limits the formation of COPs during technological processing of meat, eggs and milk, as well as during storage of fresh products. The excessive oxidation of cholesterol can be additionally prevented through the use of appropriate packaging that limits oxygen and light exposure.
Collapse
|
20
|
|
21
|
Boselli E, Cardenia V, Rodriguez-Estrada MT. Cholesterol photosensitized oxidation in muscle foods. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Oxidative stability of pork meat lipids as related to high-oleic sunflower oil and vitamin E diet supplementation and storage conditions. Meat Sci 2011; 88:271-9. [DOI: 10.1016/j.meatsci.2010.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 12/16/2010] [Accepted: 12/26/2010] [Indexed: 11/17/2022]
|
23
|
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: A world to explore. Food Chem Toxicol 2010; 48:3289-303. [PMID: 20870006 DOI: 10.1016/j.fct.2010.09.023] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
Oxysterols (oxidized derivatives of cholesterol and phytosterols) can be generated in the human organism through different oxidation processes, some requiring enzymes. Furthermore, oxysterols are also present in food due to lipid oxidation reactions caused by heating treatments, contact with oxygen, exposure to sunlight, etc., and they could be absorbed from the diet, at different rates depending on their side chain length. In the organism, oxysterols can follow different routes: secreted into the intestinal lumen, esterified and distributed by lipoproteins to different tissues or degraded, mainly in the liver. Cholesterol oxidation products (COPs) have shown cytotoxicity, apoptotic and pro-inflammatory effects and they have also been linked with chronic diseases including atherosclerotic and neurodegenerative processess. In the case of phytosterol oxidation products (POPs), more research is needed on toxic effects. Nevertheless, current knowledge suggests they may also cause cytotoxic and pro-apoptotic effects, although at higher concentrations than COPs. Recently, new beneficial biological activities of oxysterols are being investigated. Whereas COPs are associated with cholesterol homeostasis mediated by different mechanisms, the implication of POPs is not clear yet. Available literature on sources of oxysterols in the organism, metabolism, toxicity and potential beneficial effects of these compounds are reviewed in this paper.
Collapse
Affiliation(s)
- A Otaegui-Arrazola
- Department of Food Science and Nutrition, Physiology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
24
|
Cholesterol photosensitised oxidation of horse meat slices stored under different packaging films. Meat Sci 2010; 85:500-5. [DOI: 10.1016/j.meatsci.2010.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
|
25
|
Ferioli F, Dutta PC, Caboni MF. Cholesterol and lipid oxidation in raw and pan-fried minced beef stored under aerobic packaging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1050-1055. [PMID: 20355146 DOI: 10.1002/jsfa.3918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The type of packaging atmosphere has been reported as a technological factor that consistently affects the quality of lipid fraction in meat. Oxidation of cholesterol and lipids was evaluated before and after pan frying in commercial refrigerated minced beef stored under aerobic atmosphere for 1 and 8 days. RESULTS In raw beef, cholesterol and lipid oxidation developed at a slow rate. Cholesterol oxidation products (COPs) did not significantly vary (approximately 8 microg COPs g(-1) of fat) over 8 days, while in the same period thiobarbituric acid reactive substances (TBARS) less than doubled (from 0.7 to 1.2 malondialdehyde equivalents kg(-1) of muscle). Pan frying did not influence the oxidative degree in the fresh product but consistently catalyzed cholesterol oxidation in stored beef. A significant increase was assessed in beef at the end of storage: from 8.6 to 30.0 microg COPs g(-1) of fat in raw and cooked beef, respectively. CONCLUSION Aerobic packaging did not appear as a pro-oxidant factor in fresh minced beef with a good oxidative quality during a short period of refrigerated storage.
Collapse
Affiliation(s)
- Federico Ferioli
- Campus di Scienze degli Alimenti, Università di Bologna, 47023 Cesena (FC), Italy.
| | | | | |
Collapse
|
26
|
Verardo V, Pasini F, Iafelice G, Messia MC, Marconi E, Caboni MF. Influence of storage conditions on cholesterol oxidation in dried egg pasta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3586-3590. [PMID: 20178394 DOI: 10.1021/jf904143p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The oxidative characteristics of three different egg coproducts, namely, pasteurized eggs obtained from hens bred with organic methods (POE), pasteurized eggs from conventional breeding (PCE) and pasteurized spray-dried eggs (SPCE) obtained from conventional breeding, were analyzed. SPCE samples showed the highest content of peroxide (PV) and cholesterol oxides (COPs). In contrast, pasteurized eggs from organic breeding had the lowest index of oxidation. The three egg coproducts were used to produce dried egg pasta (spaghetti). The spaghetti was stored for 12 months at room temperature using typical pasta packaging (polypropylene foil) both under light, typical of retail conditions, and in the dark. Peroxide values and cholesterol oxidation were monitored at time 0 and then quarterly for 12 months. The oxidative parameters were significantly different in various egg coproducts, but the peroxide values of pasta were in the range of 3.0-3.5 mequiv of O(2)/kg of fat, with no differences in the types of pasta prepared with the various egg coproducts. Samples stored in the dark did not show any significant variations in peroxide values. However, PCE, SPCE and POE spaghetti stored in typical packaging increased the PV by 742.8, 846.7 and 625.7%, respectively. The pasta at time 0 showed COP values of about 50 microg of COPs/g of fat. During storage, COP values increased significantly. PCE, SPCE and POE spaghetti stored in the dark showed a content of total cholesterol oxides that was 2.0, 2.0, and 1.5 times lower than that of samples stored with typical pasta packaging.
Collapse
Affiliation(s)
- Vito Verardo
- Dipartimento di Scienze degli Alimenti (DISA), Universita degli Studi di Bologna, Piazza Goidanich 60, Cesena (FC) Italy.
| | | | | | | | | | | |
Collapse
|