1
|
Liu S, Yang Y, Luo H, Pang W, Martin GB. Fat deposition and partitioning for meat production in cattle and sheep. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:376-386. [PMID: 38812494 PMCID: PMC11134559 DOI: 10.1016/j.aninu.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 05/31/2024]
Abstract
In markets for beef and sheep meat, an appropriate level of intramuscular fat (IMF) is highly desirable for meat-eating quality, but strategies to improve it usually lead to an undesirable excess in carcase fat, presenting a major challenge to livestock producers. To solve this problem, we need to understand the partitioning of fat among the major fat depots: IMF, subcutaneous fat (SCF) and visceral fat (VF). In most genotypes of cattle and sheep, the rate of accretion is lower for IMF than for SCF and VF, so genetic selection for a high level of IMF, or the use of an increased dietary energy supply to promote IMF deposition, will increase overall fatness and feed costs. On the other hand, feeding postnatal calves with excessive concentrates promotes IMF deposition, so a nutritional strategy is feasible. With genetic strategies, several problems arise: 1) positive genetic correlations between IMF, SCF and VF differ among genotypes in both cattle and sheep; 2) genotypes appear to have specific, characteristic rates of accretion of IMF during periods of growth and fattening; 3) most breeds of cattle and sheep naturally produce meat with relatively low levels of IMF, but IMF does vary substantially among individuals and breeds so progress is possible through accurate measurement of IMF. Therefore, an essential prerequisite for selection will be knowledge of the genetic correlations and fat accretion rates for each genotype. Currently, selection for IMF is based on existing technology that directly measures IMF in the progeny or siblings, or estimates IMF in live animals. New technology is needed to permit the simultaneous measurement of SCF and IMF in the field, thus opening up the possibility of accurate selection, particularly for fat partitioning in live animals. Specifically, there would be great value in detecting individuals with an IMF advantage at an early age so the generation interval could be shortened and genetic gain accelerated. Genetic gain would also be greatly aided if we could select for genes that control adipogenesis and lipogenesis and are also differentially expressed in the various depots.
Collapse
Affiliation(s)
- Shimin Liu
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yanyan Yang
- Institute of Animal Husbandry of Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Yuquan, Hohhot 010020, China
| | - Hailing Luo
- College of Animal Science and Technology of China Agricultural University, Haidian, Beijing 100093, China
| | - Wenjie Pang
- Resonance Health, Burswood, WA 6100, Australia
| | - Graeme B. Martin
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Jaborek JR, Fluharty FL, Lee K, Zerby HN, Relling AE. Lipid metabolism mRNA expression and cellularity of intramuscular adipocytes within the Longissimus muscle of Angus- and Wagyu-sired cattle fed for a similar days on feed or body weight endpoint. J Anim Sci 2023; 101:skac371. [PMID: 36753534 PMCID: PMC9907753 DOI: 10.1093/jas/skac371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 02/09/2023] Open
Abstract
This study investigates intramuscular (IM) adipocyte development in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (D) endpoint or similar body weight (B) endpoint by measuring IM adipocyte cell area and lipid metabolism mRNA expression. Angus-sired steers (AN, n = 6) were compared with steers from two different Wagyu sires (WA), selected for either growth (G) or marbling (M), to be compared at a similar days on feed (DOF; 258 ± 26.7 d; WA-GD, n = 5 and WA-MD, n = 5) in Exp. 1 or body weight (BW; 613 ± 18.0 kg; WA-GB, n = 4 and WA-MB, n = 5) in Exp. 2, respectively. In Exp. 1, WA-MD steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GD steers. In Exp. 2, WA-MB steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age (P ≤ 0.01) and BW increased (P ≤ 0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar DOF and BW (P ≤ 0.02; treatment × biopsy interaction). Peroxisome proliferator activated receptor gamma was upregulated (PPARg) at a lesser BW for WA-MB steers (P = 0.09; treatment × biopsy interaction), while WA-MD steers had a greater (P ≤ 0.04) overall mean PPARg mRNA expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated mRNA expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early mRNA expression of fatty acid transporters (fatty acid transport protein 1; P < 0.02; treatment × biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. Cattle with a greater marbling propensity appear to upregulate adipogenesis at a younger chronological and physiological maturity through PPARd, PPARg, and possibly adipogenic regulating compounds, lysophosphatidic acid, and diacylglycerol. These genes and compounds could be used as potential markers for marbling propensity of cattle in the future.
Collapse
Affiliation(s)
- J R Jaborek
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
- Michigan State University Extension - Sanilac County, Sandusky, MI 48471, USA
| | - F L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - A E Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
4
|
Yamada T. Intramuscular adipogenesis in cattle: Effects of body fat distribution and macrophage infiltration. Anim Sci J 2022; 93:e13785. [PMID: 36443236 DOI: 10.1111/asj.13785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
Ectopic fat is defined by the deposition of adipose tissue within non-adipose tissue such as skeletal muscle. Japanese Black cattle (Wagyu) are characterized by the ability to accumulate high amounts of intramuscular adipose tissue. Obese conditions enhance the accumulation of ectopic fat. This review shows the effects of subcutaneous and visceral fat distribution on Wagyu intramuscular adipogenesis. Obese conditions also stimulate the macrophage infiltration into adipose tissues. Adipose tissue macrophages have reported to regulate adipose tissue growth and ectopic fat accumulation in humans and rodents. Wagyu is characterized by the higher capacity for intramuscular adipogenesis than Holsteins. This review discusses the depot-specific effects of macrophage infiltration among subcutaneous, visceral, and intramuscular adipose tissue on intramuscular adipogenesis in Wagyu and Holstein cattle. Recently, metabolome analysis has been used to identify obesity-related biomarkers by comparing the biological samples between lean and obese patients. This review introduces the metabolomic profiles of plasma and intramuscular adipose tissue between Wagyu and Holsteins.
Collapse
Affiliation(s)
- Tomoya Yamada
- National Agriculture and Food Research Organization Oda Shimane Japan
| |
Collapse
|
5
|
Yamada T, Kamiya M, Higuchi M. Metabolomic analysis of plasma and intramuscular adipose tissue between Wagyu and Holstein cattle. J Vet Med Sci 2021; 84:186-192. [PMID: 34897188 PMCID: PMC8920725 DOI: 10.1292/jvms.21-0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this experiment, we studied the effects of breed differences in intramuscular
adipogenic capacity on the metabolomic profiles of plasma and intramuscular adipose tissue
between Wagyu (high intramuscular adipogenic capacity) and Holstein (low intramuscular
adipogenic capacity) using capillary electrophoresis time-of-flight mass spectrometry
(CE-TOFMS). We showed that the intramuscular fat content, intramuscular adipocyte size and
the expression of adipogenic transcription factors (C/EBPβ and C/EBPα) of Wagyu were
significantly higher than those of Holstein. Metabolites detected at significantly higher
levels in Wagyu plasma were related to the tricarboxylic acid cycle, lipid synthesis,
fatty acid metabolism, diabetes, and glucose homeostasis. In contrast, metabolites
detected at significantly higher levels in Holstein plasma were related to choline
metabolism, the ethanolamine pathway, glutathione homeostasis, nucleic acid metabolism,
and amino acid metabolism. Metabolites detected at significantly higher levels in Holstein
intramuscular adipose tissue were related to nucleic acid metabolism, amino acid
metabolism, amino sugar metabolism, beta oxidation, and the ethanolamine pathway. There
were no metabolites significantly higher levels in Wagyu intramuscular adipose tissue.
These results indicate candidate biomarkers of breed differences in intramuscular
adipogenic capacity between Wagyu and Holstein.
Collapse
Affiliation(s)
- Tomoya Yamada
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Mituru Kamiya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Mikito Higuchi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| |
Collapse
|
6
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Toušová R, Ducháček J, Gašparík M, Ptáček M, Kitzler L. Analysis of Growth Intensity and Carcass Characteristics of Wagyu-Aberdeen Angus Crossbred Steers. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866040897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Park SJ, Beak SH, Jung DJS, Kim SY, Jeong IH, Piao MY, Kang HJ, Fassah DM, Na SW, Yoo SP, Baik M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1043-1061. [PMID: 29879830 PMCID: PMC6039335 DOI: 10.5713/ajas.18.0310] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) content in skeletal muscle including the longissimus dorsi muscle (LM), also known as marbling fat, is one of the most important factors determining beef quality in several countries including Korea, Japan, Australia, and the United States. Genetics and breed, management, and nutrition affect IMF deposition. Japanese Black cattle breed has the highest IMF content in the world, and Korean cattle (also called Hanwoo) the second highest. Here, we review results of research on genetic factors (breed and sex differences and heritability) that affect IMF deposition. Cattle management factors are also important for IMF deposition. Castration of bulls increases IMF deposition in most cattle breeds. The effects of several management factors, including weaning age, castration, slaughter weight and age, and environmental conditions on IMF deposition are also reviewed. Nutritional factors, including fat metabolism, digestion and absorption of feed, glucose/starch availability, and vitamin A, D, and C levels are important for IMF deposition. Manipulating IMF deposition through developmental programming via metabolic imprinting is a recently proposed nutritional method to change potential IMF deposition during the fetal and neonatal periods in rodents and domestic animals. Application of fetal nutritional programming to increase IMF deposition of progeny in later life is reviewed. The coordination of several factors affects IMF deposition. Thus, a combination of several strategies may be needed to manipulate IMF deposition, depending on the consumer’s beef preference. In particular, stage-specific feeding programs with concentrate-based diets developed by Japan and Korea are described in this article.
Collapse
Affiliation(s)
- Seung Ju Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seok-Hyeon Beak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da Jin Sol Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - In Hyuk Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Min Yu Piao
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeok Joong Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Dilla Mareistia Fassah
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Weon Na
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seon Pil Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institutes of Green Bio Science Technology, Pyeongchang 25354, Korea
| |
Collapse
|
9
|
Gotoh T, Joo ST. Characteristics and Health Benefit of Highly Marbled Wagyu and Hanwoo Beef. Korean J Food Sci Anim Resour 2016; 36:709-718. [PMID: 28115881 PMCID: PMC5243954 DOI: 10.5851/kosfa.2016.36.6.709] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
This review addresses the characteristics and health benefit of highly marbled Wagyu and Hanwoo beef. Marbling of Wagyu and Hanwoo beef has been increased in Japan and Korea to meet domestic consumer preferences. Wagyu and Hanwoo cattle have high potential of accumulating intramuscular fat (IMF) and producing highly marbled beef. The IMF content varies depending on the feeding of time, finishing diet, and breed type. IMF increases when feeding time is increased. The rate of IMF increase in grain-fed cattle is faster than that in pasture-fed cattle. Fatty acid composition are also different depending on breeds. Highly marbled Wagyu and Hanwoo beef have higher proportions of monounsaturated fatty acid (MUFA) due to higher concentrations of oleic acid. MUFAs have little effect on total cholesterol. They are heart-healthy dietary fat because they can lower low-density lipoprotein (LDL)-cholesterol while increasing high-density lipoprotein (HDL)-cholesterol. Clinical trials have indicated that highly marbled beef does not increase LDL-cholesterol. This review also emphasizes that high oleic acid beef such as Wagyu and Hanwoo beef might be able to reduce risk factors for cardiovascular disease.
Collapse
Affiliation(s)
- Takafumi Gotoh
- Kuju Agricultural Research Center, Faculty of Agriculture, Kyushu University 8780201, Japan
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 ), Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
10
|
Shigematsu M, Yamada T, Wong YY, Kanamori Y, Murakami M, Fujimoto Y, Suzuki M, Kida R, Qiao Y, Tomonaga S, Matsui T, Funaba M. Dietary regulation of Ucp2 and Ucp3 expressions in white adipose tissues of beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2016-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of uncoupling protein (Ucp) 2 but not Ucp3 in subcutaneous fat was significantly higher in cattle fed the concentrate diet than in those fed the roughage diet. Ucp2 expression in mesenteric fat was higher in cattle fed the vitamin A-deficient diet than in those fed the control diet.
Collapse
Affiliation(s)
- Mei Shigematsu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoya Yamada
- National Institute of Livestock and Grassland Science, Nasushiobara 329-2793, Japan
| | - Yun Yi Wong
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Yusuke Fujimoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mika Suzuki
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryosuke Kida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuhang Qiao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Muroya S, Shibata M, Hayashi M, Oe M, Ojima K. Differences in Circulating microRNAs between Grazing and Grain-Fed Wagyu Cattle Are Associated with Altered Expression of Intramuscular microRNA, the Potential Target PTEN, and Lipogenic Genes. PLoS One 2016; 11:e0162496. [PMID: 27611783 PMCID: PMC5017714 DOI: 10.1371/journal.pone.0162496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
We aimed to understand the roles of miRNAs in the muscle tissue maturation and those of circulating microRNAs (c-miRNAs) in beef production of Japanese Black (JB) cattle (Wagyu), a breed with genetically background of superior intermuscular fat depot, by comparing different feeding conditions (indoor grain-feeding vs. grazing on pasture). The cattle at 18 months old were assigned to pasture feeding or conventional indoor grain feeding conditions for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions. Validation of the microarray results by qPCR showed that the circulating miR-10b level in the grazing cattle was upregulated compared to that of the grain-fed cattle. In contrast, the levels of miR-17-5p, miR-19b, miR-29b, miR-30b-5p, miR-98, miR-142-5p, miR-301a, miR-374b, miR-425-5p, and miR-652 were lower in the grazing cattle than in the grain-fed cattle. Bioinformatic analysis indicated that the predicted target genes of those c-miRNAs were enriched in gene ontology terms associated with blood vessel morphogenesis, plasma membrane, focal adhesion, endocytosis, collagen, ECM-receptor interaction, and phosphorylation. In the grazing cattle, the elevation of miR-10b expression in the plasma was coincident with its elevation in the longissimus lumborum (LL) muscle. Expression of bovine-specific miR-2478, the most plasma-enriched miRNA, tended to be also upregulated in the muscle but not in the plasma. Furthermore, grazing caused the downregulated mRNA expression of predicted miR-10b and/or miR-2478 target genes, such as DNAJB2, PTEN, and SCD1. Thus, the feeding system used for JB cattle affected the c-miRNAs that could be indicators of grain feeding. Among these, miR-10b expression was especially associated with feeding-induced changes and with the expression of the potential target genes responsible for glucose homeostasis and intramuscular fat depot in the LL muscle of JB cattle.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Masahiro Shibata
- Livestock Production and Wildlife Management Research Division, NARO Western Region Agricultural Center, Ohda, Shimane, Japan
| | - Masayuki Hayashi
- Animal Physiology and Nutrition Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Mika Oe
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Motoyama M, Sasaki K, Watanabe A. Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Sci 2016; 120:10-18. [PMID: 27298198 DOI: 10.1016/j.meatsci.2016.04.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Michiyo Motoyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Japan; UR370 Qualité des Produits Animaux, Institute Nationale de Recherche Agronomique (INRA), France.
| | - Keisuke Sasaki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Japan
| | - Akira Watanabe
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Japan
| |
Collapse
|
13
|
Mao Y, Hopkins DL, Zhang Y, Li P, Zhu L, Dong P, Liang R, Dai J, Wang X, Luo X. Beef quality with different intramuscular fat content and proteomic analysis using isobaric tag for relative and absolute quantitation of differentially expressed proteins. Meat Sci 2016; 118:96-102. [PMID: 27064846 DOI: 10.1016/j.meatsci.2016.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022]
Abstract
Intramuscular fat (IMF) is an important trait for beef eating quality. The mechanism of how IMF is deposited in beef cattle muscle is not clear at the molecular level. The muscle (M. longissimus lumborum: LL) of a group of Xiangxi yellow×Angus cattle with high fat levels (HF), was compared to the muscle of a low fat group (LF). The meat quality and the expressed protein patterns were compared. It was shown that LL from the HF animals had a greater fat content (P<0.05) and lower moisture content (P<0.05) than LL from LF animals. Forty seven sarcoplasmic proteins were differentially expressed and identified between the two groups. These proteins are involved in 6 molecular functions and 16 biological processes, and affect the Mitogen-activated protein kinases pathway, insulin pathway and c-Jun N-terminal kinases leading to greater IMF deposition. Cattle in the HF group had greater oxidative capacity and lower glycolytic levels suggesting a greater energetic efficiency.
Collapse
Affiliation(s)
- Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, NSW 2794, Australia
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Peng Li
- Department of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Rongrong Liang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Jin Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, PR China.
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, PR China.
| |
Collapse
|
14
|
Expression of genes involved in adipogenesis and lipid metabolism in subcutaneous adipose tissue and longissimus muscle in low-marbled Pirenaica beef cattle. Animal 2016; 10:2018-2026. [DOI: 10.1017/s175173111600118x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Kim DH, Choi KC, Ichinohe T, Song SH. Effects of different roughage sources and feeding levels on adipogenesis of ovine adipocytes. Anim Sci J 2015; 86:943-51. [PMID: 26153850 DOI: 10.1111/asj.12380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to conduct an adipogenic evaluation of different roughage sources and feeding levels during ruminant adipocyte differentiation in vitro. Six wether sheep were divided into a timothy hay feeding group (TFG, n = 3) and an Italian ryegrass straw feeding group (IFG, n = 3). The sheep were fed high-roughage (HR), medium roughage (MR) and low-roughage (LR) diets in a one-way layout design each over a 6-day period. Sheep serum samples collected on the last day of each dietary treatment were added to an adipogenic induction medium for differentiation of preadipocytes derived from sheep subcutaneous adipose tissue. The cytoplasmic lipid accumulations in the TFG serum-treated preadipocytes were significantly higher than those of the IFG-serum treated preadipocytes on day 12. Messenger RNA expression of CCAAT/enhancer-binding protein (C/EBP)-α, C/EBP-β, C/EBP-δ, fatty-acid-binding protein (aP2) and stearoyl-coenzyme A desaturase (SCD) were regulated by each serum treatment. This study shows that different roughage source diets and roughage-to-concentrate ratio diets can regulate adipocyte differentiation via ruminant blood composition.
Collapse
Affiliation(s)
- Da-Hye Kim
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan.,The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Ki-Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Chungnam, Republic of Korea
| | - Toshiyoshi Ichinohe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Sang-Houn Song
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
16
|
Yamada T, Higuchi M, Nakanishi N. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues. Biochem Biophys Res Commun 2015; 463:923-7. [PMID: 26067555 DOI: 10.1016/j.bbrc.2015.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Abstract
Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner.
Collapse
Affiliation(s)
- Tomoya Yamada
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara-shi, Tochigi-ken 329-2793, Japan.
| | - Mikito Higuchi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara-shi, Tochigi-ken 329-2793, Japan
| | - Naoto Nakanishi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara-shi, Tochigi-ken 329-2793, Japan
| |
Collapse
|
17
|
|
18
|
Dodson MV, Du M, Wang S, Bergen WG, Fernyhough-Culver M, Basu U, Poulos SP, Hausman GJ. Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems. Adipocyte 2014; 3:236-41. [PMID: 26317047 PMCID: PMC4550680 DOI: 10.4161/adip.28321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
The race to manage the health concerns related to excess fat deposition has spawned a proliferation of clinical and basic research efforts to understand variables including dietary uptake, metabolism, and lipid deposition by adipocytes. A full appreciation of these variables must also include a depot-specific understanding of content and location in order to elucidate mechanisms governing cellular development and regulation of fat deposition. Because adipose tissue depots contain various cell types, differences in the cellularity among and within adipose depots are presently being documented to ascertain functional differences. This has led to the possibility of there being, within any one adipose depot, cellular distinctions that essentially result in adipose depots within depots. The papers comprising this issue will underscore numerous differences in cellularity (development, histogenesis, growth, metabolic function, regulation) of different adipose depots. Such information is useful in deciphering adipose depot involvement both in normal physiology and in pathology. Obesity, diabetes, metabolic syndrome, carcass composition of meat animals, performance of elite athletes, physiology/pathophysiology of aging, and numerous other diseases might be altered with a greater understanding of adipose depots and the cells that comprise them-including stem cells-during initial development and subsequent periods of normal/abnormal growth into senescence. Once thought to be dormant and innocuous, the adipocyte is emerging as a dynamic and influential cell and research will continue to identify complex physiologic regulation of processes involved in adipose depot physiology.
Collapse
Affiliation(s)
- Michael V Dodson
- Department of Animal Sciences; Washington State University; Pullman, WA USA
| | - Min Du
- Department of Animal Sciences; Washington State University; Pullman, WA USA
| | - Songbo Wang
- Department of Animal Sciences; Washington State University; Pullman, WA USA
- College of Animal Science; South China Agricultural University; Guangzhou, PR China
| | - Werner G Bergen
- Program in Cellular and Molecular Biosciences/Department of Animal Sciences; Auburn University; Auburn, AL USA
| | | | | | | | - Gary J Hausman
- Department of Animal and Dairy Science; University of Georgia; Athens, GA USA
| |
Collapse
|
19
|
Kanamori Y, Yamada T, Asano H, Kida R, Qiao Y, Abd Eldaim MA, Tomonaga S, Matsui T, Funaba M. Effects of vitamin a status on expression of ucp1 and brown/beige adipocyte-related genes in white adipose tissues of beef cattle. J Vet Med Sci 2014; 76:1261-5. [PMID: 24859730 PMCID: PMC4197155 DOI: 10.1292/jvms.14-0137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously reported the presence of brown/beige adipocytes in the white fat
depots of mature cattle. The present study examined the effects of dietary vitamin A on
the expression of brown/beige adipocyte-related genes in the white fat depots of fattening
cattle. No significant differences were observed in the expression of Ucp1 between vitamin
A-deficient cattle and control cattle. However, the expression of the other brown/beige
adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin
A-deficient cattle. The present results suggest that a vitamin A deficiency does not
markedly affect the expression of Ucp1 in white fat depots, but imply that it may
stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening
cattle.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fat depot-specific differences in pref-1 gene expression and adipocyte cellularity between Wagyu and Holstein cattle. Biochem Biophys Res Commun 2014; 445:310-3. [DOI: 10.1016/j.bbrc.2014.01.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
|
21
|
Asano H, Yamada T, Hashimoto O, Umemoto T, Sato R, Ohwatari S, Kanamori Y, Terachi T, Funaba M, Matsui T. Diet-induced changes in Ucp1 expression in bovine adipose tissues. Gen Comp Endocrinol 2013; 184:87-92. [PMID: 23370305 DOI: 10.1016/j.ygcen.2013.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 01/04/2023]
Abstract
Brown adipocytes, which regulate non-shivering thermogenesis, have been believed to exist in a limited number of mammalian species, and only under limited physiological conditions. Recent discoveries indicate that adult humans possess a significant number of functional brown adipocytes. This study explores the regulatory emergence of brown adipocytes in white adipose tissue (WAT) depots of fattening cattle. RT-PCR analyses indicated significant expression of Ucp1, a brown adipocyte-specific gene, in the WAT of 31-month-old Japanese Black steers. Immunohistochemical analysis revealed that Ucp1-positive small adipocytes were dispersed in the subcutaneous WAT. Next, we examined expression level of Ucp1 and other brown adipocyte-selective genes such as Pgc1α, Cidea, Dio2, Cox1, Cox7a1 and Cox8b in WAT of 30-month-old steers fed either diet with low protein/energy content (roughage diet) or that with high protein/energy content (concentrate diet) for 20months. Ucp1 expression in the subcutaneous WAT was significantly higher in the concentrate diet group than in the roughage diet group. Furthermore, the higher Ucp1 expression levels were limited to the subcutaneous WAT, and no differences between groups were detected in the mesenteric, perirenal, intermuscular or intramuscular WAT. Expression of Dio2, Cox1 and Cox8b was higher in the subcutaneous WAT but not in the mesenteric WAT of the concentrate diet group. Furthermore, expression of Prdm16, a positive regulator of differentiation toward brown adipocyte-lineage cells, and expression of leptin, a molecule that enhances activity of brown adipocytes, were significantly higher in the subcutaneous WAT of the concentrate diet group. This study demonstrates the presence of brown adipocytes in WAT depots of fattening cattle, and suggests the diet-related modulation of expression of genes predominantly expressed in brown adipocytes.
Collapse
Affiliation(s)
- Hiroki Asano
- Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamada T, Higuchi M, Nakanishi N. Plasma 8-isoprostane concentrations and adipogenic and adipokine gene expression patterns in subcutaneous and mesenteric adipose tissues of fattening Wagyu cattle. J Vet Med Sci 2013; 75:1021-7. [PMID: 23538606 DOI: 10.1292/jvms.13-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that fattening Wagyu cattle fed conventional low-vitamin fattening diets are exposed to oxidative stress. In this experiment, we studied the plasma concentrations of 8-isoprostane and the fat depot-specific effects of the diet-induced adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) gene expressions in fattening Wagyu steers. Animals were fed a high-vitamin (α-tocopherol and β-carotene) diet (HV) or a control diet (CT) during the fattening period (from 10 to 30 months of age). The plasma concentrations of 8-isoprostane, a marker of oxidative stress, were significantly lower in the HV group than in the CT group. In mesenteric adipose tissue, the expressions of the adipogenic and adipokine genes in the HV group were significantly lower than those in the CT group. In contrast, there were no differences in the expression of the adipogenic and adipokine genes in subcutaneous adipose tissue between groups. These results suggest that higher intake of dietary α-tocopherol and β-carotene affects the expression patterns of adipogenic and adipokine genes in a fat depot-specific manner with the reduction of plasma 8-isoprostane concentrations.
Collapse
Affiliation(s)
- Tomoya Yamada
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | | | | |
Collapse
|
23
|
Albertí P, Gómez I, Mendizabal JA, Ripoll G, Barahona M, Sarriés V, Insausti K, Beriain MJ, Purroy A, Realini C. Effect of whole linseed and rumen-protected conjugated linoleic acid enriched diets on feedlot performance, carcass characteristics, and adipose tissue development in young Holstein bulls. Meat Sci 2013; 94:208-14. [PMID: 23501252 DOI: 10.1016/j.meatsci.2013.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/25/2022]
Abstract
Forty-eight young Holstein bulls (slaughtered at 458.6±9.79 kg body weight) were used to evaluate the effect of whole linseed and conjugated linoleic acid (CLA) supplementation on animal performance, adipose tissue development, and carcass characteristics. The animals were fed with one of four isoenergetic and isoproteic diets: control (0% linseed, 0% CLA), linseed (10% linseed, 0% CLA), CLA (0% linseed, 2% CLA), and linseed plus CLA (10% linseed, 2% CLA). Animal performance and carcass characteristics were unaffected by diet composition. Adding linseed or CLA to the concentrate diet did not result in significant differences in adipocyte size and number or lipogenic enzyme activity. However, while the frequency distribution of subcutaneous adipocyte diameters followed a normal distribution, the frequency distribution of intramuscular adipocyte diameters was not normal in any dietary group (skewness coefficients: 0.8, 1.2, 0.9, 0.8 for control, linseed, CLA, and linseed plus CLA, respectively; P<0.05), indicative of adipocyte proliferation in the intramuscular adipose tissue.
Collapse
Affiliation(s)
- P Albertí
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee JM, Choe JH, Jin HJ, Kim TI, Park BY, Hwang DY, Koh KC, Kim CJ, Hwang KS. Effect of Marbling Score on Carcass Grade Factors, Physico-chemical and Sensory Traits of M. Longissimus Dorsi in Hanwoo. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.5.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|