1
|
Frezarim GB, Mota LFM, Fonseca LFS, Salatta BM, Arikawa LM, Schmidt PI, Silva DBS, Albuquerque LG. Multi-omics integration identifies molecular markers and biological pathways for carcass and meat quality traits in Nellore cattle. Sci Rep 2025; 15:10467. [PMID: 40140445 PMCID: PMC11947269 DOI: 10.1038/s41598-025-93714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding the biological factors that influence carcass and meat quality traits in Nellore cattle requires a clear interpretation of molecular complexity and its variations at different levels of expression. Hence, this study aimed to elucidate the biological control of carcass and meat quality traits in Nellore cattle by integrating genome-wide association study (GWAS), transcriptomic, and proteomic data, focusing on identifying key genes and pathways. GWAS analysis was performed using weighted single-step GBLUP with two iterations. RNA-Seq and proteomic analyses were performed on 24 muscle samples from animals with divergent adjusted phenotypic values (12 for high and 12 for low), for meat tenderness, ribeye area (REA), marbling, and backfat thickness (BFT). The phenotypic values were adjusted for the systematic effects of contemporary groups and age. Differential expression analyses indicated that genes associated with the promotion of growth processes, such as FRZB, IGFBP5 and SEMA6C, exhibited overexpression within the group characterized by higher meat tenderness that inhibits cellular cycles and growth (RTN4 and RB1) were downregulated. Proteins related to heat shock, structural functions, and metabolic regulation also affected the higher meat tenderness group. For marbling, actin-binding proteins, microtubule-forming proteins, and structural proteins were downregulated, while genes involved in fatty acid composition and synthesis were upregulated, with the key genes and transcripts CAND1, ACTN4, FGFR2, and NCOR2 identified. For BFT, neuronal genes, transcripts, and proteins associated with actin cytoskeleton organization and microtubule formation were found. Key genes related to ubiquitination, regulation of energy metabolism, and tissue remodeling were also identified. These findings provide a better understanding of genes, transcripts, proteins, and metabolic pathways involved in carcass and meat quality traits in Nellore cattle.
Collapse
Affiliation(s)
- Gabriela B Frezarim
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| | - Larissa F S Fonseca
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Bruna M Salatta
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Patrícia I Schmidt
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Danielly B S Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- National Council for Science and Technological Development, Brasilia, DF, 71605-001, Brazil.
| |
Collapse
|
2
|
Xiao C, Liu Y, Zhao W, Liang Y, Cui C, Yang S, Fang W, Miao L, Yuan Z, Lin Z, Zhai B, Zhao Z, Zhang L, Ma H, Jin H, Cao Y. The comparison of meat yield, quality, and flavor between small-tailed Han sheep and two crossbred sheep and the verification of related candidate genes. Front Nutr 2024; 11:1399390. [PMID: 39149545 PMCID: PMC11324605 DOI: 10.3389/fnut.2024.1399390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction In Northeast China, Dorper and Australian White rams are commonly crossbred with small-tailed Han (STH) ewes to improve the offspring's meat yield and quality. However, the differences in traits and the flavor between the crossbred sheep and STH sheep remain unclear. In addition, the candidate genes potentially influencing the meat quality in the three sheep breeds require further verification. Methods A total of 18 2-month-old healthy rams were raised over a period of 5 months, which included 6 STH, 6 Dorper and small-tailed Han crossbred (Do × STH), and 6 Australian white and small-tailed Han crossbred (Au × STH) offspring. The differences in slaughter, meat quality traits, fatty acid and amino acid composition in the muscular longissimus dorsi (MLD), and volatile compounds in the semitendinosus muscle were compared between the sheep breeds. The candidate genes related to intramuscular fat (IMF) content and fatty acids were validated. Results The results of this study revealed that the crossbred sheep had higher body weight, carcass weight, bone weight, net meat weight, and IMF content than the STH sheep (p < 0.05). The Do × STH offspring had a higher pH value (24 h), moisture content, and cooking percentage; they also had redder and brighter meat color. The content of myristate, palmitic, and margaric acids in the crossbred sheep was higher than that in the STH sheep (p < 0.05). The Do × STH offspring had the highest saturated fatty acid content (p < 0.05). The Au × STH offspring had the highest protein content (p < 0.05). The arachidonic acid and amino acid (Asp, Ala, Ile, Leu, Lys, Thr, and essential amino acid) contents were higher in the STH sheep than in the crossbred sheep (p < 0.05). The odor activity value (OAV) analysis showed that most of the aldehydes in the Au × STH offspring had higher values. The PDK4 gene expression was positively associated with the IMF content and was negatively correlated with the linoleic acid content in the Do × STH sheep (p < 0.05). The TMEM273 gene expression was positively associated with linoleic and arachidonic acid contents and was negatively correlated with oleic and palmitic acid contents in the Do × STH sheep (p < 0.05). Discussion The results showed the differences between the crossbred sheep and STH sheep and provided the candidate genes related to meat quality in sheep.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Institute of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Yu Liu
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wenjun Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- College of Agriculture, YanBian University, Yanji, China
| | - Yingjia Liang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chao Cui
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shaoying Yang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - WenWen Fang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lisheng Miao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zihan Lin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bo Zhai
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Haiguo Jin
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
3
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
4
|
Ma Z, Yan XM, Geng J, Gao L, Du W, Li HB, Yuan LX, Zhou ZY, Zhang JS, Zhang Y, Chen L. Genome-wide identification and analysis of TMT-based proteomes in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle. Anim Biotechnol 2023; 34:1261-1272. [PMID: 34965845 DOI: 10.1080/10495398.2021.2019756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.
Collapse
Affiliation(s)
- Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Xiang-Min Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Wei Du
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Li-Xing Yuan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Zhen-Yong Zhou
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Jin-Shan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Yang Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Lei Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
5
|
High-pressure processing and modified atmosphere packaging combinations for the improvement of dark, firm, and dry beef quality and shelf-life. Meat Sci 2023; 198:109113. [PMID: 36681061 DOI: 10.1016/j.meatsci.2023.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This study investigated the effects of high-pressure processing (HPP) and modified atmosphere packaging (MAP) on 'dark, firm, and dry' (DFD) beef. To optimize the HPP, beef steaks (n = 180) were first processed at different pressures (0.1, 200, 300, 400, 500 MPa). It was found that 400 MPa enhanced DFD beef color and shelf-life. This optimized HPP (400 MPa) was combined with 3 MAP formulations, in a second study (40, 60, or 80% O2-MAP), to determine their effect on DFD beef steaks. HPP (400 MPa) combined with MAP improved DFD beef L* and a*, color scores, and delayed discoloration (P < 0.01). Total plate counts for DFD beef held under 60% O2-MAP was ≤6 log10 CFU/g, even after 14 d of chilled storage. These same samples had shear force and TBARS values significantly lower than observed for DFD beef held under 80% O2-MAP. HPP (400 MPa) combined with 60% O2-MAP is recommended to improve DFD beef quality and shelf-life.
Collapse
|
6
|
Picard B, Cougoul A, Couvreur S, Bonnet M. Relationships between the abundance of 29 proteins and several meat or carcass quality traits in two bovine muscles revealed by a combination of univariate and multivariate analyses. J Proteomics 2023; 273:104792. [PMID: 36535620 DOI: 10.1016/j.jprot.2022.104792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We aimed to evaluate the relationships between meat or carcass properties and the abundance of 29 proteins quantified in two muscles, Longissimus thoracis and Rectus abdominis, of Rouge des Prés cows. The relative abundance of the proteins was evaluated using a high throughput immunological method: the Reverse Phase Protein array. A combination of univariate and multivariate analyses has shown that small HSPs (CRYAB, HSPB6), fast glycolytic metabolic and structural proteins (MYH1, ENO3, ENO1, TPI1) when assayed both in RA and LT, were related to meat tenderness, marbling, ultimate pH, as well as carcass fat-to-lean ratio or conformation score. In addition to some small HSP, ALDH1A1 and TRIM72 contributed to the molecular signature of muscular and carcass adiposity. MYH1 and HSPA1A were among the top proteins related to carcass traits. We thus shortened the list to 10 putative biomarkers to be considered in future tools to manage both meat and carcass properties. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is the first proteomics study that aims to evaluate putative biomarkers of both meat and carcass qualities that are of economic importance for the beef industry. Second, the relationship between the abundance of proteins and the carcass or meat traits were evaluated by a combination of univariate and multivariate analyses on 48 cows that are representative of the biological variability of the traits. Third, we provide a short list of ten proteins to be tested in a larger population to feed the pipeline of biomarker discovery.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Arnaud Cougoul
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sébastien Couvreur
- École Supérieure d'Agricultures, USC ESA-INRAE 1481 Systèmes d'Elevage, 55 rue Rabelais - BP 30748 - 49007 Angers Cedex 01, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
7
|
YAN Z, LI W, HU R, MA Q, LU Z. Quantitative proteomic comparison of protein differences in different parts of yak meat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Zhongxin YAN
- Northwest A & F University, China; Qinghai University, China; Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, China
| | - Wei LI
- Qinghai University, China
| | | | - Qingmei MA
- Animal Husbandry and Veterinary Medicine Station of Haiyan County, China
| | | |
Collapse
|
8
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
9
|
Wang Y, Wang Z, Hu R, Peng Q, Xue B, Wang L. Comparison of carcass characteristics and meat quality between Simmental crossbred cattle, cattle-yaks and Xuanhan yellow cattle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3927-3932. [PMID: 33345324 DOI: 10.1002/jsfa.11032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The study compared the growth performance, carcass characteristics and meat quality of steers of Xuanhan yellow cattle, Simmental crossbreed cattle (Simmental × Xuanhan yellow cattle) and cattle-yak (Jersey × yak). All steers were feed with the same diet from 6 months until slaughter at 30 months. The longissimus dorsi muscle was used to compare the meat quality traits. RESULTS By comparison, Simmental crossbreed cattle had higher growth performance (P < 0.05) and carcass characteristics (P < 0.05); cattle-yak had higher value of a*, b* of meat color (P < 0.05) and higher protein contents of meat (P < 0.05); Xuanhan yellow cattle had higher water holding capacity (P < 0.05) and lower shear force (P < 0.05). CONCLUSIONS The results show that Simmental crossbred cattle had better meat performance and provided low-fat meat with a beneficial fatty acid composition, but with lower meat quality; cattle-yaks provided greater meat color and higher protein content; Xuanhan yellow cattle provided meat with preferable tenderness. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjie Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Rui Hu
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Quanhui Peng
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bai Xue
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Lizhi Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
10
|
Yan X, Wang J, Li H, Gao L, Geng J, Ma Z, Liu J, Zhang J, Xie P, Chen L. Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle. Anim Biosci 2021; 34:1439-1450. [PMID: 33677919 PMCID: PMC8495333 DOI: 10.5713/ab.20.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
Objective With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.
Collapse
Affiliation(s)
- XiangMin Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jia Wang
- College of Geographic Science, Shanxi Normal University, Linfen 041000, China
| | - Hongbo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, 835000, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi 830057, China
| | - Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Jianming Liu
- Yili Animal Husbandry General Station, Yili 835000, China
| | - Jinshan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi 830057, China
| | - Penggui Xie
- Yili Vocational and Technical College, Yili, 835000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
11
|
|
12
|
Martins R, Machado PC, Pinto LFB, Silva MR, Schenkel FS, Brito LF, Pedrosa VB. Genome-wide association study and pathway analysis for fat deposition traits in nellore cattle raised in pasture-based systems. J Anim Breed Genet 2020; 138:360-378. [PMID: 33232564 DOI: 10.1111/jbg.12525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Genome-wide association study (GWAS) is a powerful tool to identify candidate genes and genomic regions underlying key biological mechanisms associated with economically important traits. In this context, the aim of this study was to identify genomic regions and metabolic pathways associated with backfat thickness (BFT) and rump fat thickness (RFT) in Nellore cattle, raised in pasture-based systems. Ultrasound-based measurements of BFT and RFT (adjusted to 18 months of age) were collected in 11,750 animals, with 39,903 animals in the pedigree file. Additionally, 1,440 animals were genotyped using the GGP-indicus 35K SNP chip, containing 33,623 SNPs after the quality control. The single-step GWAS analyses were performed using the BLUPF90 family programs. Candidate genes were identified through the Ensembl database incorporated in the BioMart tool, while PANTHER and REVIGO were used to identify the key metabolic pathways and gene networks. A total of 18 genomic regions located on 10 different chromosomes and harbouring 23 candidate genes were identified for BFT. For RFT, 22 genomic regions were found on 14 chromosomes, with a total of 29 candidate genes identified. The results of the pathway analyses showed important genes for BFT, including TBL1XR1, AHCYL2, SLC4A7, AADAT, VPS53, IDH2 and ETS1, which are involved in lipid metabolism, synthesis of cellular amino acids, transport of solutes, transport between Golgi Complex membranes, cell differentiation and cellular development. The main genes identified for RFT were GSK3β, LRP1B, EXT1, GRB2, SORCS1 and SLMAP, which are involved in metabolic pathways such as glycogen synthesis, lipid transport and homeostasis, polysaccharide and carbohydrate metabolism. Polymorphisms located in these candidate genes can be incorporated in commercial genotyping platforms to improve the accuracy of imputation and genomic evaluations for carcass fatness. In addition to uncovering biological mechanisms associated with carcass quality, the key gene pathways identified can also be incorporated in biology-driven genomic prediction methods.
Collapse
Affiliation(s)
- Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Pamela C Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcio R Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, Brazil
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
13
|
Gagaoua M, Bonnet M, Picard B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020; 9:foods9091180. [PMID: 32858893 PMCID: PMC7554754 DOI: 10.3390/foods9091180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner-Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: β-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.
Collapse
|
14
|
|
15
|
Zhu C, Zhao G, Cui W, Li S, Yu X, Zhang Q. Utilization of i-TRAQ technology to determine protein modifications in pork soup in response to addition of salt. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Picard B, Gagaoua M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res Int 2020; 127:108739. [DOI: 10.1016/j.foodres.2019.108739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
|
17
|
Ma C, Wang W, Wang Y, Sun Y, Kang L, Zhang Q, Jiang Y. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs. J Proteomics 2019; 213:103630. [PMID: 31881348 DOI: 10.1016/j.jprot.2019.103630] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/11/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
The Laiwu pig is famous for its excessively extremely high level of intramuscular fat content (IMF), however, the exact regulatory mechanism underlying intramuscular fat deposition in skeletal muscle is still unknown. As an economically important trait in pigs, IMF is controlled by multiple genes and biological pathways. In this study, we performed an integrated transcriptome-assisted TMT-labeled quantitative proteomic analysis of the longissimus dorsi (LD) muscle in Laiwu pigs at the fastest IMF deposition stage and identified 5074 unique proteins and 52 differentially abundant proteins (DAPs) (>1.5-fold cutoff, p < .05). These DAPs were hierarchically clustered in the LD muscle over two developmental stages from 120 d to 240 d. A comparison between transcriptomic (mRNA) and proteomic data revealed two differentially expressed genes corresponding to the DAPs. Changes in the levels of the nine proteins were further analyzed using RT-qPCR and parallel reaction monitoring (PRM). The proteins identified in this study could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs. SIGNIFICANCE: The intramuscular fat content (IMF) refers to the amount of fat within muscles and plays an important role in meat quality by affecting meat quality-related traits, such as tenderness, juiciness and flavor. Using the integrated transcriptome-assisted TMT-labeled quantitative proteomic approach to characterize changes in the proteomic profile of the longissimus dorsi muscle, we identified differentially abundant proteins, such as ALDH1B1, OTX2, AnxA6 and Zfp512, that are associated with intramuscular fat deposition and fat biosynthesis in pigs. These proteins could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs.
Collapse
Affiliation(s)
- Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yuding Wang
- Department of Biology Science and Technology, Taishan 271018, PR China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
18
|
Bazile J, Picard B, Chambon C, Valais A, Bonnet M. Pathways and biomarkers of marbling and carcass fat deposition in bovine revealed by a combination of gel-based and gel-free proteomic analyses. Meat Sci 2019; 156:146-155. [DOI: 10.1016/j.meatsci.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
|
19
|
Wei Y, Li X, Zhang D, Liu Y. Comparison of protein differences between high- and low-quality goat and bovine parts based on iTRAQ technology. Food Chem 2019; 289:240-249. [DOI: 10.1016/j.foodchem.2019.03.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
|
20
|
López-Pedrouso M, Franco D, Serrano MP, Maggiolino A, Landete-Castillejos T, De Palo P, Lorenzo JM. A proteomic-based approach for the search of biomarkers in Iberian wild deer (Cervus elaphus) as indicators of meat quality. J Proteomics 2019; 205:103422. [PMID: 31228583 DOI: 10.1016/j.jprot.2019.103422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/04/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
The positive perception of deer meat among consumers is growing. Consequently, further efforts are needed to control its meat quality. Specifically, the aim of this study was to search protein biomarkers in connection with tenderness and intramuscular fat (IMF) content of Iberian wild red deer (Cervus elaphus) meat. Twelve venison samples classified as tender, intermediate and tough meat, as well as with different IMF were studied, using quantitative proteomic by SWATH-MS combined with bioinformatic analyses. The study of muscle proteome showed significant differences among these three groups of meat samples, since five differentially abundant proteins (IVD, LAMB1, MYL3, SDHC and SDHA) and six (FABP4, IVD, LAMB1, MYL3, CRYZ and SERPINB6) were strongly correlated with tenderness and IMF, respectively. The proteomic approach provides protein biomarkers linked to venison meat quality and marked changes in proteins related to oxidoreductase complex in skeletal muscle. SIGNIFICANCE: Meat tenderness and IMF are major concerns in game meat. The proteomic approach demonstrated a strong correlation between proteins and these quality traits, despite the complexity of samples (wild animals hunted at different ages). Our results suggest that several proteins can be biomarkers and provide a molecular insight.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain
| | - Martina P Serrano
- Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, Italy, S.P. per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - Tomás Landete-Castillejos
- Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain; Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La Mancha, Campus Universitario sn, Albacete 02071, Spain
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, Italy, S.P. per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain.
| |
Collapse
|
21
|
Zhou CY, Wang C, Dai C, Bai Y, Yu XB, Li CB, Xu XL, Zhou GH, Cao JX. iTRAQ-based quantitative proteomic characterizes the salting exudates of Jinhua ham during the salting process. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J. Protein Expression Landscape Defines the Differentiation Potential Specificity of Adipogenic and Myogenic Precursors in the Skeletal Muscle. J Proteome Res 2018; 17:3853-3865. [DOI: 10.1021/acs.jproteome.8b00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Qiu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Liqi Wang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
|
24
|
Poleti MD, Regitano LC, Souza GH, Cesar AS, Simas RC, Silva-Vignato B, Oliveira GB, Andrade SC, Cameron LC, Coutinho LL. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J Proteomics 2018; 179:30-41. [DOI: 10.1016/j.jprot.2018.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
|
25
|
Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, Fassah DM, Moon YS. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci 2017; 95:2284-2303. [PMID: 28727015 DOI: 10.2527/jas.2016.1160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The intramuscular fat (IMF) content of the LM, also known as marbling, is particularly important in determining the price of beef in Korea, Japan, and the United States. Deposition of IMF is influenced by both genetic (e.g., breed, gender, and genotype) and nongenetic factors (e.g., castration, nutrition, stressors, animal weight, and age). Castration of bulls markedly increases deposition of IMF, resulting in improved beef quality. Here, we present a comparative gene expression approach between bulls and steers. Transcriptomic and proteomic studies have demonstrated that the combined effects of increases in lipogenesis, fatty acid uptake, and fatty acid esterification and decreased lipolysis are associated with increased IMF deposition in the LM. Several peripheral tissues (LM, adipose tissues, and the liver) are involved in lipid metabolism. Therefore, understanding the significance of the tissue network in lipid metabolism is important. Here, we demonstrate that lipid metabolism in LM tissues is crucial for IMF deposition, whereas lipid metabolism in the liver plays only a minor role. Metabolism of body fat and IMF deposition in bovine species has similarities with these processes in metabolic diseases, such as obesity in humans and rodents. Extensive studies on metabolic diseases using epigenome modification (DNA methylation, histone modification, and microRNA), microbial metagenomics, and metabolomics have been performed in humans and rodents, and new findings have been reported using these technologies. The importance of applying "omics" fields (epigenomics, metagenomics, and metabolomics) to the study of IMF deposition in cattle is described. New information on the molecular mechanisms of IMF deposition may be used to design nutritional or genetic methods to manipulate IMF deposition and to modify fatty acid composition in beef cattle. Applying nutrigenomics could maximize the expression of genetic potential of economically important traits (e.g., marbling) in animals.
Collapse
|
26
|
Thornton KJ, Chapalamadugu KC, Eldredge EM, Murdoch GK. Analysis of Longissimus thoracis Protein Expression Associated with Variation in Carcass Quality Grade and Marbling of Beef Cattle Raised in the Pacific Northwestern United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1434-1442. [PMID: 28117999 DOI: 10.1021/acs.jafc.6b02795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Longissimus thoracis (LD) samples from 500 cattle were screened for protein expression differences relative to carcass quality grade. The LD of the top 5% (low prime and high choice, HQ) and bottom 5% (low select, LQ) carcasses were analyzed using two-dimensional difference gel electrophoresis and Western blot. Following initial screening, 11 candidate proteins were selected for Western blot analyses. Differentially expressed proteins were clustered into four groups: (1) heat shock proteins and oxidative protection, (2) sarcomeric proteins (muscle maturity and fiber type), (3) metabolism and energetics, and (4) miscellaneous proteins. Proteins from groups 1 and 2 were greater in HQ carcasses. Alternatively, increased quantities of proteins from group 3 were observed in LQ carcasses. Proteomic differences provide insights into pathways contributing to carcass quality grade. A deeper understanding of the physiological pathways involved in carcass quality grade development may allow producers to employ production practices that improve quality grade.
Collapse
Affiliation(s)
- Kara J Thornton
- Department of Animal and Veterinary Sciences. University of Idaho , 606 Rayburn Street Moscow, Idaho 83844-2330, United States
| | - Kalyan C Chapalamadugu
- Department of Animal and Veterinary Sciences. University of Idaho , 606 Rayburn Street Moscow, Idaho 83844-2330, United States
| | - Eric M Eldredge
- Department of Animal and Veterinary Sciences. University of Idaho , 606 Rayburn Street Moscow, Idaho 83844-2330, United States
| | - Gordon K Murdoch
- Department of Animal and Veterinary Sciences. University of Idaho , 606 Rayburn Street Moscow, Idaho 83844-2330, United States
| |
Collapse
|