1
|
Liu Q, Yu X, Jia F, Wen R, Sun C, Yu Q. Comprehensive analyses of meat quality and metabolome alterations with aging under different aging methods in beef. Food Chem 2025; 472:142936. [PMID: 39827567 DOI: 10.1016/j.foodchem.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The impacts of various aging techniques on meat quality and metabolism alterations over time were investigated. Meat tenderness improved with aging, whereas prolonged aging negatively impacted color and oxidative stability. Dry-aging (DA) group exhibited significantly higher (P < 0.05) weight loss, lipid oxidation, and carbonyl contents, along with significantly lower (P < 0.05) centrifugal loss, cooking loss, a* value, and sulfhydryl content compared to wet-aging (WA) group. Substantial amounts of small peptides, amino acids, and amino acid derivatives were detected in the 28 d aged samples. Higher abundances of benzenoids, lipids and lipid-like molecules, amino acids and their derivatives, and alkyl phosphates were found in the WA group, while dialkyl ethers, fatty acids, fatty acid metabolites, and hydroxy acids showed higher intensities in the DA and dry-aging in bag groups. These findings provide comprehensive metabolome information and their underlying relation with meat quality changes during aging under different aging methods.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Xiaojie Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China.
| | - Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China.
| |
Collapse
|
2
|
Jeong SKC, Jo K, Lee S, Jeon H, Choi YS, Jung S. Classification of frozen-thawed pork loins based on the freezing conditions and thawing losses using the hyperspectral imaging system. Meat Sci 2025; 221:109716. [PMID: 39608344 DOI: 10.1016/j.meatsci.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/13/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
This study investigated the suitability of a hyperspectral imaging (HSI) system for the classification of frozen-thawed pork loins according to their quality properties. The pork loin slices were frozen at -20, -50, and -70 °C for 1, 2, and 3 months (the 9 freezing conditions). After thawing pork loins at 2 °C, the hyperspectral image was obtained. The photomicrographs of the loins showed that the extracellular spaces were the biggest in the loins frozen at -20 °C for 3 months. The denaturation of myofibrillar proteins measured by the intrinsic tryptophan intensity and surface hydrophobicity was higher in the loins frozen at -20 °C than that of loins frozen at -50 and -70 °C for 2 and 3 months (P < 0.05). The highest and lowest thawing loss was observed in loins frozen at -20 °C for 3 months (9.1 %) and at -70 °C for 1 month (3.6 %), respectively. The classification by the HSI system for 10-class (the 9 freezing conditions and the 1 fresh loin) showed that the highest correct classification (CC%) rates were 83.20 % and 81.82 % in the calibration and prediction sets, respectively, when partial least squares discriminant analysis (PLS-DA) with pre-processing by baseline offset and second derivative was used. In addition, 93.36 % and 91.92 % of CC in the calibration and prediction sets, respectively, were found in the classification of 4-class (the 3 thawing losses and the 1 fresh loin) with the PLS-DA and read-once-write-many-columnar. This study demonstrates that the HSI system can be used to present information on the quality of frozen-thawed pork loin.
Collapse
Affiliation(s)
- Seul-Ki-Chan Jeong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Lin H, Chen Y, Yang Y, Cui L, Wu G, Chisoro P, Chen X, Li X, Zhang C, Blecker C. How thawing and salting affects the post-cooked quality of frozen beef: New insights into the mechanism of fiber morphology evolution and water migration. Food Res Int 2025; 200:115497. [PMID: 39779138 DOI: 10.1016/j.foodres.2024.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.14, 30.42, and 29.10 %, respectively. Compared to fresh-cooked samples, the moisture contents of frozen-cooked and frozen-thawed-cooked beef were reduced by 3.29 % and 1.03 %, respectively. Inter and intra-myofibril ice crystallization during freezing destroyed the myofibril structure and interacted with the heat-induced constriction due to cooking, driving myowater to migrate from intrafibrous to interfibrous space, which induced higher cooking loss in the frozen samples. Thawing contributed to the renaturation of myofiber and decreased the cooking loss. Salt regulated ice formation and melting, enhanced the resistance of myofiber and promoted free water reabsorption during thawing, which reduced the freezing-induced damage of muscle and improved the final quality of cooked beef. This study provides new insights into the mechanism of freezing-heating loss of beef based on myofiber morphology and water distribution visual analysis, which could help reduce the quality deterioration along the frozen processing supply chain.
Collapse
Affiliation(s)
- Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Yong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yiping Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | | |
Collapse
|
4
|
Yu Q, Liu S, Liu Q, Wen R, Sun C. Meat exudate metabolomics reveals the impact of freeze-thaw cycles on meat quality in pork loins. Food Chem X 2024; 24:101804. [PMID: 39296479 PMCID: PMC11408046 DOI: 10.1016/j.fochx.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
The aim of this study was to explore the effects of freeze-thaw (FT) cycles on meat quality, myofibrillar protein gelation and emulsification properties, and exudate metabolome changes in pork loins. Meat tenderness improved (P < 0.05), whereas water-holding capacity (WHC), meat color attributes declined (P < 0.05) with FT cycles. Multiple FT accelerated meat lipid and protein oxidations. Decreases in strength and WHC of myofibrillar protein gels with FT cycles were confirmed. Myofibrillar protein emulsions with more FT cycles showed a decrease in the emulsifying activity index (P < 0.001) and larger oil droplets, resulting in poorer storage stability. A total of 501 metabolites were tentatively identified in pork exudates, with 21 metabolites significantly correlated (P < 0.05 and r > 0.6) with meat quality attributes. These results demonstrated the potential of using the metabolomic information from exudates to elaborate on or even predict the FT cycles, or meat quality.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Shuo Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Yantai 264005, Shandong, China
| |
Collapse
|
5
|
Yu Q, Gu X, Liu Q, Wen R, Sun C. Effect of wet-aging on meat quality and exudate metabolome changes in different beef muscles. Food Res Int 2024; 184:114260. [PMID: 38609237 DOI: 10.1016/j.foodres.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was to evaluate meat quality and changes in the meat exudate metabolome of different beef muscles (5 d postmortem, longissimus lumborum and psoas major muscles) during wet-aging (additional 3, 7, 14, 21, and 28 d of aging). Shear force of meat declined significantly (P < 0.001) with aging, meanwhile, increased myofibril fragmentation index, lipid and protein oxidation with aging were observed (P < 0.01). Psoas major (PM) showed significantly higher (P < 0.05) purge loss, centrifugal loss, and cooking loss, as well as higher tenderness and more severe lipid and protein oxidation (P < 0.01) than longissimus lumborum (LL) during aging. Principal component analysis of the metabolomic profiles revealed distinct clusters according to the period of aging and the type of muscle simultaneously. Overabundant amino acids, peptides, oxidized fatty acids, and hydroxy fatty acids were found in long-term aged meat exudates, and forty metabolites were significantly correlated with meat quality characteristics. Fifty-nine metabolites were significantly affected by muscle type. These results demonstrated the potential possibility of evaluating meat quality using meat exudate metabolomics.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Xuejing Gu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| |
Collapse
|
6
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Production of freeze-dried beef powder for complementary food: Effect of temperature control in retaining protein digestibility. Food Chem 2024; 433:137419. [PMID: 37690130 DOI: 10.1016/j.foodchem.2023.137419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the effect of temperature control during freeze-drying of beef on the in vitro protein digestibility. Frozen (at - 50 °C for 2 days)-then-aged (at 4 °C for 26 days) beef was freeze-dried at 25 °C (FD1) and 2 °C (FD2) to obtain freeze-dried beef powder. Tryptophan fluorescence intensity and total free sulfhydryl groups of beef myofibrillar proteins decreased (P < 0.05) and increased (P < 0.05) after freeze-drying, respectively. In the myosin fraction of FD2, α-helix increased and β-sheet decreased (P < 0.05) compared to raw beef. In contrast, the actin fraction of FD1 showed a decrease in α-helix and increase in β-sheet (P < 0.05) compared to raw beef. The contents of α-amino group and proteins digested to<3 kDa in the in vitro digesta of beef were retained in FD2 while the α-amino group of FD1 decreased (P < 0.05). Therefore, freeze-drying at 2 °C can efficiently retain in vitro protein digestibility of beef.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Wu G, Yang C, Lin H, Hu F, Li X, Xia S, Bruce HL, Roy BC, Huang F, Zhang C. To What Extent Do Low-Voltage Electrostatic Fields Play a Role in the Physicochemical Properties of Pork during Freezing and Storage? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1721-1733. [PMID: 38206806 DOI: 10.1021/acs.jafc.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Low-voltage electrostatic fields (LVEF) are recognized as a new technology that can improve the quality of frozen meat. To determine the extent to which LVEF assistance affects the quality of frozen pork for long-term storage, pork was frozen and stored at -18 and -38 °C for up to 5 months. Water-holding capacity, muscle microstructure, and protein properties were investigated after up to 5 months of frozen storage with and without LVEF assistance. In comparison to traditional -18 and -38 °C frozen storage, LVEF treatment inhibited water migration during frozen storage and thawing. As a result, thawing losses were reduced by 15.97% (-18 °C) and 3.38% (-38 °C) in LVEF-assisted compared to conventional freezing methods. LVEF helped to maintain the muscle fiber microstructure and reduce muscle protein denaturation by miniaturizing ice crystal formation by freezing. As a result of this study, LVEF is more suitable for freezing or short-term frozen storage, while a lower temperature plays a more significant role in long-term frozen storage.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Feifei Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Shuangmei Xia
- Testing Center for Quality Supervision on Agro-Products and Foods, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| |
Collapse
|
8
|
Geissenberger J, Pittner S, Ehrenfellner B, Jakob L, Stoiber W, Monticelli FC, Steinbacher P. Effect of temporary freezing on postmortem protein degradation patterns. Int J Legal Med 2023; 137:1803-1814. [PMID: 37268796 PMCID: PMC10567868 DOI: 10.1007/s00414-023-03024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND A precise determination of time since death plays a major role in forensic routine. Currently available techniques for estimating the postmortem interval (PMI) are restricted to specific time periods or cannot be applied for individual case-specific reasons. During recent years, it has been repeatedly demonstrated that Western blot analysis of postmortem muscle protein degradation can substantially contribute to overcome these limitations in cases with different background. Enabling to delimit time points at which certain marker proteins undergo distinct degradation events, the method has become a reasonable new tool for PMI delimitation under various forensic scenarios. However, additional research is yet required to improve our understanding of protein decomposition and how it is affected by intrinsic and extrinsic factors. Since there are temperature limits for proteolysis, and investigators are confronted with frozen corpses, investigation of the effects of freezing and thawing on postmortem protein decomposition in the muscle tissue is an important objective to firmly establish the new method. It is also important because freezing is often the only practical means to intermittently preserve tissue samples from both true cases and animal model research. METHODS Sets of dismembered pig hind limbs, either freshly detached non-frozen, or thawed after 4 months of freeze-storage (n = 6 each), were left to decompose under controlled conditions at 30 °C for 7 days and 10 days, respectively. Samples of the M. biceps femoris were regularly collected at predefined time points. All samples were processed via SDS-PAGE and Western blotting to identify the degradation patterns of previously characterized muscle proteins. RESULTS Western blots show that the proteins degrade predictably over time in precise patterns that are largely unaffected by the freeze-and-thaw process. Investigated proteins showed complete degradation of the native protein band, partly giving rise to degradation products present in distinct time phases of the decomposition process. CONCLUSION This study provides substantial new information from a porcine model to assess the degree of bias that freezing and thawing induces on postmortem degradation of skeletal muscle proteins. Results support that a freeze-thaw cycle with prolonged storage in frozen state has no significant impact on the decomposition behavior. This will help to equip the protein degradation-based method for PMI determination with a robust applicability in the normal forensic setting.
Collapse
Affiliation(s)
- Janine Geissenberger
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| | - S Pittner
- Department of Forensic Medicine and Forensic Psychiatry, University of Salzburg, Salzburg, Austria
| | - B Ehrenfellner
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - L Jakob
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - W Stoiber
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - F C Monticelli
- Department of Forensic Medicine and Forensic Psychiatry, University of Salzburg, Salzburg, Austria
| | - P Steinbacher
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
9
|
Zhang R, Realini CE, Kim YHB, Farouk MM. Challenges and processing strategies to produce high quality frozen meat. Meat Sci 2023; 205:109311. [PMID: 37586162 DOI: 10.1016/j.meatsci.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Freezing is an effective means to extend the shelf-life of meat products. However, freezing and thawing processes lead to physical (e.g., ice crystals formation and freezer burn) and biochemical changes (e.g., protein denaturation and lipid oxidation) in meat resulting in loss of quality. Over the last two decades, several attempts have been made to produce thawed meat with qualities similar to that of fresh meat to no avail. This is due to the fact that no single technique exists to date that can mitigate all the quality challenges caused by freezing and thawing. This is further confounded by the consumer perception of frozen meat as lower quality compared to equivalent fresh-never-frozen meat cuts. Therefore, it remains challenging for the meat industry to produce high quality frozen meat and increase consumer acceptability of frozen products. This review aimed to provide an overview of the applications of novel freezing and thawing technologies that could improve the quality of thawed meat including deep freezing, high pressure, radiofrequency, electro-magnetic resonance, electrostatic field, immersion solution, microwave, ohmic heating, and ultrasound. This review will also discuss the development in processing strategies such as optimising the ageing of meat pre- or post-freezing, and the integration of freezing and thawing in one process/regime to collapse the difference in quality between thawed meat and fresh-never-frozen equivalents.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North 4474, New Zealand.
| |
Collapse
|
10
|
Li X, Li JY, Manzoor MF, Lin QY, Shen JL, Liao L, Zeng XA. Natural deep eutectic solvent: A promising eco-friendly food bio-inspired antifreezing. Food Chem 2023; 437:137808. [PMID: 39491255 DOI: 10.1016/j.foodchem.2023.137808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Bio-antifreezing is a green and highly effective strategy to inhibit ice nucleation. Bio-inspired antifreezing faces the severe challenges of significant toxicity and complex manufacturing procedures. Bio-inspired antifreezing natural deep eutectic solvent (Ba-NADES) could be an efficient and low or no-toxicity approach for the frozen food industry. Ba-NADES form a strong hydrogen bond network system under cold conditions, capably reducing the melting point of the system below the freezing point and effectively inhibiting ice growth. It has efficaciously alleviated freeze injury by Ba-NADES. The review highlights the current strategies of bio-inspired antifreezing, cold resistance behavior in organisms, and the existing applications of Ba-NADES. It updated information concerning their mechanisms for antifreezing. It emphasizes that the role of water on the antifreezing quality of NADES is worthy of further investigation for more extensive food applications. This work will provide a comprehensive overview of NADES antifreezing.
Collapse
Affiliation(s)
- Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ying Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Muhammad Faisal Manzoor
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Qiu-Ya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Jia-Ling Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| | - Xin-An Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, People's Republic of China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, People's Republic of China.
| |
Collapse
|
11
|
Du J, Gan M, Xie Z, Zhou C, Jing Y, Li M, Liu C, Wang M, Dai H, Huang Z, Chen L, Zhao Y, Niu L, Wang Y, Zhang S, Guo Z, Shen L, Zhu L. Effects of dietary L-Citrulline supplementation on growth performance, meat quality, and fecal microbial composition in finishing pigs. Front Microbiol 2023; 14:1209389. [PMID: 37608954 PMCID: PMC10442155 DOI: 10.3389/fmicb.2023.1209389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss (p < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota.
Collapse
Affiliation(s)
- Junhua Du
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chengpeng Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Menglin Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chengming Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Meng Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haodong Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyang Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Chongqing, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of alternating electric field assisted freezing-thawing-aging sequence on longissimus dorsi muscle microstructure and protein characteristics. Food Chem 2023; 409:135266. [PMID: 36577322 DOI: 10.1016/j.foodchem.2022.135266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The current study investigates the influence of alternating electric field (AEF)-assisted freezing-thawing-aging sequence on the muscle microstructure and myofibrillar protein characteristics. Three treatments were used for longissimus dorsi (LD) muscle: only aging (OA), freezing-thawing-aging sequence (FA) and AEF-assisted freezing-thawing-aging sequence (EA). Compared with the FA and EA groups, the OA group showed considerably fewer cracks between muscle fibers and maintained the integrity of the Z-line as observed using scanning and transmission electron microscopy, respectively. Furthermore, the EA treatment effectively decreased myofibrillar fragmentation, myofibrillar protein aggregation, and protein oxidation, as shown by the myofibrillar fragmentation index, turbidity, and total sulfhydryl concentration. Analysis of surface hydrophobicity and the Fourier transform infrared, UV absorption, and fluorescence spectrums indicated that AEF minimized the alterations of protein secondary and tertiary structure alterations during aging after freezing.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P R China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P R China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P R China.
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P R China.
| |
Collapse
|
13
|
Lee S, Jo K, Jeong HG, Choi YS, Jung S. Changes in beef protein digestibility in an in vitro infant digestion model with prefreezing temperatures and aging periods. Heliyon 2023; 9:e15611. [PMID: 37153398 PMCID: PMC10160746 DOI: 10.1016/j.heliyon.2023.e15611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The protein digestibility of beef at three prefreezing temperatures (freezing at -20 °C, F20; freezing at -50 °C, F50; and freezing at -70 °C, F70) and aging periods (4, 14, and 28 days) was investigated using an in vitro infant digestion model. The increased cathepsin B activity in the frozen-then-aged treatments (P < 0.05) resulted in a higher content of 10% trichloroacetic acid-soluble α-amino groups than in the aged-only group on days 14 and 28 (P < 0.05). F50 had the most α-amino groups in the digesta and digested proteins under 3 kDa on day 28 (P < 0.05), with the disappearance of actin band in the digesta electrophoretogram. The secondary and tertiary structures of myofibrillar proteins revealed that F50 underwent irreversible denaturation (P < 0.05), especially in the myosin fraction, while F20 and F70 showed protein renaturation during aging (P < 0.05). In general, prefreezing at -50 °C then aging can improve the in vitro protein digestibility of beef through freezing-induced structural changes.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
- Corresponding author.
| |
Collapse
|
14
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Zhu Y, Chen X, Qiao K, Chen B, Xu M, Cai S, Shi W, Liu Z. Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets. Foods 2023; 12:foods12081649. [PMID: 37107444 PMCID: PMC10137541 DOI: 10.3390/foods12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The physicochemical properties of semi-dried Takifugu obscurus fillets in cold air drying (CAD), hot air drying (HAD), and cold and hot air combined drying (CHACD) were analyzed based on pH, water state, lipid oxidation, protein degradation, and microstructure, using a texture analyzer, low-field nuclear magnetic resonance, thiobarbituric acid, frozen sections, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and differential scanning calorimetry. Water binding to the samples was enhanced by all three drying methods, and the immobilized water content of CHACD was between that of HAD and CAD. The pH of the semi-dried fillets was improved by CHACD. When compared to HAD and CAD, CHACD improved the springiness and chewiness of the fillets, especially cold air drying for 90 min (CAD-90), with values of 0.97 and 59.79 g, respectively. The muscle fibers were arranged compactly and clearly in CAD-90, having higher muscle toughness. CHACD reduced the drying time and degree of lipid oxidation compared to HAD and CAD. CAD better preserved protein composition, whereas HAD and CHACD promoted actin production; CHACD had a higher protein denaturation temperature (74.08-74.57 °C). CHACD results in better physicochemical properties than HAD or CAD, including shortened drying time, reduced lipid oxidation, enhanced protein stability, and denser tissue structure. These results provide a theoretical basis for selecting the appropriate drying method for T. obscurus in industrial applications.
Collapse
Affiliation(s)
- Ye Zhu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Fisheries Research Institute of Fujian, Xiamen 361013, China
| |
Collapse
|
16
|
Pu X, Ruan J, Wu Z, Tang Y, Liu P, Zhang D, Li H. Changes in Texture Characteristics and Special Requirements of Sichuan-Style Braised Beef for Industrial Production: Based on the Changes in Protein and Lipid of Beef. Foods 2023; 12:foods12071386. [PMID: 37048204 PMCID: PMC10093410 DOI: 10.3390/foods12071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to investigate the optimal stewing time (0, 30, 60, 90, 120, and 150 min) for industrialized preparation of Sichuan-style braised beef with different demands. With prolonged stewing time, the hardness and chewiness of the braised beef initially increased and then decreased (p < 0.05), whereas springiness and cohesiveness gradually decreased. The moisture content of braised beef and the endogenous fluorescence intensity of braised beef protein significantly decreased (p < 0.05). However, the thiobarbituric acid reaction substances (TBARS) value and protein carbonyl content of braised beef greatly increased (p < 0.05). During the stewing process, the texture properties of Sichuan-style braised beef were affected by the moisture content, oxidation of proteins and lipids, and integrity of the muscle fibers. Considering texture traits, when Sichuan-style pre-braised beef bought by consumers is stewed with other ingredients for about 30 min, its corresponding stewing time is 60 min in industrialized production processes. This process parameter can not only save energy consumption for practical production, but also improve the hardness value of the as-obtained Sichuan-style pre-braised beef, which is conducive to transportation through refraining from cracking of pre-braised beef pieces. When consumers only use simple heating to eat the Sichuan-style pre-braised beef product, stewing times of 120 or 150 min can be considered in industrialized production processes. This work provided a theoretical reference for the industrialized and standardized production of different types of prepared Sichuan-style braised beef.
Collapse
Affiliation(s)
- Xiaoli Pu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jinggang Ruan
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhicheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Ping Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Hongjun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of alternating electric field during freezing and thawing on beef quality. Food Chem 2023; 419:135987. [PMID: 37027972 DOI: 10.1016/j.foodchem.2023.135987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Alternating electric field (AEF) technology was used during freezing-thawing-aging (FA) of beef aged for 0, 1, 3, 5 and 7 days. Color, lipid oxidation, purge loss, cooking loss, tenderness, and T2 relaxation time were determined for frozen-thawed-aged beef with AEF (AEF + FA) or without AEF (FA) and compared to aged only (OA) controls. FA increased purge loss, cooking loss, shear force values and lipid oxidation (P < 0.05) but decreased a* values compared with AEF + FA treatment. It also exacerbated the spaces between muscle fibers and contributed to the transformation of immobile water to free water. AEF served to maintain meat quality by reducing purge loss, cooking loss and increasing meat tenderness and maintaining color and lipid oxidation only in steak that was frozen before aging. This most likely occurred due to AEF increasing the speed of freezing and thawing and by reducing the space between muscle fibers compared to FA alone.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
18
|
Effect of freezing raw meat on the physicochemical characteristics of beef jerky. Meat Sci 2023; 197:109082. [PMID: 36571999 DOI: 10.1016/j.meatsci.2022.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The effect of freezing raw meat on the quality characteristics of beef jerky was evaluated in the present study. Jerky was made using different types of raw beef (fresh, frozen, and frozen-thawed) with different curing times (6 h and 12 h). Frozen-thawed beef had a lower moisture content than fresh or frozen beef due to higher exudate loss (P < 0.05). Jerky made using frozen and frozen-thawed beef showed lower drying yield and higher shear force than jerky prepared using fresh beef (P < 0.05). Freezing raw beef decreased the fat content and increased the redness, yellowness, chroma, and hue values of jerky (P < 0.05). The microstructure of beef jerky was showed to increase the deformation and contraction of muscle fibers due to freezing. Longer curing times increased the moisture content of jerky made using frozen meat (P < 0.05). Jerky made using frozen or frozen-thawed meat was tough due to excessive fat and moisture loss.
Collapse
|
19
|
Yu Q, Li S, Cheng B, Brad Kim YH, Sun C. Investigation of changes in proteomes of beef exudate and meat quality attributes during wet-aging. Food Chem X 2023; 17:100608. [PMID: 36974193 PMCID: PMC10039265 DOI: 10.1016/j.fochx.2023.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study was performed to evaluate the effects of wet-aging (3, 7, 14, 21, and 28 d at 2 °C) on beef (longissimus lumborum muscles) exudate proteome and meat quality changes. The pH, purge loss, and tenderness of beef increased with aging (P < 0.05), while color and lipid oxidative stabilities decreased, especially when long-term (14 and 21 d) aged meat were repackaged and displayed under retail condition (P < 0.05). Nineteen proteins changed significantly with aging (FDR < 0.05), in which most of them progressively accumulated in exudates over aging periods. Combined with partial least squares discriminant analysis, 16 proteins (including 9 structural proteins, 3 metabolic enzymes, 1 heat shock protein, 2 binding proteins, and KBTBD10 protein) were screened as characteristic proteins that could be used for potential meat quality indication. These findings offered novel insight into the utilization of exudates for meat quality assessment.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Shimeng Li
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Bei Cheng
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, United States
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
- Corresponding author.
| |
Collapse
|
20
|
Chen X, Luo X, Zhu L, Liang R, Dong P, Yang X, Niu L, Hopkins DL, Gao S, Mao Y, Zhang Y. The underlying mechanisms of the effect of superchilling on the tenderness of beef Longissimus lumborum. Meat Sci 2022; 194:108976. [PMID: 36126393 DOI: 10.1016/j.meatsci.2022.108976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
This study investigated the effect of superchilling (-30 °C until the core temperature achieved -3 °C, then stored at -1 °C until 24 h, SC) on the tenderness of hot boned beef M. longissimus lumborum (LL), with very fast chilling (-30 °C until the core temperature achieved 0 °C, then stored at -1 °C until 24 h, VFC) and conventional chilling (0- 4 °C for 24 h, CC) as the controls. The lowest initial shear force values were obtained in SC samples compared to those from the VFC and CC treatments (P < 0.05). Clear freezing damage of muscle fibers and more myofibril fragmentation were found in SC samples compared with the other samples early post-mortem. Moreover, SC samples showed the highest level of inosine 5-monophosphate at 3 h post-mortem (P < 0.05). A reduced glycolysis rate (as evidenced by lactate content) was also found in SC treated samples suggesting little contribution of glycolysis on the tenderization of SC.
Collapse
Affiliation(s)
- Xue Chen
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lebao Niu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; NSW Department of Primary Industries, Centre for Red Meat and Sheep Development, PO Box 129, Cowra, NSW 2794, Australia
| | - Shujuan Gao
- Tai'an Daiyue District Animal Husbandry and Veterinary Career Development Service Center, Tai'an, Shandong 271000, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
21
|
Biglia A, Messina C, Comba L, Ricauda Aimonino D, Gay P, Brugiapaglia A. Quick-freezing based on a nitrogen reversed Brayton cryocooler prototype: Effects on the physicochemical characteristics of beef longissimus thoracis muscle. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics. Food Chem 2022; 405:134882. [DOI: 10.1016/j.foodchem.2022.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
23
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of Alternating Electric Field Assisted Freezing-Thawing-Aging Sequence on Data-Independent Acquisition Quantitative Proteomics of Longissimus dorsi Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12990-13001. [PMID: 36166831 DOI: 10.1021/acs.jafc.2c04207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was designed to investigate the differences in the proteomes of bovine Longissimus dorsi (LD) muscle during an alternating electric field (AEF)-assisted freezing-thawing-aging sequence based on a data-independent acquisition strategy. When compared to that of the only postmortem aging (OA) group, the meat quality of the freezing-thawing-aging sequence (FA) and AEF-assisted freezing-thawing-aging sequence (EA) groups showed a declining trend. However, the group assisted by AEF was significantly enhanced in color, water-holding capacity, and tenderness. Three hundred fifty-two proteins in LD muscle were differentially abundant proteins (DAPs) among FA, EA, and OA treatments. Furthermore, among the 40 DAPs in the FA versus EA comparison, 5 DAPs with variable importance in projection scores higher than 1 were identified as biochemical markers of beef quality. Bioinformatic analysis revealed that most of these proteins were involved in structural constituents of ribosome and catalytic activity. These results provide a basis for further understanding the quality of beef following a freezing-thawing-aging sequence assisted by AEF.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| |
Collapse
|
24
|
Does the Rearing Management following by Charolais Cull Cows Influence the Qualities of Carcass and Beef Meat? Foods 2022; 11:foods11182889. [PMID: 36141016 PMCID: PMC9498361 DOI: 10.3390/foods11182889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study characterized, for the first time, the rearing managements (from birth to slaughter) applied throughout the cull cows’ life and observed the effect of these managements on the carcass and meat properties. From the individual data of 371 Charolais cull cows, three rearing managements were defined and characterized with 60 rearing factors. The results showed that the rearing managements had low effects on the carcass and meat properties. For the carcass traits, only the carcass weight, and fat and longissimus (LM) colors at the level of the sixth rib were impacted. Concerning the meat, only the red color intensity, the fat aroma, the flavor intensity and persistence were affected. According to our results, this study confirmed that it is possible to produce carcass or meat with similar properties; consequently, it is difficult to favor a rearing management. However, to manage jointly both carcass and meat qualities, trade-offs are needed.
Collapse
|
25
|
Lee S, Jo K, Jeong HG, Choi YS, Kyoung H, Jung S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit Rev Food Sci Nutr 2022; 64:1385-1402. [PMID: 36052640 DOI: 10.1080/10408398.2022.2116557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freezing is commonly used to extend the shelf life of meat and meat products but may impact the overall quality of those products by inducing structural changes in myofibrillar proteins (MPs) through denaturation, chemical modification, and encouraging protein aggregation. This review covers the effect of freezing on the denaturation of MPs in terms of the effects of ice crystallization on solute concentrations, cold denaturation, and protein oxidation. Freezing-induced denaturation of MPs begins with ice crystallization in extracellular spaces and changes in solute concentrations in the unfrozen water fraction. At typical temperatures for freezing meat (lower than -18 °C), cold denaturation of proteins occurs, accompanied by an alteration in their secondary and tertiary structure. Moreover, the disruption of muscle cells triggers the release of cellular enzymes, accelerating protein degradation and oxidation. To minimize severe deterioration during the freezing and frozen storage of meat, there is a vital need to use an appropriate freezing temperature below the glass transition temperature and to avoid temperature fluctuations during storage to prevent recrystallization. Such an understanding of MP denaturation can be applied to determine the optimum freezing conditions for meat products with highly retained sensory, nutritional, and functional qualities.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
26
|
Huang J, Hu Z, Gaoshang L, Xiang Y, Chen J, Hu Y. Preservation mechanism of liquid nitrogen freezing on crayfish (
Procambarus clarkia
): Study on the modification effects in biochemical and structural properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- College of Food Science and Engineering Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing Sanya Hainan China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science Hainan Tropical Ocean University Sanya Hainan China
| | - Li Gaoshang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
- College of Food Science and Engineering Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing Sanya Hainan China
| | | | - Jianchu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang China
| | - Yaqin Hu
- College of Food Science and Engineering Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing Sanya Hainan China
| |
Collapse
|
27
|
New insights into the mechanism of freeze-induced damage based on ice crystal morphology and exudate proteomics. Food Res Int 2022; 161:111757. [DOI: 10.1016/j.foodres.2022.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
28
|
Zhang Y, Kim Y, Puolanne E, Ertbjerg P. Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review. Meat Sci 2022; 190:108841. [DOI: 10.1016/j.meatsci.2022.108841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/13/2022] [Accepted: 05/01/2022] [Indexed: 01/08/2023]
|
29
|
Nondorf MJ, Romanyk M, Lemenager RP, Koranne V, Malshe A, Brad Kim YH. Application of Fresh Beef Tumbling to Enhance Tenderness and Proteolysis of Cull Cow Beef Loins (
M. longissimus lumborum
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariah J. Nondorf
- Department of Animal Sciences Purdue University West Lafayette 47907 IN USA
| | - Madison Romanyk
- Department of Animal Sciences Purdue University West Lafayette 47907 IN USA
| | | | - Vishvesh Koranne
- Department of Mechanical Engineering Purdue University West Lafayette 47907 IN USA
| | - Ajay Malshe
- Department of Mechanical Engineering Purdue University West Lafayette 47907 IN USA
| | - Yuan H. Brad Kim
- Department of Animal Sciences Purdue University West Lafayette 47907 IN USA
| |
Collapse
|
30
|
Xue S, Park JY, Tuell JR, Maskal JM, Johnson JS, Dinh T, Kim YHB. In Utero Heat Stress Has Minimal Impacts on Processed Pork Products: A Comparative Study. Foods 2022; 11:foods11091222. [PMID: 35563945 PMCID: PMC9104471 DOI: 10.3390/foods11091222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to determine what effects in utero heat stress (IUHS) in pigs may have on quality of processed pork products. In two experiments, patties and emulsion sausages were prepared from lean and fat from pigs subjected to IUHS or in utero thermoneutral (IUTN) conditions. Patties formulated to contain 25% added fat had altered textural properties compared to those without additional fat, as shown by lower hardness, cohesiveness, springiness, and chewiness values (p < 0.05), which was not affected by IUHS treatment. Neither fat content nor IUHS treatment affected fluid losses of patties (p > 0.05). In general, 25% added fat patties had greater L*, a*, b*, hue angle, and chroma values than lean patties (p < 0.05). However, 25% added fat patties from the IUHS treatment maintained superior color stability during aerobic display, despite lean patties from this treatment exhibiting increased lipid oxidation (p < 0.05). For emulsion sausages, minimal differences in quality attributes and oxidative stability were found between treatment groups. Subcutaneous fat from IUHS pigs had greater C20:1 and C20:2 than IUTN (p < 0.05), although the magnitude of these differences was slight. Overall, the findings of this study suggest IUHS would have minimal impacts on the functional properties of raw pork, resulting in similar final quality of processed products to IUTN.
Collapse
Affiliation(s)
- Siwen Xue
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.); (J.-y.P.); (J.R.T.); (J.M.M.)
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun-young Park
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.); (J.-y.P.); (J.R.T.); (J.M.M.)
| | - Jacob R. Tuell
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.); (J.-y.P.); (J.R.T.); (J.M.M.)
| | - Jacob M. Maskal
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.); (J.-y.P.); (J.R.T.); (J.M.M.)
| | - Jay S. Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA;
| | - Thu Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.); (J.-y.P.); (J.R.T.); (J.M.M.)
- Correspondence: ; Tel.: +1-765-496-1631
| |
Collapse
|
31
|
Tuell JR, Nondorf MJ, Abdelhaseib M, Setyabrata D, Kim YHB. Tumbling and subsequent aging improves tenderness of beef longissimus lumborum and semitendinosus steaks by disrupting myofibrillar structure and enhancing proteolysis. J Anim Sci 2022; 100:6561586. [PMID: 35357503 DOI: 10.1093/jas/skac062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/26/2022] [Indexed: 01/06/2023] Open
Abstract
Tenderness is an important sensory attribute to the overall eating experience of beef. Identifying novel methods to ensure consistent tenderness, especially in inherently tough cuts, is critical for the industry. This study investigated if tumbling without brine inclusion could be an effective method to improve the quality and palatability attributes of beef longissimus lumborum (LL) and semitendinosus (ST) steaks. Furthermore, interactions with postmortem aging were evaluated to determine how tumbling might affect protein degradation and muscle ultrastructure. At 5 d postmortem, pairs of LL and ST muscles from beef carcasses (n = 16) were bisected, vacuum packaged, and tumbled for 0, 40, 80, or 120 min. Sections were divided and subsequently aged an additional 0 or 10 d at 2 °C. Tumbling for any duration improved instrumental tenderness of LL (P < 0.001) but not ST (P > 0.05) steaks, regardless of aging time. Tumbling exacerbated moisture loss in both muscles shown by greater purge and cooking losses (P < 0.05). Myofibrillar fragmentation was induced through tumbling in both muscles (P < 0.001), which was supported by transmission electron microscopy images. Tumbling for 120 min followed by 10 d of aging resulted in less abundant intact troponin-T in both LL and ST (P < 0.05), as well as less intact desmin in ST (P < 0.05); however, calpain-1 autolysis was not affected by tumbling (P > 0.05). No effects of tumbling, aging, nor the interaction were found for the content and solubility of collagen (P > 0.05). Consumer panelists (n = 120/muscle) rated LL steaks tumbled for any duration higher for tenderness and overall liking compared to control steaks (P < 0.05). For ST, significant interactions were found for consumer liking of tenderness and juiciness. In general, tumbling without subsequent aging resulted in poorer juiciness than non-tumbled (P < 0.05), while at 10 d no differences in juiciness were found between treatments (P > 0.05). For ST steaks that were aged 10 d, 120 min of tumbling resulted in greater tenderness liking than non-tumbled steaks (P < 0.05). These results suggest that tumbling would result in myofibrillar fragmentation and may benefit the degradation of myofibrillar proteins; however, there would be negligible impacts on collagen. Accordingly, tumbling without brine inclusion alone may be sufficient to improve tenderness and overall liking of LL steaks, while combined tumbling with subsequent postmortem aging would be necessary to improve tenderness liking of ST.
Collapse
Affiliation(s)
- Jacob R Tuell
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mariah J Nondorf
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Maha Abdelhaseib
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Derico Setyabrata
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Nondorf MJ, Kim YHB. Fresh beef tumbling at different post‐mortem times to improve tenderness and proteolytic features of
M. longissimus lumborum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mariah J. Nondorf
- Meat Science and Muscle Biology Laboratory Department of Animal Sciences Purdue University West Lafayette IN 47907 USA
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory Department of Animal Sciences Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
33
|
Setyabrata D, Xue S, Vierck K, Legako J, Ebner P, Zuelly S, Kim YHB. Impact of Various Dry-Aging Methods on Meat Quality and Palatability Attributes of Beef Loins (M. longissimus lumborum) from Cull Cow. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of this study was to determine the effect of various dry-aging methods on meat quality and palatability attributes of cull cow beef loins. Paired bone-in loins (m. longissimus lumborum) from 13 cull cow carcasses (Holstein, 42þ mo) were obtained at 5 d postmortem, divided into 4 equal sections, and randomly assigned into 4 aging methods (wet-aging [WA], conventional dry-aging [DA], dry-aging in water-permeable bag [DWA], and ultraviolet light dry-aging [UDA]). The beef sections were aged for 28 d at 2°C, 65% relative humidity, and 0.8 m/s airflow. Following aging, surface crusts and bones were removed, and loin samples were collected for the meat quality, microbiological, and sensory analyses. Results indicated that all dry-aged loins had greater moisture and trimming loss compared with WA (P < 0.05), while DWA had lower loss than DA and UDA (P < 0.05). No differences in shear force, cook loss, or both lipid and protein oxidation across all treatments were observed (P > 0.05). Among all treatments, DWA exhibited the least color stability indicated by rapid discoloration observed in the sample, while UDA had color attributes comparable with WA throughout the whole display. Microbial analysis indicated that UDA had lower microbial concentration on the surface than the other samples (P < 0.05). The consumer panel analysis found that all loins were acceptable, and the trained panel analysis indicated that DA loins decreased sourness and animal fat flavor (P < 0.05) and had a trend of decreasing oxidized flavor (P = 0.07). The results indicate that dry-aging can potentially be utilized as an effective natural process by nullifying some of well-known off-flavor attributes associated with cull cow beef while not compromising other meat quality attrib- utes or microbiological shelf life.
Collapse
Affiliation(s)
| | | | - Kelly Vierck
- Texas Tech University Department of Animal and Food Sciences
| | - Jerrad Legako
- Texas Tech University Department of Animal and Food Sciences
| | - Paul Ebner
- Purdue University Department of Animal Sciences
| | | | | |
Collapse
|
34
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
35
|
Dias do Nascimento J, Vinicius Morais de Oliveira M, de Nadai Bonin M, Ricartes de Oliveira de Oliveira P, Vinhas Ítavo LC, Ferraz ALJ, Ferreira Cancio P, Pereira Ávalo S, Surita LMA, Miyaki S, Motta Couto A, Vilalba Rohod R, Mendes de Oliveira D. A comparison of Nellore and Nellore-cross entire male cattle finished in a feedlot in a tropical area of Brazil with respect to carcass characteristics and meat quality after ageing either with or without 60days of prior frozen storage. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ContextThe use of crosses between Bos taurus and Bos indicus has boosted cattle production in tropical areas of Brazil, improving carcass and meat standards. However, there is little information on Canchim animals crossed with Nellore. Additionally, freezing is a preservation method frequently used by consumers, which allows meat to be preserved for a prolonged period, but little is known regarding this effect in meat frozen for 60 days from crossbred animals.AimsThe present study sought to evaluate the carcass performance and characteristics, and the effects of freezing prior to ageing on the meat of animals from different genetic groups finished in a feedlot.MethodsA total of 26 male cattle were used, consisting of Angus×Nellore (AAN), Canchim×Nellore (CAN) and Nellore (NEL), finished in feedlot. The carcasses were evaluated after slaughter. The steaks (Longissimus thoracis) were submitted to freezing for 0, 30 and 60 days before ageing, and were then aged for 1, 7 and 14 days.Key resultsConsumption and performance was greater for AAN and CAN animals. The AAN and CAN crossbred cattle presented higher final liveweight, hot carcass weight, dressing-out percentage and rib eye area. Freezing did not affect the meat luminosity, and it reduced the shear force and the purge at 14 days of ageing when frozen for 30 and 60 days.ConclusionsThe crossbreed between Canchim×Nellore animals is an alternative for termination in a feedlot. Meats frozen before ageing were more tender.ImplicationsCrossbred animals have better carcass performance and characteristics and the pre-freezing process yielded more tender meat. The Canchim is an alternative for crossing with pure Bos indicus animals.
Collapse
|
36
|
Kominami Y, Hayashi T, Tokihiro T, Ushio H. Peptidomic analysis characterising proteolysis in thaw-aging of beef short plate. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100051. [PMID: 35415663 PMCID: PMC8991525 DOI: 10.1016/j.fochms.2021.100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 11/14/2021] [Indexed: 05/09/2023]
Abstract
Recent studies have suggested that thaw-aging can improve sensory attributes of freeze-thawed meat. Acceleration of proteolysis is expected to promote tenderisation and improve taste; however, the details of protein degradation, including substrate proteins and cleavage sites, remain unclear. Here, we report a time course overview of the peptidome of beef short plates during thaw-aging. The accelerated degradation of key proteins for meat tenderisation, such as troponin T and desmin, was confirmed. Additionally, 11 cleavage sites in troponin T related to taste-active peptide generation were identified. Terminome analysis showed that the contribution of each protease varies depending on the substrate proteins and the thaw-aging period. Based on our results; proteases, not only calpains, but also others contributed to the degradation of myofibrillar proteins. The techniques employed indicate that meat proteolysis during thaw-aging is not constant but dynamic.
Collapse
Affiliation(s)
- Yuri Kominami
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan
- Corresponding author.
| | - Tatsuya Hayashi
- Division of Computer Science and Information Technology, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
| | - Tetsuji Tokihiro
- Department of Mathematical Sciences, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
| | - Hideki Ushio
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan
| |
Collapse
|
37
|
Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants (Basel) 2021; 11:60. [PMID: 35052564 PMCID: PMC8773412 DOI: 10.3390/antiox11010060] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Benjamin Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
- Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
38
|
Carrillo-Lopez LM, Robledo D, Martínez V, Huerta-Jimenez M, Titulaer M, Alarcon-Rojo AD, Chavez-Martinez A, Luna-Rodriguez L, Garcia-Flores LR. Post-mortem ultrasound and freezing of rabbit meat: Effects on the physicochemical quality and weight loss. ULTRASONICS SONOCHEMISTRY 2021; 79:105766. [PMID: 34619483 PMCID: PMC8502952 DOI: 10.1016/j.ultsonch.2021.105766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 05/04/2023]
Abstract
High intensity ultrasound (HIU) is a technique with the potential to improve meat quality, however, more research is needed on its application within the chain of cold storage and freezing. This study evaluates the effect of HIU (40 kHz, 9.6 W/cm2, 20 and 40 min) and post-mortem development on the yield and physicochemical quality of rabbit meat in samples treated with HIU pre- and post-storage in a freezer (120 h at -20 °C). Twenty rabbit carcasses were vacuum packed 12 h post-mortem, placed in a fridge at 4 °C for 24 h, and divided in two groups (HIU application before or after freezing), before assigning the treatments. The results show that HIU before freezing produced intense and bright orange-yellow colours, whereas its application after freezing resulted in pale red tones. HIU application accelerates rigor mortis resolution when it is applied before freezing and causes a significant decrease in pH immediately following the HIU treatment. Post-freezing application of HIU is not recommended because it considerably increased weight loss and toughening of the meat when long exposure times were used (40 min). In contrast, a short treatment duration with HIU mitigated the effects of freezing and produced significant increases in water-holding capacity (WHC) after cold storage. The yield (weight loss) of the rabbit meat was not affected when HIU was applied pre-freezing. The application of HIU pre-freezing constitutes a promising technology because it increased the tenderness and the WHC of rabbit meat. However, more research is needed to improve the appearance before scaling up to industrial levels.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico; National Council of Science and Technology. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | - Danely Robledo
- Universidad Autónoma Metropolitana, Iztapalapa Unit, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico.
| | - Viridiana Martínez
- Universidad Autónoma Metropolitana, Iztapalapa Unit, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico.
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico; National Council of Science and Technology. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | - Mieke Titulaer
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - America Chavez-Martinez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| | - Lorena Luna-Rodriguez
- Universidad Autónoma Metropolitana, Iztapalapa Unit, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico.
| | - Luis R Garcia-Flores
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico.
| |
Collapse
|
39
|
Setyabrata D, Wagner AD, Cooper BR, Kim YHB. Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins. Foods 2021; 10:foods10102503. [PMID: 34681552 PMCID: PMC8535753 DOI: 10.3390/foods10102503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the effect of dry-aging on quality, palatability, and flavor-related compounds of pork loins. Ten pork loins were obtained at 7 days postmortem, divided into three equal portions, randomly assigned into three different aging methods (wet-aging (W), conventional dry-aging (DA), and UV-light dry-aging (UDA)), and aged for 21 days at 2 °C, 70% RH, and 0.8 m/s airflow. The results showed similar instrumental tenderness values across all treatments (p > 0.05), while DA and UDA had a greater water-holding capacity than WA (p < 0.05). Both DA and UDA were observed to have comparable color stability to WA up to 5 days of retail display (p > 0.05). Greater lipid oxidation was measured in both DA and UDA at the end of display compared to WA (p < 0.05). The UV light minimized microorganisms concentration on both surface and lean portions of UDA compared to other treatments (p < 0.05). The consumer panel was not able to differentiate any sensory traits and overall likeness between the treatments (p > 0.05). Metabolomics analysis, however, identified more flavor-related compounds in dry-aged meat. These findings suggested that dry-aging can be used for pork loins for value-seeking consumers, as it has a potential to generate unique dry-aged flavor in meat with no adverse impacts on meat quality and microbiological attributes.
Collapse
Affiliation(s)
- Derico Setyabrata
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA; (D.S.); (A.D.W.)
| | - Anna D. Wagner
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA; (D.S.); (A.D.W.)
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
| | - Yuan H. Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA; (D.S.); (A.D.W.)
- Correspondence: ; Tel.: +1-765-496-1631
| |
Collapse
|
40
|
|
41
|
Yu Q, Cooper B, Sobreira T, Kim YHB. Utilizing Pork Exudate Metabolomics to Reveal the Impact of Aging on Meat Quality. Foods 2021; 10:foods10030668. [PMID: 33804730 PMCID: PMC8004023 DOI: 10.3390/foods10030668] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
This study was performed to assess the changes in meat quality and metabolome profiles of meat exudate during postmortem aging. At 24 h postmortem, longissimus lumborum muscles were collected from 10 pork carcasses, cut into three sections, and randomly assigned to three aging period groups (2, 9, and 16 d). Meat quality and chemical analyses, along with the metabolomics of meat exudates using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) platform, were conducted. Results indicated a declined (p < 0.05) display color stability, and increased (p < 0.05) purge loss, meat tenderness, and lipid oxidation as aging extended. The principal component analysis and hierarchical clustering analysis exhibited distinct clusters of the exudate metabolome of each aging treatment. A total of 39 significantly changed features were tentatively identified via matching them to METLIN database according to their MS/MS information. Some of those features are associated with adenosine triphosphate metabolism (creatine and hypoxanthine), antioxidation (oxidized glutathione and carnosine), and proteolysis (dipeptides and tripeptides). The findings provide valuable information that reflects the meat quality’s attributes and could be used as a source of potential biomarkers for predicting aging times and meat quality changes.
Collapse
Affiliation(s)
- Qianqian Yu
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tiago Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
42
|
Zhang Y, Magro A, Puolanne E, Zotte AD, Ertbjerg P. Myofibrillar protein characteristics of fast or slow frozen pork during subsequent storage at -3 °C. Meat Sci 2021; 176:108468. [PMID: 33636547 DOI: 10.1016/j.meatsci.2021.108468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effect of storage at -3 °C on myofibrillar protein in fast or slow frozen pork. Five pork loins at 48 h post-mortem were subjected to either fast (cold metal plate/-80 °C) or slow freezing (still air/-20 °C) followed by storage at -3 °C for 0, 1, 3, and 7 days before thawing. Freezing rate significantly influenced myofibrillar proteins within 3 days at -3 °C, evidenced by higher thaw loss, higher surface hydrophobicity and reduced water-holding of myofibrils, and accelerated appearance of a myosin-4 fragment (160 kDa) in slow freezing. However, these observed differences disappeared after 7 days of storage at -3 °C. The meat pH after thawing did not differ between fast and slow freezing rate. However, the pH values after thawing in both groups decreased with extended storage at -3 °C. Our results suggest that the beneficial effects of fast freezing are gradually lost by holding at -3 °C due to more extensive protein denaturation.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Arianna Magro
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Padova, Italy
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Padova, Italy
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
43
|
Lee S, Jo K, Jeong HG, Yong HI, Choi YS, Kim D, Jung S. Freezing-then-aging treatment improved the protein digestibility of beef in an in vitro infant digestion model. Food Chem 2021; 350:129224. [PMID: 33626399 DOI: 10.1016/j.foodchem.2021.129224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
In vitro protein digestibility of freezing-then-aged beef was investigated in an infant digestion model. The treatments were divided into freezing-then-aging (FA) and aging-only (AO) groups. Carbonyl and total free sulfhydryl contents were the same between both groups for 14-day aging. Freezing had no effect on beef myofibrillar protein tertiary structure. Although caspase-3 activity did not differ, the FA group showed higher cathepsin B activity than the AO group (p < 0.05). The 10% trichloroacetic acid-soluble α-amino content was higher in FA than AO group, on aging day 14 (p < 0.05). Post in vitro digestion of beef aged for 14 days, the FA group had a higher content, than the AO group, of α-amino groups and proteins digested under 3 kDa (p < 0.05). An electrophoretogram of the digesta showed improved digestion of actin in the FA group. Collectively, the freezing-then-aging process enhanced the protein digestibility of beef in this in vitro infant digestion model.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Dongjun Kim
- Korea Institute for Animal Products Quality Evaluation, Sejong-si 30100, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
44
|
Dell’Osa AH, Battacone G, Pulina G, Fois A, Tocco F, Loviselli A, Concu A, Velluzzi F. Electrical Impedance to Easily Discover Undeclared Freeze-thaw Cycles in Slaughtered Bovine Meat. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:3-10. [PMID: 34413917 PMCID: PMC8336310 DOI: 10.2478/joeb-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 06/13/2023]
Abstract
A portable electrical impedance spectroscopy device was developed to monitor the bioimpedance resistive component of bovine meat by injecting a sinusoidal current of 1 mA at 65 kHz. Both right and left longissimus dorsi muscles were trimmed from 4 slaughtered cows. The left muscle portions were frozen to -18 °C for 7 days while the right ones were meantime maintained at 5 °C. Mean value of impedance per length (Ω/cm) of frozen and thawed left samples was 31% lower than that of right non-frozen one (P = 0.0001). It was concluded that the device is reliable for monitoring the maturation of beef meat in situ with the possibility of revealing undeclared freeze-thaw cycles.
Collapse
Affiliation(s)
- A. H. Dell’Osa
- Instituto de Desarrollo Económico e Innovación, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - G. Battacone
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - G. Pulina
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - A. Fois
- Nomadyca Ltd, Kampala, Uganda
| | - F. Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - A. Loviselli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - A. Concu
- 2C Technologies Ltd, Academic Spin-Off, University of Cagliari, Cagliari, Italy
| | - F. Velluzzi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
45
|
Li DY, Liu ZQ, Liu B, Qi Y, Liu YX, Liu XY, Qin L, Zhou DY, Shahidi F. Effect of protein oxidation and degradation on texture deterioration of ready-to-eat shrimps during storage. J Food Sci 2020; 85:2673-2680. [PMID: 32790209 DOI: 10.1111/1750-3841.15370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
The impact of protein oxidation and degradation on texture deterioration of ready-to-eat (RTE) shrimps during storage was investigated. The deterioration in texture during storage was manifested by decreased instrumental hardness, elasticity, chewiness, and recoverability. The occurrence of protein oxidation was revealed by a significant increase in the contents of free radicals and carbonyls. The increases in trichloroacetic acid-soluble peptide (TCA-soluble peptide) content and myofibril fragmentation index (MFI) were also observed, suggesting the degradation of protein. Pearson correlation analysis showed that the decreased instrumental texture parameters were negatively correlated with the increased carbonyl content, TCA-soluble peptide, MFI, porosity, and pore size as well as the decreased water-holding capacity (WHC), thus, it was hypothesized that protein oxidation and degradation were responsible for changes in the microstructure and reduction of WHC, which ultimately resulted in texture deterioration of RTE shrimps.
Collapse
Affiliation(s)
- De-Yang Li
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Zi-Qiang Liu
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Bing Liu
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yan Qi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yu-Xin Liu
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Xiao-Yang Liu
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Lei Qin
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3 × 9, Canada
| |
Collapse
|
46
|
Tuell JR, Seo JK, Kim YHB. Combined impacts of initial freezing rate of pork leg muscles (M. biceps femoris and M. semitendinosus) and subsequent freezing on quality characteristics of pork patties. Meat Sci 2020; 170:108248. [PMID: 32736287 DOI: 10.1016/j.meatsci.2020.108248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 01/11/2023]
Abstract
The objective of this study was to determine the combined impacts of initial sub-primal freezing with subsequent freezing of manufactured pork patties on quality attributes and oxidative stability. Patties were manufactured (n = 3 batches) from pork leg muscles (M. biceps femoris and M. semitendinosus) frozen at different methods including still-air freezing (SAF), blast freezing (BF), and cryogenic freezing (CF). Then, patties were subjected to additional freezing treatments. Frozen/thawed patties exhibited increased cooking loss, springiness, and chewiness, lipid and protein oxidation, and decreased protein solubility compared to unfrozen counterparts (P < .05). However, patties from CF legs maintained similar protein solubility and lipid/protein oxidation compared to unfrozen controls (P > .05), while significantly minimizing sub-primal thawing loss and oxidation compared to patties from SAF. The results of the present study suggest the importance of initial freezing rate of sub-primals with subsequent freezing on quality characteristics of frozen/thawed meat patties.
Collapse
Affiliation(s)
- Jacob R Tuell
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jin-Kyu Seo
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Division of Applied Life Science (BK 21 Plus), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea
| | - Yuan H Brad Kim
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
47
|
Henriott ML, Herrera NJ, Ribeiro FA, Hart KB, Bland NA, Eskridge K, Calkins CR. Impact of myoglobin oxygenation state prior to frozen storage on color stability of thawed beef steaks through retail display. Meat Sci 2020; 170:108232. [PMID: 32712347 DOI: 10.1016/j.meatsci.2020.108232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
Consumers consider beef color to be an indicator of freshness and therefore it is a major factor when purchasing beef. The ideal conditions for maintaining color throughout retail display following frozen storage have yet to be well established. Therefore, the objective of this study was to determine the effects of myoglobin oxygenation levels (especially high oxygenation) during freezing on color stability of thawed steaks during retail display (RD) and to determine the impact that frozen storage duration, aging, and packaging films have on meat color after thawing under RD conditions. USDA Choice strip loins (n = 36) were aged for 4 or 20 d. Steaks were randomly assigned to a myoglobin oxygenation level [deoxymyoglobin (DeOxy; packaged within 3 min), oxygenation (Oxy; oxygenated in air for 30 min), or high oxygenation (HiOxy; packaged for 24 h in 80% O2)]. Steaks were then vacuum packaged in oxygen permeable or impermeable film and immediately frozen (-10 °C). Following either 0, 2, 4, or 6 months of frozen storage at -5 °C, steaks were removed from the packaging and immediately placed under simulated RD conditions for 7 d. During RD, instrumental color and subjective color were measured every day after the initial 24 h thaw period. Steaks were analyzed for instrumental color (L*, a*, b*), a*:b* ratio, percentage oxymyoglobin, metmyoglobin, and deoxymyoglobin, delta E, redness ratio, subjective discoloration, and lipid oxidation. For all days of RD, steaks that were frozen for 0 months had higher a* values (greater redness) than steaks frozen for 6 months which typically had the lowest a* values (P < .0001). HiOxy steaks frozen for 6 months had the lowest amounts of percentage oxymyoglobin than all other frozen storage periods and myoglobin oxygenation levels on days 4-7 of RD (P < .05). The HiOxy steaks frozen for 4 and 6 months had higher percentage metmyoglobin than DeOxy and Oxy, regardless of packaging (P < .05). Delta E, discoloration, and lipid oxidation were greatest for HiOxy steaks compared to Oxy and DeOxy (P < .05). Extended storage brought about detrimental color effects for all differing levels of myoglobin oxygenation. The HiOxy steaks through the first few days of RD and frozen for under 6 months provided had bright cherry red color, similar to that of DeOxy and Oxy. However, with extended frozen storage and RD, HiOxy steaks had worse color characteristics (more discoloration) than the other myoglobin oxygenation levels.
Collapse
Affiliation(s)
- M L Henriott
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | - N J Herrera
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | - F A Ribeiro
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | - K B Hart
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | - N A Bland
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | - K Eskridge
- Department of Statistics, University of Nebraska, Lincoln 68583-0908, USA
| | - C R Calkins
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA.
| |
Collapse
|
48
|
Henriott ML, Herrera NJ, Ribeiro FA, Hart KB, Bland NA, Calkins CR. Impact of myoglobin oxygenation level on color stability of frozen beef steaks. J Anim Sci 2020; 98:5855095. [PMID: 32516410 DOI: 10.1093/jas/skaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
The emerging market of frozen meat emphasizes the need to better understand beef surface discoloration and the ideal parameters of freezing beef to retain an acceptable color. The objectives of this study were to determine the impacts of myoglobin oxygenation level prior to freezing and frozen storage duration on frozen beef color. USDA Choice strip loins (n = 36) were aged for 4 d or 20 d. Steaks were randomly assigned to a myoglobin oxygenation level [deoxygenated (DeOxy; immediately packaged after cutting), oxygenated (Oxy; oxygenated in air for 30 min), or highly oxygenated (HiOxy; packaged for 24 h in 80% O2)]. Steaks were then vacuum packaged in oxygen permeable or impermeable film and immediately frozen (-5 °C). Following either 0, 2, 4, or 6 mo of frozen storage, steaks were removed from the packaging and immediately analyzed for instrumental color (L*, a*, and b*), percent oxymyoglobin, metmyoglobin, and deoxymyoglobin, delta E, redness ratio, a*:b* ratio, hue angle, subjective discoloration, and lipid oxidation. The HiOxy steaks had greater oxygen penetration and the greatest a* values compared with DeOxy and Oxy steaks, regardless of packaging (P < 0.0005). With 4 d of aging, HiOxy steaks had greater a* values than DeOxy and Oxy at all storage times (P = 0.0118). The HiOxy steaks aged for 20 d and frozen for 6 mo had significantly higher delta E values than all other myoglobin oxygenation levels and postmortem aging periods (P < 0.0001). Redness and percent oxymyoglobin were highest for HiOxy steaks within each storage period (P < 0.0002). The HiOxy steaks had the highest percent oxymyoglobin and DeOxy had the lowest percent oxymyoglobin within each aging and storage period (P < 0.01). Conversely, DeOxy steaks had the highest percent metmyoglobin and HiOxy had the lowest percent metmyoglobin when packaged in impermeable film (P < 0.0001). The HiOxy steaks from 20 d of aging had the highest discoloration compared with 4 d aging and more discoloration than all other myoglobin treatments at 6 mo of storage (P < 0.0001). The HiOxy 20 d aged steaks exhibited the highest lipid oxidation values at 2, 4, and 6 mo (P = 0.0224) and HiOxy steaks exhibited a brighter and deeper cherry red color compared with the DeOxy steaks. The HiOxy steaks were greater in redness or similar when compared with Oxy steaks, but experienced more detrimental effects when frozen storage was extended.
Collapse
Affiliation(s)
| | | | | | - Kellen B Hart
- Department of Animal Science, University of Nebraska, Lincoln
| | - Nicolas A Bland
- Department of Animal Science, University of Nebraska, Lincoln
| | - Chris R Calkins
- Department of Animal Science, University of Nebraska, Lincoln
| |
Collapse
|
49
|
Cheng H, Song S, Jung EY, Jeong JY, Joo ST, Kim GD. Comparison of beef quality influenced by freeze-thawing among different beef cuts having different muscle fiber characteristics. Meat Sci 2020; 169:108206. [PMID: 32526619 DOI: 10.1016/j.meatsci.2020.108206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022]
Abstract
The association of muscle fiber characteristics (MFC) with freeze-thawed meat quality was investigated using four different cuts (loin, M. longissimus thoracis; tenderloin, M. psoas major; top round, M. semimembranosus; eye of round, M. semitendinosus) obtained from beef carcasses (n = 10; Hanwoo steer; 28 months of age). Tenderloin had higher (P < .05) composition of muscle fiber type I than the others. Its quality traits except cooking loss were not affected by freeze-thawing (P > .05). However, top round having lower type I and higher type IIX compositions showed lower water-holding capacity and larger discoloration (P < .01) than other beef cuts after freeze-thawing. Increased tenderness after freeze-thawing was observed only for loin (P < .01) which had relatively larger size of type I fibers. In conclusion, individual muscle has different susceptibilities to freezing due to their different MFC. Considering different MFC by meat type when freezing meat will help to prevent excessive deterioration of meat quality.
Collapse
Affiliation(s)
- Huilin Cheng
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Sumin Song
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Eun-Young Jung
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Yeon Jeong
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
50
|
Protein degradation and structure changes of beef muscle during superchilled storage. Meat Sci 2020; 168:108180. [PMID: 32447186 DOI: 10.1016/j.meatsci.2020.108180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
This study investigated the effect of superchilled storage (-4 °C) on protein degradation and structural changes of beef steaks from M. longissimus lumborum compared with traditional chilling (2 °C) and frozen storage (-18 °C). Traditional chilling induced significantly greater degradation of troponin T and desmin, and more rapid loss of calpain activity, compared to superchilled or frozen storage treatments. The proteolysis of key myofibrillar proteins resulted in a sharp decline of WBSF values during traditional chilled storage. For frozen beef samples, no major changes were observed with respect to protein degradation or muscle structure during storage. However, superchilled samples exhibited wider gaps between muscle fibers at 12 weeks storage, associated with muscle fiber shrinkage.
Collapse
|