1
|
Shen L, Lei Y, Liao T, Wang K, Zhang H, Dan H, Niu L, Zhao Y, Chen L, Wang Y, Zhu L, Gan M. Advanced exploration of metabolite variation and the role of key differential metabolites during the ripening process of PSE pork. Food Chem 2025; 484:144325. [PMID: 40279890 DOI: 10.1016/j.foodchem.2025.144325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Pale, soft, exudative (PSE) meat, marked by pale color, soft texture, and high drip loss, affects over 10 % of pork from modern intensive farming, posing a major industry challenge. Despite extensive research, addressing PSE formation remains difficult due to complex genetic and environmental factors. This study developed a PSE-like pork model by heating normal pork at 36 °C for 4 h and identified differential metabolites using liquid chromatography-mass spectrometry (LC-MS) metabolomics. We detected 141 metabolites differing between normal and PSE-like pork across three post-slaughter storage times. Quinic acid (QA) and Xanthine (Xa) emerged as key factors, with QA enhancing muscle fiber structure and stabilizing pH, while Xa accelerated pH decline and increased fiber disruption. Our findings highlight the significant role of metabolites in meat quality, offering new strategies to mitigate PSE meat.
Collapse
Affiliation(s)
- Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Huiling Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Haifeng Dan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China; State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, China.
| |
Collapse
|
2
|
Zhang WX, Tian G, Zhang KY, Bai SP, Ding XM, Wang JP, Xuan Y, Zeng QF. Effects of dietary supplementation with oleic acid on growth performance, dietary fat utilization, serum and intestinal lipid metabolic parameters, and enterocyte lipid droplet metabolism in Pekin ducks. Poult Sci 2025; 104:105035. [PMID: 40117933 PMCID: PMC11979522 DOI: 10.1016/j.psj.2025.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to investigate the effects of a diet supplemented with different levels of oleic acid (OA) on growth performance, serum biochemical parameters, nutrient utilization, and intestinal lipid metabolism in Pekin ducks. A total of 350 fourteen-d-old male ducks were randomly assigned to the following five isonitrogenous and heteroenergetic dietary treatment groups: 0.00% (control), 0.25%, 0.50%, 0.75%, and 1.00% OA groups. The experiment lasted 28 days. The findings indicated that neither growth performance nor nutrient utilization was affected by OA supplementation (P > 0.05). The 0.50% OA group displayed the lowest serum triglyceride (TG) levels among all treatment groups, with significantly lower values compared to both the 0.25%=% and 0.75% OA groups (P < 0.05). Moreover, the activities of lipid droplet (LD)-degrading enzymes in the jejunal mucosa, such as adipose triglyceride lipase (ATGL), showed a significant inverse linear relationship (P < 0.05); carboxylesterase 2 (CES2) activity exhibited a proportional dose-dependent increase (P < 0.05); and lysosomal acid lipase (LAL) activity was negatively correlated with the increased concentration of OA in the diet (P < 0.05). Moreover, the mRNA expression levels of the LD formation-related genes PLIN2 were significantly higher in the 0.50% OA group compared to the 0.25% and 0.75% OA groups (P < 0.05). The mRNA expression of LD degradation-related genes, the PNPLA2 expression in the 0.25%, 0.50%, and 0.75% OA groups and LPL expression in all OA groups were downregulated (P < 0.05) when compared with those in the control group. These results suggested that dietary supplementation with OA, especially at a level of 0.50%, may decrease the serum TG content and promote lipid deposition in the jejunum in Pekin ducks by regulating the formation and degradation of enterocyte LDs.
Collapse
Affiliation(s)
- W X Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China.
| |
Collapse
|
3
|
Huang Y, Lei Y, Shi J, Liu W, Zhang X, He P, Ma Y, Zhang X, Cao Y, Cheng Q, Zhang Z, Lei Z. Effects of dietary oregano essential oil supplementation on carcass traits, muscle fiber structure, oxidative stability, meat quality, and regulatory mechanisms in Holstein steers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3097-3110. [PMID: 39821900 DOI: 10.1002/jsfa.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle. Eighteen steers were randomly assigned to two groups (n = 9 per group) and fed either a control diet (CK) or the same diet supplemented with 20 g of OEO per head per day for 300 days. RESULTS Oregano essential oil supplementation improved the body weight, carcass weight, meat production, area and diameter of fiber, ether extract, and water-holding power of muscle. Increasing catalase (CAT), peroxidases (POD), glutathione peroxidase (GSH-Px) and by decreasing lipid droplets (LDs) reduced muscle lipid oxidation. However, the color (L*, a*, b*, C* and H°) and the flavor compounds of muscle were affected adversely by OEO. The transcriptome and metabolome indicated the OEO group enriched fat synthesis, proteo-metabolism, antioxidants, and growth significantly. Five key genes (SH2B2, CD209, LOC504773, C1QC, and HMOX) and ten downregulated metabolites (deoxyguanosine, d-melezitose, maltotriose, raffinose, melatonin, quinic acid, orotic acid, hydrocinnamic acid, 2-methylsuccinic acid, and pyridoxal 5'-phosphate) were identified as key biomarkers. These interacted to positively influence the growth, oxidative status, and meat quality of steers positively. CONCLUSION These findings suggest that OEO, as a natural bioactive compound, can serve as an additive for beef cattle, with a daily dose of 20 g per steer improving growth and meat quality, although it may affect muscle color and flavor negatively. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongzhi Cao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiang Cheng
- Jingchuan Xukang Food Co., Ltd, Pingliang, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Gao C, Li Q, Wen H, Zhou Y. Lipidomics analysis reveals the effects of Schizochytrium sp. supplementation on the lipid composition of Tan sheep meat. Food Chem 2025; 463:141089. [PMID: 39232453 DOI: 10.1016/j.foodchem.2024.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Schizochytrium sp. (SZ) can potentially be employed in nutritional strategies for producing high-quality sheep meat. However, the effects of SZ on the lipid composition of sheep meat are insufficiently understood. In this study, the effects of SZ supplementation on the lipid profile of Tan sheep meat were evaluated using non-targeted lipidomic techniques. Lipidomics analysis revealed 383 differential lipids (DLs) between the SZ and control groups, and there were six metabolic pathways associated with lipids, including glycerophospholipid metabolism, glycerolipid metabolism, α-linolenic acid metabolism, linoleic acid metabolism, glycine, serine and threonine metabolism, and arachidonic acid metabolism (P < 0.05). Glycerophospholipid metabolism was the core pathway of DLs; we found that phosphatidylcholine, phosphatidylserine, and lysophosphatidylcholine were the crucial lipid metabolites of this pathway. Dietary supplementation with SZ increased n-3 polyunsaturated fatty acid (PUFA), C22:6n-3, and C20:5n-3 (P < 0.05), while it decreased C18:0, saturated fatty acid (SFA), and SFA/PUFA (P < 0.05). These results indicate that SZ supplementation induces positive alterations in the lipid profile of Tan sheep meat, which is beneficial to meat quality and sheds valuable insights into the future development of functional lipids in sheep meat.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hongrui Wen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Zhang M, Bai H, Wang R, Zhao Y, Yang W, Liu J, Zhang Y, Jiao P. Impact of dietary lysophospholipids supplementation on growth performance, meat quality, and lipid metabolism in finishing bulls fed diets varying in fatty acid saturation. J Anim Sci Biotechnol 2025; 16:7. [PMID: 39789662 PMCID: PMC11715738 DOI: 10.1186/s40104-024-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.5 months of age) were used. The experiment was a completely randomized block design with a 2 × 2 factorial arrangement of treatments: 2 diets with FA of different degree of unsaturation [high saturated FA diet (HSFA) vs. high unsaturated FA diet (HUFA)] combined with (0.075%, dry matter basis) and without lysophospholipids supplementation. The bulls were fed a high-concentrate diet (forage to concentrate, 15:85) for 104 d including a 14-d adaptation period and a 90-d data and sample collection period. RESULTS No interactions were observed between dietary FA and lysophospholipids supplementation for growth and meat quality parameters. A greater dietary ratio of unsaturated FA (UFA) to saturated FA (SFA) from 1:2 to 1:1 led to lower DM intake and backfat thickness, but did not affect growth performance and other carcass traits. Compared with HSFA, bulls fed HUFA had greater shear force in Longissimus thoracis (LT) muscle, but had lower intramuscular fat (IMF) content and SOD content in LT muscle. Compared with HUFA, feeding the HSFA diet up-regulated expression of ACC, FAS, PPARγ, and SCD1, but down-regulated expression of CPT1B. Compared with feeding HSFA, the HUFA diet led to greater concentrations of c9-C18:1 and other monounsaturated FA in LT muscle. Feeding HUFA also led to lower plasma concentrations of cholesterol, but there were no interactions between FA and lysophospholipids detected. Feeding lysophospholipids improved growth and feed conversion ratio and altered meat quality by increasing muscle pH24h, redness values (24 h), IMF content, and concentrations of C18:3, C20:5 and total polyunsaturated fatty acids. Furthermore, lysophospholipids supplementation led to lower malondialdehyde content and up-regulated the expression of ACC, FAS, and LPL in LT muscle. CONCLUSIONS Results indicated that supplementing a high-concentrate diet with lysophospholipids to beef bulls can enhance growth rate, feed efficiency, meat quality, and beneficial FA. Increasing the dietary ratio of UFA to SFA reduced DM intake and backfat thickness without compromising growth, suggesting potential improvements in feed efficiency.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruixue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yufan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, Canada
| | - Jincheng Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
6
|
Kang L, Wang W, Yang L, Liu T, Zhang T, Xie J, Zhai M, Zhao X, Duan Y, Jin Y. Effects of feeding patterns on production performance, lipo-nutritional quality and gut microbiota of Sunit sheep. Meat Sci 2024; 218:109642. [PMID: 39208537 DOI: 10.1016/j.meatsci.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the impact of feeding patterns on the production performance, lipo-nutritional quality, and gut microbiota of Sunit sheep. A total of 24 sheep were assigned to two groups: confinement feeding (CF) and pasture feeding (PF) groups. After 90 days, the CF group exhibited significantly increased average daily gain, carcass weight, backfat thickness, and intramuscular fat content of the sheep, whereas the PF group showed significantly increased pH24h and decreased L∗ value and cooking loss of the longissimus lumborum (LL) muscle (P < 0.05). In the PF group, the contents of linoleic, α-linolenic, and docosahexaenoic acids were considerably higher and the n-6/n-3 polyunsaturated fatty acid ratio was significantly lower (P < 0.05). Furthermore, the triglyceride, cholesterol, and nonesterified fatty acid levels in the serum of the CF group significantly increased, whereas the enzyme contents of fatty acid synthase (FASN) and hormone-sensitive lipase (HSL) in the LL muscle of the PF group were markedly elevated (P < 0.05). The PF group also showed altered expression of lipid metabolism-related genes, including upregulated FASN, HSL, fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (P < 0.05). Meanwhile, differences were observed in the abundance of key bacteria and microbiota functions between the groups. Correlation analysis revealed that production performance and lipid metabolism may be related to the differential effects of bacteria. In conclusion, the transition in the feeding patterns of Sunit sheep caused changes in the gut microbial community and lipid metabolism level in the muscle as well as differences in fat deposition and meat quality.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Weihao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Taiwu Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Junkang Xie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Maoqin Zhai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
7
|
Li Q, Wu Y, Qi X, Liu Z, Wang C, Ma X, Ma Y. Effects of Prickly Ash Seed Dietary Supplementation on Meat Quality, Antioxidative Capability, and Metabolite Characteristics of Hu Lambs. Foods 2024; 13:3415. [PMID: 39517199 PMCID: PMC11545103 DOI: 10.3390/foods13213415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In China, the processing of prickly ash (PA) produces a large number of by-products, including prickly ash seeds (PASs), which are rich in bioactive components such as flavonoids and phenolic compounds, and which may have an important influence on meat quality and muscle metabolites. Therefore, this study aimed to assess the impact of dietary PAS supplementation on the meat quality, antioxidant activity, and metabolite characteristics of lambs. Eighteen 3-month-old Hu lambs (25.66 ± 3.03 kg body weight) were randomly allotted to three different dietary treatment groups. In the three dietary treatments, 0% (basal diet, CON), 3% (CON with 3% PAS, low-dose PAS, and LPS), and 6% (CON with 6% PAS, high-dose PAS, and HPS) PASs were used. Results indicated significant improvements in the HPS group, including reduced cooking loss and increased fat content. The L* and b* 45 min values were significantly lower in the PAS groups than those in the CON group (p < 0.05). Additionally, dietary PAS supplementation increased in MUFA, PUFA, n-3 PUFA, PUFA/MUFA ratio, NEAA, and FFA compared to the CON group. Furthermore, PAS supplementation significantly improved serum and muscle antioxidant capacity. Metabolomic analyses revealed that increased metabolites, such as tryptophan, leucine, citric acid, adenosine 5'-triphosphate, creatine phosphate, inosine, and α-ketoglutaric acid, were primarily enriched in the biosynthesis of cofactors and nucleotide and purine metabolism pathways. Notably, supplementation with 6% of PASs exhibited the most prominent effect on lamb meat quality in this study. Therefore, the application of PASs as a feed component in lamb production can not only improve meat quality and muscle antioxidant capacity but also save feed costs.
Collapse
Affiliation(s)
- Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueyi Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
8
|
Bai H, Wang L, Lambo MT, Li Y, Zhang Y. Effect of changing the proportion of C16:0 and cis-9 C18:1 in fat supplements on rumen fermentation, glucose and lipid metabolism, antioxidation capacity, and visceral fatty acid profile in finishing Angus bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:39-48. [PMID: 39026601 PMCID: PMC11254535 DOI: 10.1016/j.aninu.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lubo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Li H, Zhang X, Wang X, Wu Q, Zheng W, Liu C, Wei S, Zuo X, Xiao W, Ye H, Wang W, Yang L, Zhu Y. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult Sci 2024; 103:103929. [PMID: 38943802 PMCID: PMC11261488 DOI: 10.1016/j.psj.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiaowen Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Shi Wei
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | | | - Hui Ye
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China; Woman Biotechnology Co, Ltd, Guangzhou, 510000 China.
| |
Collapse
|
10
|
Ma Y, Han L, Hou S, Gui L, Sun S, Yuan Z, Yang C, Wang Z, Yang B. Fatty Acids and Volatile Flavor Components of Adipose Tissue from Local Tibetan Sheep in Qinghai with Dietary Supplementation of Palm Kernel Meal (PKM). Animals (Basel) 2024; 14:2113. [PMID: 39061575 PMCID: PMC11274258 DOI: 10.3390/ani14142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Substituting traditional protein feed with palm kernel meal (PKM) in the diet of Tibetan sheep can be a cost-effective feeding strategy. To determine the impact of PKM on flavor development in different adipose tissues of Tibetan sheep, subjects were fed with 15% and 18% of PKM, while the control group received no PKM. The fatty acids and volatile compounds in the samples were then analyzed by GC-MS and HS-GC-IMS. Adding PKM to the diet significantly increased the C12:0, C14:0, C16:0 and C18:1N9 content in adipose tissues compared with the control, and most of these were associated with flavor formation (p < 0.05). The flavor compounds in the adipose tissues predominantly consisted of alcohols, ketones, acids and aldehydes. In particular, including PKM in the diet increased the proportion of ketones but decreased the proportion of alcohols, acids and aldehydes in subcutaneous and tail fat. Specifically, the proportion of acetone, acetoin monomer, 2,3-butanedione, 2-butanone monomer, 2-methyl-2-propanol, 2-methyl-2-propanol and methyl acetate increased significantly in the subcutaneous and tail fat (p < 0.05), while that of ethanol, 1-propanol monomer, butanol monomer, acetic acid monomer and acetic acid monomer decreased. Intermuscular fat exhibited variable results, mainly because the addition of PKM resulted in higher proportions of alcohols, including ethanol, 1-propanol and butanol monomer, especially at 15% PKM. In summary, the addition of PKM improved the flavor of Tibetan sheep fat and increased the amount of favorable volatile flavor compounds. This study can serve as reference for understanding the effects of dietary PKM on the adipose tissue flavor profile of Tibetan sheep.
Collapse
Affiliation(s)
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.M.); (S.H.); (L.G.); (S.S.); (Z.Y.); (C.Y.); (Z.W.); (B.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bai H, Zhang H, Wang C, Lambo MT, Li Y, Zhang Y. Effects of altering the ratio of C16:0 and cis-9 C18:1 in rumen bypass fat on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. J Anim Sci Biotechnol 2024; 15:94. [PMID: 38971799 PMCID: PMC11227724 DOI: 10.1186/s40104-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo. This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance, lipid metabolism, intestinal barrier, cecal microbiota, and inflammation in fattening bulls. Thirty finishing Angus bulls (626 ± 69 kg, 21 ± 0.5 months) were divided into 3 treatments according to the randomized block design: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic acid calcium salt (PA, 90% C16:0), and (3) CON + 2.5% mixed fatty acid calcium salt (MA, 60% C16:0 + 30% cis-9 C18:1). The experiment lasted for 104 d, after which all the bulls were slaughtered and sampled for analysis. RESULTS MA tended to reduce 0-52 d dry matter intake compared to PA (DMI, P = 0.052). Compared with CON and MA, PA significantly increased 0-52 d average daily gain (ADG, P = 0.027). PA tended to improve the 0-52 d feed conversion rate compared with CON (FCR, P = 0.088). Both PA and MA had no significant effect on 52-104 days of DMI, ADG and FCR (P > 0.05). PA tended to improve plasma triglycerides compared with MA (P = 0.077), significantly increased plasma cholesterol (P = 0.002) and tended to improve subcutaneous adipose weight (P = 0.066) when compared with CON and MA. Both PA and MA increased visceral adipose weight compared with CON (P = 0.021). Only PA increased the colonization of Rikenellaceae, Ruminococcus and Proteobacteria in the cecum, and MA increased Akkermansia abundance (P < 0.05). Compared with CON, both PA and MA down-regulated the mRNA expression of Claudin-1 in the jejunum (P < 0.001), increased plasma diamine oxidase (DAO, P < 0.001) and lipopolysaccharide (LPS, P = 0.045). Compared with CON and MA, PA down-regulated the ZO-1 in the jejunum (P < 0.001) and increased plasma LPS-binding protein (LBP, P < 0.001). Compared with CON, only PA down-regulated the Occludin in the jejunum (P = 0.013). Compared with CON, PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose (P < 0.001) and increased plasma IL-6 (P < 0.001). Compared with CON, only PA up-regulated the TNF-α in the visceral adipose (P = 0.01). Compared with CON and MA, PA up-regulated IL-6 in the visceral adipose (P < 0.001), increased plasma TNF-α (P < 0.001), and reduced the IgG content in plasma (P = 0.035). Compared with CON, PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle (P < 0.05), while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1. However, neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON (P > 0.05). CONCLUSIONS MA containing 30% cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity, adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization, improving colonization of Akkermansia, reducing intestinal barrier damage, and down-regulating NF-κB activation.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Congwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Zhang M, Zhang Z, Zhang X, Lu C, Yang W, Xie X, Xin H, Lu X, Ni M, Yang X, Lv X, Jiao P. Effects of dietary Clostridium butyricum and rumen protected fat on meat quality, oxidative stability, and chemical composition of finishing goats. J Anim Sci Biotechnol 2024; 15:3. [PMID: 38225608 PMCID: PMC10789026 DOI: 10.1186/s40104-023-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Clostridium butyricum (CB) is a probiotic that can regulate intestinal microbial composition and improve meat quality. Rumen protected fat (RPF) has been shown to increase the dietary energy density and provide essential fatty acids. However, it is still unknown whether dietary supplementation with CB and RPF exerts beneficial effects on growth performance and nutritional value of goat meat. This study aimed to investigate the effects of dietary CB and RPF supplementation on growth performance, meat quality, oxidative stability, and meat nutritional value of finishing goats. Thirty-two goats (initial body weight, 20.5 ± 0.82 kg) were used in a completely randomized block design with a 2 RPF supplementation (0 vs. 30 g/d) × 2 CB supplementation (0 vs. 1.0 g/d) factorial treatment arrangement. The experiment included a 14-d adaptation and 70-d data and sample collection period. The goats were fed a diet consisted of 400 g/kg peanut seedling and 600 g/kg corn-based concentrate (dry matter basis). RESULT Interaction between CB and RPF was rarely observed on the variables measured, except that shear force was reduced (P < 0.05) by adding CB or RPF alone or their combination; the increased intramuscular fat (IMF) content with adding RPF was more pronounced (P < 0.05) with CB than without CB addition. The pH24h (P = 0.009), a* values (P = 0.007), total antioxidant capacity (P = 0.050), glutathione peroxidase activities (P = 0.006), concentrations of 18:3 (P < 0.001), 20:5 (P = 0.003) and total polyunsaturated fatty acids (P = 0.048) were increased, whereas the L* values (P < 0.001), shear force (P = 0.050) and malondialdehyde content (P = 0.044) were decreased by adding CB. Furthermore, CB supplementation increased essential amino acid (P = 0.027), flavor amino acid (P = 0.010) and total amino acid contents (P = 0.024) as well as upregulated the expression of lipoprotein lipase (P = 0.034) and peroxisome proliferator-activated receptor γ (PPARγ) (P = 0.012), and downregulated the expression of stearoyl-CoA desaturase (SCD) (P = 0.034). The RPF supplementation increased dry matter intake (P = 0.005), averaged daily gain (trend, P = 0.058), hot carcass weight (P = 0.046), backfat thickness (P = 0.006), concentrations of 16:0 (P < 0.001) and c9-18:1 (P = 0.002), and decreased the shear force (P < 0.001), isoleucine (P = 0.049) and lysine content (P = 0.003) of meat. In addition, the expressions of acetyl-CoA carboxylase (P = 0.003), fatty acid synthase (P = 0.038), SCD (P < 0.001) and PPARγ (P = 0.022) were upregulated due to RPF supplementation, resulting in higher (P < 0.001) content of IMF. CONCLUSIONS CB and RPF could be fed to goats for improving the growth performance, carcass traits and meat quality, and promote fat deposition by upregulating the expression of lipogenic genes of Longissimus thoracis muscle.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Changming Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, Canada
| | - Xiaolai Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mingbo Ni
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Xinyue Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, 225009, China
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
13
|
Pereira-Junior SAG, Costa RV, Rodrigues JL, Torrecilhas JA, Chiaratti MR, Lanna DPD, das Chagas JC, Nociti RP, Meirelles FV, Ferraz JBS, Fernandes MHMR, Almeida MTC, Ezequiel JMB. Soybean molasses increases subcutaneous fat deposition while reducing lipid oxidation in the meat of castrated lambs. J Anim Sci 2024; 102:skae130. [PMID: 38719973 PMCID: PMC11208934 DOI: 10.1093/jas/skae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to evaluate the effect of including soybean molasses (SM) on performance, blood parameters, carcass traits, meat quality, fatty acid, and muscle (longissimus thoracis) transcriptomic profiles of castrated lambs. Twenty Dorper × Santa Inês lambs (20.06 ± 0.76 kg body weight [BW]) were assigned to a randomized block design, stratified by BW, with the following treatments: CON: 0 g/kg of SM and SM20: 200 g/kg of SM on dry matter basis, allocated in individual pens. The diet consisted of 840 g/kg concentrate and 160 g/kg corn silage for 76 d, with the first 12 d as an adaptation period and the remaining 64 d on the finishing diet. The SM20 diet increased blood urea concentration (P = 0.03) while reduced glucose concentration (P = 0.04). Lambs fed SM showed higher subcutaneous fat deposition (P = 0.04) and higher subcutaneous adipocyte diameter (P < 0.01), in addition to reduced meat lipid oxidation (P < 0.01). SM reduced the quantity of branched-chain fatty acids in longissimus thoracis (P = 0.05) and increased the quantity of saturated fatty acids (P = 0.01). In the transcriptomic analysis, 294 genes were identified as differentially expressed, which belong to pathways such as oxidative phosphorylation, citric acid cycle, and monosaccharide metabolic process. In conclusion, diet with SM increased carcass fat deposition, reduced lipid oxidation, and changed the energy metabolism, supporting its use in ruminant nutrition.
Collapse
Affiliation(s)
- Sérgio A G Pereira-Junior
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Rayanne V Costa
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Julia L Rodrigues
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Juliana A Torrecilhas
- Department of Animal Production, Veterinary Medicine and Animal Science College, São Paulo State University “Unesp”, Botucatu, SP, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Dante P D Lanna
- Department of Animal Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Julia C das Chagas
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Ricardo P Nociti
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - Flavio V Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - José Bento S Ferraz
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SPBrazil
| | - Márcia H M R Fernandes
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| | - Marco Túlio C Almeida
- Department of Animal Science, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Jane M B Ezequiel
- Department of Animal Science, Agrarian Science and Veterinary College, São Paulo State University “Unesp”, Jaboticabal, SP, Brazil
| |
Collapse
|
14
|
Cho H, Jeong S, Kang K, Lee M, Jeon S, Kang H, Kim H, Seo J, Oh J, Seo S. Effects of Dietary Fat Level of Concentrate Mix on Growth Performance, Rumen Characteristics, Digestibility, Blood Metabolites, and Methane Emission in Growing Hanwoo Steers. Animals (Basel) 2023; 14:139. [PMID: 38200870 PMCID: PMC10778547 DOI: 10.3390/ani14010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigated the effect of different dietary fat levels in concentrate mixes on the growth performance, rumen characteristics, digestibility, blood metabolites, and methane emissions in growing Hanwoo steers. Thirty steers (386 ± 24.6 kg of body weight [BW]; 12 months old), blocked by BW, were randomly assigned to three dietary treatments with varying fat concentrations in concentrate mix (48, 74, and 99 g of ether extract per kg dry matte [DM]). The fat intake of the low-fat treatment represented 4.15% of the total dry matter intake (DMI), while the medium- and high-fat treatments accounted for 5.77% and 7.23% of total DMI, respectively. Concentrate mix DMI decreased with increasing fat level (p < 0.01). The growth rate and digestibility did not significantly differ based on the fat level (p > 0.05). As the fat level increased, propionate in the total ruminal volatile fatty acids increased, and butyrate and acetate-to-propionate decreased (p < 0.01). Cholesterol in blood serum increased significantly with increasing dietary fat levels (p < 0.01). Methane emissions exhibited a linear decrease with increasing fat level (p < 0.05). In conclusion, elevating fat content in the concentrates up to 100 g/kg DM reduced methane emissions without compromising the growth performance of growing Hanwoo steers.
Collapse
Affiliation(s)
- Hyunjin Cho
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Sinyong Jeong
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Kyewon Kang
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Seoyoung Jeon
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Hamin Kang
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.K.); (J.S.)
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.K.); (J.S.)
| | - Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam 13630, Republic of Korea;
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (S.J.); (K.K.); (M.L.); (S.J.); (H.K.)
| |
Collapse
|
15
|
Wu G, Qiu X, Jiao Z, Yang W, Pan H, Li H, Bian Z, Geng Q, Wu H, Jiang J, Chen Y, Cheng Y, Chen Q, Chen S, Man C, Du L, Li L, Wang F. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus Dorsi Muscle of Buffalo and Cattle. Curr Issues Mol Biol 2023; 45:9723-9736. [PMID: 38132453 PMCID: PMC10741837 DOI: 10.3390/cimb45120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lianbin Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| |
Collapse
|