1
|
Zhao Y, Zhang M, Bhandari B, Li C. Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: research progress, applications, and trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39895375 DOI: 10.1080/10408398.2025.2457420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Food 3D printing brings food processing technology into the digital age. This is a vast field that can provide entertainment experience, personalized food and specific nutritional needs. However, the limited availability of suitable food raw materials has restricted the extensive use of 3D food printing processing technique. The search for novel nutritious and healthy food materials that meet the demand for 3D food printing processing technology is core of the sustainable development of this emerging technology. The printing mechanism, precise nutrition, future outlooks and challenges of 3D food printing technology application in hybrid plant and animal food materials are also analyzed.The results demonstrate that selecting suitable animal and plant materials and mixing them into 3D food printing ingredients without adding food additives can result in printable inks, which can also improve the nutritive value and eating quality of 3D food printed products. Sustainability of novel food materials such as animal cell culture meat and microbial protein mixed with conventional food materials to realize 3D printed food can be a potential research direction. Some other issues should also be considered in future research, such as evaluation of the nutritional efficacy of the product, product stability, shelf life, production efficiency and convenience of process operation.
Collapse
Affiliation(s)
- Yonggan Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Choi HY, Lim EJ, Kim HY. A Review on the Application of Animal-Based Materials Using Three-Dimensional (3D) Printing and Protein Restructuring Technologies. Food Sci Anim Resour 2025; 45:282-302. [PMID: 39840247 PMCID: PMC11743844 DOI: 10.5851/kosfa.2024.e132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat. However, many meat analogs products still differ from conventional meat in terms of sensory properties such as texture, juiciness, and flavor, indicating the need for quality improvement. Researchers have leveraged 3D printing technology to incorporate fat analogs and enhance the appearance and texture through muscle fiber simulation. This technology allows for precise arrangement of muscle fibers, formation of adipose tissue, and marbling, thereby improving the overall sensory experience. By combining extrusion and 3D printing, we can enhance the nutritional and organoleptic qualities of meat analogs, ultimately meeting consumer expectations and achieving a balance between plant- and animal-based materials.
Collapse
Affiliation(s)
- Hyung-Youn Choi
- Food Standard Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Korea
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Eun-Jin Lim
- Department of Geography Education, Kongju National University, Gongju 32588, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
3
|
Zhang S, Wang H, Li S, Zhang J, Zhuang L, Li S. Research on a new process of reconstituted landess goose steak. Food Chem X 2025; 25:102118. [PMID: 39867222 PMCID: PMC11758398 DOI: 10.1016/j.fochx.2024.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
The primary product currently sold from Anser cygnoides is foie gras, with limited research conducted on the processing of Anser cygnoides meat, which consequently restricts its added value. Therefore, the objective of this research is to develop a processing technique for reconstituted goose cutlets using Anser cygnoides meat as the main ingredient, aiming for a compact structure and intact shape after frying. The study examined the effects of compound enzyme quantity, tumbling duration, and molding time on the quality of the reconstituted goose cutlets, utilizing bonding strength, cooking loss rate, color, chewability, adhesiveness, and sensory evaluation as key metrics. Through single-factor and response surface tests, the optimal process parameters were determined as follows: a compound enzyme addition of 3.5 %, a tumbling time of 4 h, and a forming time of 10 h. Under these conditions, the bonding strength measured 34.950 g/cm2, and the reconstituted goose cutlet exhibited strong cohesion while maintaining its shape after frying.
Collapse
Affiliation(s)
- Saisai Zhang
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Hanrui Wang
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang, China
| | - SiYuan Li
- School of Physics and Astronnmy, The University of Edinburgh, UK
| | - Junjie Zhang
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Linwu Zhuang
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shengfu Li
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
4
|
Xiao K, Zhang Y, Pan L, Tu K. Study on color and flavor changes of 4D printed white mushroom gel with microcapsules containing gelatin / β-cyclodextrin induced by microwave heating. Int J Biol Macromol 2024; 279:135365. [PMID: 39244113 DOI: 10.1016/j.ijbiomac.2024.135365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The feasibility of microwave heating to induce color/flavor changes of 4D printed white mushroom gel containing curcumin or γ-dodecalactone (γ-DDL) microcapsules was studied. Using gelatin/ β-cyclodextrin as wall material and soy protein isolate as emulsifier, microcapsules containing curcumin or γ-DDL were prepared by spray drying method. The microcapsules containing curcumin were mixed into white mushroom powder at different mass ratios (0, 0.1, 1, 3, 5 %, w/w) as printing ink. With the increase of microcapsule content, the viscosity, storage modulus and loss modulus of printing ink increased, but the water distribution and recovery performance did not change significantly. With the extension of heating time, the brightness value (L*) and the redness value (a*) of the printed sample increased, and the yellowness value (b*) decreased. After adding 3 % (w/w) microcapsules containing γ-DDL, the content change of the target flavor substance in the printed sample during microwave treatment was determined based on Gaschromatography-mass spectrometry (GC-MS). The results showed that microwave treatment could promote the release of flavor substances, and the content was 272.37 μg/kg when heated for 3 min. This study provides a new idea for the development of 4D printed food with special color and target flavor based on microcapsule technology.
Collapse
Affiliation(s)
- Kunpeng Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Ren Z, Li Z, Hu Z, Xia W, Zhou M, Pan Z, Li J, Zhen Z. Recent insights into bonding technologies in restructured meat production: A review. Food Chem X 2024; 23:101712. [PMID: 39220417 PMCID: PMC11363562 DOI: 10.1016/j.fochx.2024.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Restructuring meat products is one way of improving material utilization and economic efficiency. In this process of combining meat pieces or granules to form larger pieces of meat, the additives and processing techniques employed in bonding the restructured meat play crucial roles in the formation of the structure and appearance of the meat while simultaneously reducing nutrient and water loss and enhancing flavor. This study reviews the adhesives commonly used in meat recombination technology, including transglutaminase, glucono-delta-lactone, fibrin, gelatin, and gel emulsifiers such as hydrophilic colloid, phosphate, starch, and cellulose. Additionally, processing technologies such as high-pressure, ultrasonic, vacuum-assisted, microwave, and three-dimensional printing are discussed, with emphasis on their principles, properties, functionalities, and safety. The study further summarizes the application and research progress of various bonding techniques in restructured meat. It analyzes the advantages, challenges, and development prospects of these techniques to provide support for further research in this field.
Collapse
Affiliation(s)
- Zongyao Ren
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zhijie Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zhonghai Hu
- Lu'an Longxiang Gourmet Poultry Co., Ltd., Lu'an 237400, China
| | - Wenyun Xia
- Food and Drug Inspection and Testing Center, Neijiang 641000, China
| | - Mi Zhou
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zhenjie Pan
- Anhui Liuxiangge Food Co., Ltd., Chuzhou 239000, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Chuzhou 233100, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Chuzhou 233100, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China
| |
Collapse
|
6
|
Mercês ZDCD, Salvadori NM, Evangelista SM, Cochlar TB, Strasburg VJ, da Silva VL, de Oliveira VR. Effectiveness, Challenges, and Environmental Impacts of New Food Strategies with Plant and Animal Protein Products. Foods 2024; 13:3217. [PMID: 39456279 PMCID: PMC11507108 DOI: 10.3390/foods13203217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sustainable food practices are intrinsically linked to human nutrition in the preservation of the ecosystem. This study, therefore, evaluates the effectiveness, challenges, environmental impacts, and new food strategies related to plant and animal products, with a view to promoting more sustainable and healthy eating practices. The search stages were conducted using the following databases: PubMed, Science Direct, and SciElo. The studies selected included those published from 2018 to 2024 and government documents, available in English, Portuguese, and Spanish. The 34 articles analyzed in this study showed the environmental impacts related to the production of plant and animal proteins, highlighting the urgency of implementing changes in this sector. However, factors such as land use, carbon footprint, and water footprint show remarkable differences depending on the type of crop cultivated, agricultural practices adopted, and stages involved in the supply chain. As final considerations, the analysis suggests that achieving sustainability in food systems requires an integrate approach that combines the optimization of plant protein production with a reduction in environmental impacts and the development of technologies that that support the efficiency and resilience of the industry. Meeting the nutritional needs of the population in a sustainable way will only be possible through regional actions and a deep understanding of the challenges and opportunities.
Collapse
Affiliation(s)
- Ziane da Conceição das Mercês
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Natalia Maldaner Salvadori
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Sabrina Melo Evangelista
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Tatiana Barbieri Cochlar
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
| | - Virgílio José Strasburg
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Vanuska Lima da Silva
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| | - Viviani Ruffo de Oliveira
- Post Graduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (Z.d.C.d.M.); (N.M.S.); (S.M.E.); (T.B.C.)
- Department of Nutrition, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil; (V.J.S.); (V.L.d.S.)
| |
Collapse
|
7
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
8
|
Neamah HA, Tandio J. Towards the development of foods 3D printer: Trends and technologies for foods printing. Heliyon 2024; 10:e33882. [PMID: 39050479 PMCID: PMC11268349 DOI: 10.1016/j.heliyon.2024.e33882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
3D printing of food materials is among the innovations that could revolutionize people's food choices and consumption. Food innovation and production have advanced considerably in recent years and its market has shown rapid annual expansion. Printing food technologies are considered as a potential solution for producing customized foods such as military food, and astronaut food. The printable food ink material still lacks standardization and superior extrusion process compared to other 3D printing industries. This review paper aimed to provide a comprehensive review of the current foods 3D printing and the latest technology in certain terms and with its concrete applications. In particular, the following issues are discussed: the printing techniques, exudations classes, business prospects, technologies, printing parameters, food materials, safety, and challenges and limitations of food 3D printing along with possible improvement recommendations. Significant printing parameters have been summarized and the safety of the food printing has been evaluated. Moreover, this article also contains a detailed, tabular evaluation of technical approaches employed across researched based and commercially available systems. One of the major limitations that need to be resolved was standardization of food printing safety.
Collapse
Affiliation(s)
- Husam A. Neamah
- Department of Electrical and Mechatronics Engineering, University of Debrecen, Debrecen, 4028, Hungary
- Technical Engineering College, Al-Ayen University, Thi-Qar, 64001, Iraq
- Department of Business Management, Al-imam University College, Balad, Iraq
| | - Joseph Tandio
- Mechatronic Systems Design, Eindhoven University of Technology, Eindhoven, 5612, Netherlands
| |
Collapse
|
9
|
Samad A, Alam AMMN, Kumari S, Hossain MJ, Lee EY, Hwang YH, Joo ST. Modern Concepts of Restructured Meat Production and Market Opportunities. Food Sci Anim Resour 2024; 44:284-298. [PMID: 38764516 PMCID: PMC11097039 DOI: 10.5851/kosfa.2024.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/21/2024] Open
Abstract
Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.
Collapse
Affiliation(s)
- Abdul Samad
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - AMM Nurul Alam
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
10
|
Lee JS, Han J. Exploring the potential of bacterial cellulose paste as a fat replacer for low-fat plant-based hamburger patties. Food Res Int 2024; 176:113832. [PMID: 38163728 DOI: 10.1016/j.foodres.2023.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Plant-based hamburger patties (PHPs) with reduced fat content made using fat replacers will meet the consumption goals of individuals who consume meat alternative products for health. In this study, we developed a dual-alternative food model by analysing the applicability of bacterial cellulose paste (BCP) as a fat replacer and supplementing it in PHPs. BCPs were prepared with solid contents of (w/w; 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%) and compared and analyzed with three types of conventional vegetable [coconut oil, margarine, and shortening (SH)] and animal fats (beef tallow, butter, and lard) for various characteristics (appearance, dimensional stability, hardness level, and rheological properties). According to the results, BCP with a solid content of 3.0% (w/w) had the most similar characteristics to SH. Therefore, using SH as a control fat, PHPs in which 0%, 25%, 50%, 75%, and 100% (w/w) SH were replaced by 3.0% (w/w) BCP were prepared. Analysis of the appearance, instrumental color, diameter reduction, thickness, cooking loss, and texture profile of the PHPs, confirmed that replacement of 25%-50% (w/w) SH with 3.0% (w/w) BCP in the preparation of PHP resulted in i) redder color, ii) better dimensional stability, iii) lower cooking loss, and iv) higher chewiness of the final products. The results of the sensory evaluation showed that the PHPs, with 25%-50% (w/w) SH replaced with 3.0% (w/w) BCP, exhibited no significant differences (p < 0.05) in overall preference scores compared to the full-SH sample. In conclusion, this study demonstrated the potential of BCP as a fat substitute for the production of PHPs.
Collapse
Affiliation(s)
- Jung-Soo Lee
- Institute of Control Agents for Microorganisms, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Moparthi SS, L GK, Karyappa R, Upadhyay R. 3D printed meat and the fundamental aspects affecting printability. J Texture Stud 2023. [PMID: 37927084 DOI: 10.1111/jtxs.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
Three-dimensional (3D) printing, one of the forms of additive manufacturing, has become a popular trend worldwide with a wide range of applications including food. The technology is adaptable and meets foods nutritional and sensory needs allowing meat processing to reach a sustainable level, technology addressing the food requirement of the ever-increasing population and the fast-paced lifestyle by reducing food preparation time. By minimizing food waste and the strain on animal resources, technology can help to create a more sustainable economy and environment. This review article discusses the 3D printing process and various 3D printing techniques used for food printing, such as laser powder bed fusion, inkjet food printing, and binder jetting, a suitable 3D technique used for meat printing, such as extrusion-based bioprinting. Moreover, we discuss properties that affect the printability of meat and its products with their applications in the meat industry, 3D printing market potential challenges, and future trends.
Collapse
Affiliation(s)
- Sai Sathvika Moparthi
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Gokul Krishna L
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
- Flavingred Products and Services Pvt. Ltd., Palava City, Dombivli, Thane, India
| | - Rahul Karyappa
- Institute of Materials Research and Engineering, Agency for Science (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore
| | - Rituja Upadhyay
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
- Flavingred Products and Services Pvt. Ltd., Palava City, Dombivli, Thane, India
| |
Collapse
|