1
|
Kang L, Li X, Zhao X, Liu T, Jin Y, Duan Y. Effects of L-arginine supplementation on fat deposition and meat quality in growing lambs: Interactions with gut microbiota and metabolic signalling pathways. Food Chem 2025; 479:143677. [PMID: 40081064 DOI: 10.1016/j.foodchem.2025.143677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Arginine (ARG) improves meat quality and fat deposition; however, its effects on gut microbiota-mediated lipid metabolism in lambs remain unclear. Twenty-four lambs were divided into control (fed a basal diet) and ARG groups (with 1 % ARG added). In the ARG group, backfat thickness, shear force in the longissimus thoracis (LT) muscle, and C16:0 and SFA contents in the subcutaneous adipose tissue (SAT) were reduced, whereas the eye muscle area, a* value, and intramuscular fat, C18:2n-6c, C20:4n-6, C20:5n-3, and PUFA contents in the LT were elevated. Moreover, the ARG group exhibited higher levels of Prevotella, Akkermansia, Faecalibacterium, SCFAs, and GLP-1 in the colon, and lower serum triglyceride and glucose levels. Interestingly, ARG differentially regulated lipid metabolism in the SAT and LT via the GLP-1R/AMPK and triglyceride metabolism signalling pathways. Overall, ARG addition may optimise gut microbiota composition, fat deposition, and meat quality, providing application guidance for regulating fat deposition in lambs.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xuan Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
2
|
Wang K, Ma HN, Song JX, Yuan X. Color and fluorescence orthogonal dual-functional visual turn-on sensing for acidic and alkaline glyphosate and additive. Food Chem 2025; 464:141816. [PMID: 39488051 DOI: 10.1016/j.foodchem.2024.141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
In this work, benefitting from the sensitive pH-responsiveness of both meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) and calixpyridinium, and their controllable strong noncovalent interactions, the first orthogonal dual-functional visual sensor for simultaneously and separately detecting acidic and alkaline substances without interference by using UV-Vis absorption and fluorescence emission spectra with both "turn on" signal changes was constructed by the supramolecular assembly of calixpyridinium with TPPS4. Color and fluorescence orthogonal dual-functional visual "turn-on" sensing for acidic and alkaline glyphosate and additive by calixpyridinium-TPPS4 sensor was further practically applied. The preparation of this sensor is quite simple in an environmentally friendly water medium. Only 2 μM calixpyridinium and 3 μM TPPS4 are needed to construct this assembly sensor. This sensor has a good biocompatibility, a high selectivity and sensitivity. Moreover, calixpyridinium-TPPS4 sensor can also be applied as a thermal switch and a light controlled anti-counterfeit material.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Hui-Na Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Jia-Xuan Song
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Xing Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| |
Collapse
|
3
|
An J, Zhao X, Song Y, He H, Wang Z, Lan X, Ge Y, Liu L, Cheng A, Shen W, Wan F. High leucine bioavailability improves beef quality by altering serum metabolism in beef cattle. Meat Sci 2025; 220:109693. [PMID: 39486216 DOI: 10.1016/j.meatsci.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
This study aimed to investigate the effect of dietary L-Leu supplementation on amino acid composition, serum metabolism, and meat quality characteristics in beef cattle. Twenty-four Angus cows of similar initial weight (575.5 ± 22.1 kg) were randomly assigned to two treatment groups with six replicate pens (two cattle per pen). The groups were fed a basal diet (CON) or a basal diet supplemented with 6.0 g/100 kg BW per day of L-Leu for 120 days pre-slaughter. Feeding L-Leu significantly increased average daily gain and decreased feed-to-weight-gain ratio (P < 0.05). L-Leu improved plasma free leucine bioavailability (P < 0.05), increased the concentrations of tyrosine and glutamine (P < 0.05), and decreased the concentrations of threonine and valine (P < 0.05). It also increased the content of total protein in plasma (P < 0.05). Supplementation with L-Leu tended to increase the marbling score (P = 0.06) and decrease subcutaneous fat thickness (P = 0.06), as well as the content of C10:0 (P < 0.05), C14:0 (P = 0.05), C20:0 (P < 0.05), and C18:2n-6 t (P = 0.07) in the longissimus thoracis muscle. However, L-Leu significantly increased the crude protein content in the longissimus thoracis muscle (P < 0.05). Correlation analysis revealed that L-Leu downregulated the relative abundance of metabolites associated with subcutaneous fat thickness and beef fatty acid synthesis (P < 0.01), and upregulated the relative abundance of metabolites associated with crude protein and ether extract in the longissimus thoracis muscle (P < 0.01). In conclusion, dietary L-Leu supplementation increases leucine bioavailability and improves meat quality in fattening beef cattle by altering host serum metabolism.
Collapse
Affiliation(s)
- Jishan An
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Xiangchao Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Huitian He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yu Ge
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Lei Liu
- Yuelushan Laboratory, Changsha 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Cheng
- Yuelushan Laboratory, Changsha 410128, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
4
|
Lu M, Xie T, Wang Y, Yang J, Bai Y, Gao S, Wu X, Yang X. Primary metabolomics and transcriptomic techniques were used to explore the regulatory mechanisms that may influence the flavor characteristics of fresh Corylus heterophylla × Corylus avellana. FRONTIERS IN PLANT SCIENCE 2025; 15:1475242. [PMID: 39949634 PMCID: PMC11821611 DOI: 10.3389/fpls.2024.1475242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025]
Abstract
To explore the flavor related regulatory mechanisms of fresh Corylus heterophylla × Corylus avellana, a joint analysis of metabolome and transcriptome were utilized to compare the two typical C. heterophylla × C. avellana varieties with different flavors ('yuzhui' and 'pingou21') in this paper. The results showed that the genes including E2.4.1.67-1, E2.4.1.67-2, SUS-1, SUS-2, SUS-4, SUS-5, SUS-7, SUS-8, SUS-9, UGP2-2 were identified as responsible for regulating the levels of stachyose, manninotriose and raffinose in hazelnuts. CS and OGDH were deemed as the genes involved in the citric acid cycle, which was a central metabolic pathway that generated energy through the oxidation of carbohydrates, fats and proteins in hazelnuts. The genes trpD, ALDO, PK-1, PK-2, ilvH, argE-1, argE-4, argE-5, argD, PDAH, GLTI were regarded as involved in the biosynthesis of various amino acids like tryptophan, valine, alanine, and arginine. These amino acids determined the taste of C. heterophylla × C. avellana and were important precursors of other flavor-related compounds. The genes LOX2S-2, LOX2S-3, LOX2S-4 and LCAT3 were viewed as involved in the regulation of lipid biosynthesis, specifically involving 13(S)-HPODE, 9,10,13-trihome and 13(S)-HOTrE in C. heterophylla × C. avellana. These findings highlight the significance of genes and metabolites and internal regulatory mechanisms in shaping the flavor of fresh C. heterophylla × C. avellana cultivated in temperate continents. This study provides the theoretical basis for breeding excellent food functional hazelnut varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuqing Yang
- College of Forestry, Shanxi Agriculture University, Taigu, China
| |
Collapse
|
5
|
Kang L, Wang W, Yang L, Liu T, Zhang T, Xie J, Zhai M, Zhao X, Duan Y, Jin Y. Effects of feeding patterns on production performance, lipo-nutritional quality and gut microbiota of Sunit sheep. Meat Sci 2024; 218:109642. [PMID: 39208537 DOI: 10.1016/j.meatsci.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the impact of feeding patterns on the production performance, lipo-nutritional quality, and gut microbiota of Sunit sheep. A total of 24 sheep were assigned to two groups: confinement feeding (CF) and pasture feeding (PF) groups. After 90 days, the CF group exhibited significantly increased average daily gain, carcass weight, backfat thickness, and intramuscular fat content of the sheep, whereas the PF group showed significantly increased pH24h and decreased L∗ value and cooking loss of the longissimus lumborum (LL) muscle (P < 0.05). In the PF group, the contents of linoleic, α-linolenic, and docosahexaenoic acids were considerably higher and the n-6/n-3 polyunsaturated fatty acid ratio was significantly lower (P < 0.05). Furthermore, the triglyceride, cholesterol, and nonesterified fatty acid levels in the serum of the CF group significantly increased, whereas the enzyme contents of fatty acid synthase (FASN) and hormone-sensitive lipase (HSL) in the LL muscle of the PF group were markedly elevated (P < 0.05). The PF group also showed altered expression of lipid metabolism-related genes, including upregulated FASN, HSL, fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (P < 0.05). Meanwhile, differences were observed in the abundance of key bacteria and microbiota functions between the groups. Correlation analysis revealed that production performance and lipid metabolism may be related to the differential effects of bacteria. In conclusion, the transition in the feeding patterns of Sunit sheep caused changes in the gut microbial community and lipid metabolism level in the muscle as well as differences in fat deposition and meat quality.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Weihao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Taiwu Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Junkang Xie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Maoqin Zhai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
6
|
Liu C, Yang Y, Wang M, Jiang W, Du Y, Hao Z, Chen L, Zhu K, Liu B, Niu L, Zhao Y, Wang Y, Gan M, Shen L, Zhu L. Effects of L-arginine on gut microbiota and muscle metabolism in fattening pigs based on omics analysis. Front Microbiol 2024; 15:1490064. [PMID: 39588104 PMCID: PMC11586382 DOI: 10.3389/fmicb.2024.1490064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction L-arginine is an α-amino acid and a semi-essential nutrient of significant biological interest. It plays a role in influencing various aspects of animal meat traits, gut microbiota composition, and physiological metabolism. Methods This study aimed to investigate the combined effects of L-arginine supplementation on gut microbiota composition and the metabolism of the longissimus dorsi muscle in fattening pigs. Eighteen Yorkshire commercial pigs were divided into two groups: a control group that received no supplements and a treatment group that was given 1% L-arginine for 52 days. The diversity and composition of microorganisms in the feces of the control (NC) and L-arginine (Arg) groups were analyzed by sequencing the 16S rRNA V3 -V4 region of the bacterial genome. Results The findings indicated that L-arginine supplementation increased both the abundance and diversity of gut microbiota, particularly affecting the Firmicutes and Bacteroidetes phyla. KEGG enrichment analysis revealed significant changes in several metabolism-related pathways, including amino acid, carbohydrate, and lipid metabolism. Metabolomic analysis identified 85 differential metabolites between the arginine and control groups, with phospholipids ranking among the top 20. Additionally, functional predictions indicated an increased abundance in the glycerophospholipid metabolism pathway. Correlation analysis linked changes in gut microbiota to phospholipid levels, which subsequently influenced post-slaughter meat color and drip loss. Discussion These results suggest that L-arginine supplementation positively impacts gut microbiota composition and the metabolic profile of the longissimus dorsi muscle in fattening pigs, with potential implications for meat quality.
Collapse
Affiliation(s)
- Chengming Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiting Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Meng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yong Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ziling Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Yao B, Zhang D, Wu X, He R, Gao H, Chen K, Xiang D, Tang Y. Exploring the impact of irradiation on the sensory quality of pork based on a metabolomics approach. Food Chem X 2024; 22:101460. [PMID: 38803672 PMCID: PMC11129168 DOI: 10.1016/j.fochx.2024.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The effects of irradiation on pork quality characteristics were investigated by combining sensory experiments, pork color, TBARS, volatile components, and differential metabolites. Pork irradiated at a dose of 1 kGy received the highest sensory scores, whereas pork irradiated at doses of 3 and 5 kGy obtained lower sensory scores, particularly with regard to odor. Irradiation makes pork more ruddy and promotes fat oxidation, leading to increased a* and TBARS values. The main volatile substances in irradiated pork were hydrocarbons, aldehydes, and alcohols, and hexanal, heptanal, and valeric acid were considered as important substances responsible for the generation of radiation-induced off-flavors. 65 differential metabolites were identified. l-pyroglutamic acid, l-glutamate, l-proline, fumarate acids, betaine, and l-anserine were considered as the main substances contributing to the differences in pork quality. In addition, metabolic pathways such as arginine biosynthesis, alanine, aspartate and glutamate metabolism were found to be considerably affected by irradiation.
Collapse
Affiliation(s)
- Bo Yao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Xinyu Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ruiyan He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hui Gao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kailan Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Xiang
- Chengdu Xiwang Food., Ltd, Chengdu 610000, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Sichuan Yiyang Modern Agricultural Development, Ltd, Chengdu 610000, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
8
|
Contreras-Lopez G, Garcia-Galicia IA, Carrillo-Lopez LM, Corral-Luna A, Buenabad-Carrasco L, Titulaer M, Villarreal-Balderrama JA, Alarcon-Rojo AD. Exploration of Microencapsulation of Arginine in Carnauba Wax ( Copernicia prunifera) and Its Dietary Effect on the Quality of Beef. Animals (Basel) 2024; 14:1857. [PMID: 38997969 PMCID: PMC11240376 DOI: 10.3390/ani14131857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this exploratory study was to assess if microencapsulated arginine influences the physicochemical quality of beef. The study included three genetic groups: Angus, Hereford, and Angus × Hereford crossbreed. Two encapsulation systems were used with carnauba wax, at ratios of 3:1 and 2:1, carnauba wax:core (arginine), respectively. A control treatment was also included with no arginine addition. Encapsulated arginine with a 3:1 ratio increased redness by 19.66 at 28 d aged beef compared to the control and 2:1 ratio with values of 18.55 and 16.77, respectively (p = 0.01). Encapsulated arginine at a 3:1 ratio showed the lowest meat shear force values with 24.32 N at 28 d of ageing (p < 0.001). The Angus breed also had a low value of 24.02 N (p < 0.001). Finally, the highest values of intramuscular fat were observed with the inclusion of arginine in a 3:1 ratio. The fat value reached 2.12% with a 3:1 ratio (p = 0.002), while in the Angus breed it was 1.59%. The addition of carnauba wax-encapsulated arginine can improve meat quality. It enhances red color, tenderness, and marbling in bovine meat.
Collapse
Affiliation(s)
- German Contreras-Lopez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Ivan A. Garcia-Galicia
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
- C.E.I.E.G.T., Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, km. 5.5 Carr. Fed, Martínez de la Torre-Tlapacoyan, Tlapacoyan 93600, Mexico
| | - Luis Manuel Carrillo-Lopez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| | - Agustin Corral-Luna
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Lorenzo Buenabad-Carrasco
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Mieke Titulaer
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - José A. Villarreal-Balderrama
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| | - Alma D. Alarcon-Rojo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif, Francisco R, Almada km 1, Chihuahua, Chihuahua 31453, Mexico; (G.C.-L.); (A.C.-L.); (L.B.-C.); (M.T.); (J.A.V.-B.); (A.D.A.-R.)
| |
Collapse
|
9
|
Li T, Qin W, Wu B, Jin X, Zhang R, Zhang J, Du L. Effects of glycyrrhiza polysaccharides on growth performance, meat quality, serum parameters and growth/meat quality-related gene expression in broilers. Front Vet Sci 2024; 11:1357491. [PMID: 38435364 PMCID: PMC10904541 DOI: 10.3389/fvets.2024.1357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.
Collapse
Affiliation(s)
- Tiyu Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Weize Qin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Baiyila Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
10
|
Qi Y, Wang X, Zhu C, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, Shi B, Hu J. Mutations in the FOXO3 Gene and Their Effects on Meat Traits in Gannan Yaks. Int J Mol Sci 2024; 25:1948. [PMID: 38396627 PMCID: PMC10888663 DOI: 10.3390/ijms25041948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The FOXO3 gene, a prominent member of the FOXO family, has been identified as a potential quantitative trait locus for muscle atrophy and lipid metabolism in livestock. It is also considered a promising candidate gene for meat quality traits such as Warner-Bratzler shear force (WBSF) and water holding capacity (WHC). The aim of this study was to identify sequence mutations in the FOXO3 gene of yaks and to analyze the association of genotypes and haplotypes with meat traits such as WBSF and WHC. Quantitative reverse-transcriptase PCR (RT-qPCR) was applied to determine the expression levels of FOXO3 in yak tissues, with the results revealing a high expression in the yak longissimus dorsi muscle. Exons of the FOXO3 gene were then sequenced in 572 yaks using hybrid pool sequencing. Five single nucleotide polymorphisms were identified. Additionally, four effective haplotypes and four combined haplotypes were constructed. Two mutations of the FOXO3 gene, namely C>G at exon g.636 and A>G at exon g.1296, were associated with cooked meat percentage (CMP) (p < 0.05) and WBSF (p < 0.05), respectively. Furthermore, the WBSF of the H2H3 haplotype combination was significantly lower than that of other combinations (p < 0.05). The findings of this study suggest that genetic variations in FOXO3 could be a promising biomarker for improving yak meat traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Q.); (X.W.); (C.Z.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Q.); (X.W.); (C.Z.); (B.M.); (C.C.); (S.C.); (Z.Z.); (F.Z.); (X.L.); (J.W.)
| |
Collapse
|