1
|
Jang JH, Bayaraa U, Lee JH, Lee OR. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109602. [PMID: 39922022 DOI: 10.1016/j.plaphy.2025.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The patatin-related phospholipase AIII (pPLAIII) gene family plays a crucial role in regulating cell elongation, cell wall composition, and lipid metabolism in plants, making it a promising target for agricultural and commercial innovations. This study provides a comprehensive functional analysis of PgpPLAIIIβ in Panax ginseng, a medicinal plant of substantial economic importance. Overexpression of PgpPLAIIIβ led to significant morphological changes, including shorter, thicker roots, and an 8% reduction in lignin content, while cellulose levels remained unaffected. The reduced lignification was attributed to the downregulation of key lignin biosynthetic genes and decreased hydrogen peroxide accumulation. A yeast two-hybrid assay identified a CCCH-type zinc finger protein as a potential PgpPLAIIIβ interactor, pointing to a mechanism that may underlie the changes in root structure and lignin deposition. Metabolite analysis revealed a 7.6% increase in total free fatty acid content, with notable increases in palmitic and linoleic acids, alongside a 28% reduction in ginsenoside levels, linked to the downregulation of triterpenoid biosynthetic genes. These findings demonstrate that PgpPLAIIIβ is a key regulator of root architecture, lignin composition, and secondary metabolite balance in ginseng. The metabolic engineering of PgpPLAIIIβ could be a powerful strategy to improve root traits, optimize lignin deposition, and enhance metabolite profiles, ultimately boosting the commercial and medicinal value of ginseng.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Unenzaya Bayaraa
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae Hyun Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Rao X, Liu W. A Guide to Metabolic Network Modeling for Plant Biology. PLANTS (BASEL, SWITZERLAND) 2025; 14:484. [PMID: 39943046 PMCID: PMC11820892 DOI: 10.3390/plants14030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Plants produce a diverse array of compounds that play crucial roles in growth, in development, and in responses to abiotic and biotic stresses. Understanding the fluxes within metabolic pathways is essential for guiding strategies aimed at directing metabolism for crop improvement and the plant natural product industry. Over the past decade, metabolic network modeling has emerged as a predominant tool for the integration, quantification, and prediction of the spatial and temporal distribution of metabolic flows. In this review, we present the primary methods for constructing mathematical models of metabolic systems and highlight recent achievements in plant metabolism using metabolic modeling. Furthermore, we discuss current challenges in applying network flux analysis in plants and explore the potential use of machine learning technologies in plant metabolic modeling. The practical application of mathematical modeling is expected to provide significant insights into the structure and regulation of plant metabolic networks.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| |
Collapse
|
3
|
Terletskaya NV, Erbay M, Mamirova A, Ashimuly K, Korbozova NK, Zorbekova AN, Kudrina NO, Hoffmann MH. Altitude-Dependent Morphophysiological, Anatomical, and Metabolomic Adaptations in Rhodiola linearifolia Boriss. PLANTS (BASEL, SWITZERLAND) 2024; 13:2698. [PMID: 39409568 PMCID: PMC11479101 DOI: 10.3390/plants13192698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Rhodiola linearifolia Boriss., a perennial alpine plant from the Crassulaceae family, is renowned for its unique medicinal properties. However, existing research on this species is limited, particularly regarding the impact of altitude on its physiological and medicinal compounds. The current study employed morphophysiological and anatomical methods to explore the adaptive mechanisms of R. linearifolia across different altitudinal gradients, while also examining photosynthetic pigments and metabolomic changes. Our results indicate that despite the simultaneous effects of various mountain abiotic factors, significant correlations can be identified between altitude and trait variation. An optimal growth altitude of 2687 m above sea level was identified, which is pivotal for sustainable ecosystem management and potential species introduction strategies. It is noted that increasing altitude stress enhances the synthesis of secondary antioxidant metabolites in R. linearifolia, enhancing its pharmaceutical potential.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Malika Erbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim N. Zorbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Matthias H. Hoffmann
- Wittenberg Institut für Geobotanik und Botanischer Garten, Martin-Luther-Universität Halle, Am Kirchtor 3, D-06108 Halle, Germany;
| |
Collapse
|
4
|
Khalkho JP, Beck A, Priyanka, Panda B, Chandra R. Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids. Arch Microbiol 2024; 206:340. [PMID: 38960981 DOI: 10.1007/s00203-024-04067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
Collapse
Affiliation(s)
- Jaya Prabha Khalkho
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Beck
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyanka
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Banishree Panda
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ramesh Chandra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
6
|
Rao X, Barros J. Modeling lignin biosynthesis: a pathway to renewable chemicals. TRENDS IN PLANT SCIENCE 2024; 29:546-559. [PMID: 37802691 DOI: 10.1016/j.tplants.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Plant biomass contains lignin that can be converted into high-value-added chemicals, fuels, and materials. The precise genetic manipulation of lignin content and composition in plant cells offers substantial environmental and economic benefits. However, the intricate regulatory mechanisms governing lignin formation challenge the development of crops with specific lignin profiles. Mathematical models and computational simulations have recently been employed to gain fundamental understanding of the metabolism of lignin and related phenolic compounds. This review article discusses the strategies used for modeling plant metabolic networks, focusing on the application of mathematical modeling for flux network analysis in monolignol biosynthesis. Furthermore, we highlight how current challenges might be overcome to optimize the use of metabolic modeling approaches for developing lignin-engineered plants.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jaime Barros
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Terletskaya NV, Mamirova A, Ashimuly K, Vibe YP, Krekova YA. Anatomical and Metabolome Features of Haloxylon aphyllum and Haloxylon persicum Elucidate the Resilience against Gall-Forming Insects. Int J Mol Sci 2024; 25:4738. [PMID: 38731957 PMCID: PMC11084765 DOI: 10.3390/ijms25094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Globally, gall-forming insects significantly contribute to the degradation of desert ecosystems. Recent studies have demonstrated that Haloxylon persicum suffers less damage from gall-formers compared to Haloxylon aphyllum. However, the mechanisms driving the long-term metabolic responses of these species to gall-forming biotic stress in their natural environment remain unclear. The current study comparatively analyzes the anatomical features and metabolomic changes in H. aphyllum and H. persicum damaged by gall-forming insects. This research aimed to uncover potential metabolic tolerance mechanisms through GC-MS analysis. The study findings indicate that gall-forming insects cause a reduction in nearly all the anatomical structures of Haloxylon shoots, with the effects being less severe in H. persicum than in H. aphyllum. Thus, the metabolic pathways responsible for the biosynthesis of biologically active substances that enhance resistance to gall inducers were different, specifically in H. aphyllum-the biosynthesis of fatty acids (+their derivatives) and γ-tocopherol (vitamin E) and H. persicum-the biosynthesis of fatty acids (+their derivatives), dialkyl ethers, carbohydrates (+their derivatives), aromatic acid derivatives, phytosterols, γ-tocopherol (vitamin E), phenols, and terpenoids. The results suggest that the modulation of metabolic pathways under biotic stress plays a crucial role in the enhanced survival and growth of H. persicum.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan;
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Yekaterina P. Vibe
- A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Kirov 58, Shchuchinsk 021704, Kazakhstan; (Y.P.V.); (Y.A.K.)
| | - Yana A. Krekova
- A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Kirov 58, Shchuchinsk 021704, Kazakhstan; (Y.P.V.); (Y.A.K.)
| |
Collapse
|
8
|
Babele PK, Srivastava A, Young JD. Metabolic flux phenotyping of secondary metabolism in cyanobacteria. Trends Microbiol 2023; 31:1118-1130. [PMID: 37331829 DOI: 10.1016/j.tim.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Cyanobacteria generate energy from photosynthesis and produce various secondary metabolites with diverse commercial and pharmaceutical applications. Unique metabolic and regulatory pathways in cyanobacteria present new challenges for researchers to enhance their product yields, titers, and rates. Therefore, further advancements are critically needed to establish cyanobacteria as a preferred bioproduction platform. Metabolic flux analysis (MFA) quantitatively determines the intracellular flows of carbon within complex biochemical networks, which elucidate the control of metabolic pathways by transcriptional, translational, and allosteric regulatory mechanisms. The emerging field of systems metabolic engineering (SME) involves the use of MFA and other omics technologies to guide the rational development of microbial production strains. This review highlights the potential of MFA and SME to optimize the production of cyanobacterial secondary metabolites and discusses the technical challenges that lie ahead.
Collapse
Affiliation(s)
- Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University Jhansi, 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA.
| |
Collapse
|
9
|
Huang X, Wu X, Sun G, Jiang Y, Yan H. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Development in Rosa roxburghii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3425. [PMID: 37836165 PMCID: PMC10575181 DOI: 10.3390/plants12193425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Gibberellins (GAs) play indispensable roles in the fruit development of horticultural plants. Unfortunately, the molecular basis behind GAs regulating fruit development in R. roxburghii remains obscure. Here, GA3 spraying to R. roxburghii 'Guinong 5' at full-bloom promoted fruit size and weight, prickle development, seed abortion, ascorbic acid accumulation, and reduction in total soluble sugar. RNA-Seq analysis was conducted to generate 45.75 Gb clean reads from GA3- and non-treated fruits at 120 days after pollination. We obtained 4275 unigenes belonging to differently expressed genes (DEGs). Gene ontology and the Kyoto Encyclopedia of Genes and Genomes displayed that carbon metabolism and oxidative phosphorylation were highly enriched. The increased critical genes of DEGs related to pentose phosphate, glycolysis/gluconeogenesis, and citrate cycle pathways might be essential for soluble sugar degradation. Analysis of DEGs implicated in ascorbate revealed the myoinositol pathway required to accumulate ascorbic acid. Finally, DEGs involved in endogenous phytohormones and transcription factors, including R2R3 MYB, bHLH, and WRKY, were determined. These findings indicated that GA3-trigged morphological alterations might be related to the primary metabolites, hormone signaling, and transcription factors, providing potential candidate genes that could be guided to enhance the fruit development of R. roxburghii in practical approaches.
Collapse
Affiliation(s)
- Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Xiaoai Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Guilian Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Yu Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| |
Collapse
|
10
|
Lima IHA, Rodrigues AA, Resende EC, da Silva FB, Farnese FDS, Silva LDJ, Rosa M, Reis MNO, Bessa LA, de Oliveira TC, Januário AH, Silva FG. Light means power: harnessing light spectrum and UV-B to enhance photosynthesis and rutin levels in microtomato plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1261174. [PMID: 37731978 PMCID: PMC10507176 DOI: 10.3389/fpls.2023.1261174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Urban vertical agriculture with lighting system can be an alternative green infrastructure to increase local food production irrespective of environmental and soil conditions. In this system, light quality control can improve the plant physiological performance, well as induce metabolic pathways that contribute to producing phenolic compounds important to human health. Therefore, this study aimed to evaluate the influence of RBW (red, blue and white) and monochromatic (red and blue; R and B, respectively) light associated or not with UV-B on photosynthetic performance and phenolic compound production in microtomato fruits cultivated via vertical agriculture. The experimental design adopted was completely randomized, with six replicates illuminated with 300 µmol·m-2·s-1 light intensities (RBW, RBW + UV, B, B + UV, R, and R + UV), 12 h photoperiod, and 3.7 W·m-2 UV-B irradiation for 1 h daily for the physiological evaluations. Twenty-six days after the installation, gas exchange, chlorophyll a fluorescence and nocturnal breathing were evaluated. Fruits in different ripening stages (green, orange, and red) were collected from microtomato plants grown under with different light qualities, to evaluate the physiological performance. The identification and quantification of the phenolic compound rutin was also performed to investigate their metabolic response. This study identified that plants grown under B + UV had high photosynthetic rates (A=11.57 µmol·m-2·s-1) and the fruits at all maturation stages from plants grown under B and B + UV had high rutin content. Meanwhile, the activation of suppressive mechanisms was necessary in plants grown under R because of the high nocturnal respiration and unregulated quantum yield of the non-photochemical dissipation of the photosystem II. These results highlight the importance of selecting light wavelength for vegetable cultivation to produce fruits with a high content of specialized metabolites that influence color, flavor, and health promotion, which is of special interest to farmers using sustainable cropping systems.
Collapse
Affiliation(s)
- Iury Henrique Almeida Lima
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Arthur Almeida Rodrigues
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Erika Crispim Resende
- Department of Biomolecules, Goiano Federal Institute of Education, Science and Technology, Iporá, Brazil
| | - Fábia Barbosa da Silva
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Fernanda dos Santos Farnese
- Laboratory of Plant Physiology, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Lucas de Jesus Silva
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Márcio Rosa
- PostGraduate Program in Plant Production, University of Rio Verde, Rio Verde, Brazil
| | - Mateus Neri Oliveira Reis
- Biodiversity Metabolism and Genetics Laboratory, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Layara Alexandre Bessa
- Biodiversity Metabolism and Genetics Laboratory, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Thales Caetano de Oliveira
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| | - Ana Helena Januário
- Research Center for Exact and Technological Sciences, Franca University, Franca, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Advanced Studies in Vertical Agriculture, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Brazil
| |
Collapse
|
11
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
12
|
Habib MA, Islam MM, Islam MM, Hasan MM, Baek KH. Current Status and De Novo Synthesis of Anti-Tumor Alkaloids in Nicotiana. Metabolites 2023; 13:metabo13050623. [PMID: 37233664 DOI: 10.3390/metabo13050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Alkaloids are the most diversified nitrogen-containing secondary metabolites, having antioxidant and antimicrobial properties, and are extensively used in pharmaceuticals to treat different types of cancer. Nicotiana serves as a reservoir of anti-cancer alkaloids and is also used as a model plant for the de novo synthesis of various anti-cancer molecules through genetic engineering. Up to 4% of the total dry weight of Nicotiana was found to be composed of alkaloids, where nicotine, nornicotine, anatabine, and anabasine are reported as the dominant alkaloids. Additionally, among the alkaloids present in Nicotiana, β-carboline (Harmane and Norharmane) and Kynurenines are found to show anti-tumor effects, especially in the cases of colon and breast cancers. Creating new or shunting of existing biosynthesis pathways in different species of Nicotiana resulted in de novo or increased synthesis of different anti-tumor molecules or their derivatives or precursors including Taxadiane (~22.5 µg/g), Artemisinin (~120 μg/g), Parthenolide (~2.05 ng/g), Costunolide (~60 ng/g), Etoposide (~1 mg/g), Crocin (~400 µg/g), Catharanthine (~60 ng/g), Tabersonine (~10 ng/g), Strictosidine (~0.23 mg/g), etc. Enriching the precursor pool, especially Dimethylallyl Diphosphate (DMAPP), down-regulating other bi-product pathways, compartmentalization or metabolic shunting, or organelle-specific reconstitution of the precursor pool, might trigger the enhanced accumulation of the targeted anti-cancer alkaloid in Nicotiana.
Collapse
Affiliation(s)
- Md Ahsan Habib
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mobinul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mukul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Gao Z, Yang X, Chen J, Rausher MD, Shi T. Expression inheritance and constraints on cis- and trans-regulatory mutations underlying lotus color variation. PLANT PHYSIOLOGY 2023; 191:1662-1683. [PMID: 36417237 PMCID: PMC10022630 DOI: 10.1093/plphys/kiac522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Both cis- and trans-regulatory mutations drive changes in gene expression that underpin plant phenotypic evolution. However, how and why these two major types of regulatory mutations arise in different genes and how gene expression is inherited and associated with these regulatory changes are unclear. Here, by studying allele-specific expression in F1 hybrids of pink-flowered sacred lotus (Nelumbo nucifera) and yellow-flowered American lotus (N. lutea), we reveal the relative contributions of cis- and trans-regulatory changes to interspecific expression rewiring underlying petal color change and how the expression is inherited in hybrids. Although cis-only variants influenced slightly more genes, trans-only variants had a stronger impact on expression differences between species. In F1 hybrids, genes under cis-only and trans-only regulatory effects showed a propensity toward additive and dominant inheritance, respectively, whereas transgressive inheritance was observed in genes carrying both cis- and trans-variants acting in opposite directions. By investigating anthocyanin and carotenoid coexpression networks in petals, we found that the same category of regulatory mutations, particularly trans-variants, tend to rewire hub genes in coexpression modules underpinning flower color differentiation between species; we identified 45 known genes with cis- and trans-regulatory variants significantly correlated with flower coloration, such as ANTHOCYANIN 5-AROMATIC ACYLTRANSFERASE (ACT), GLUTATHIONE S-TRANSFERASE F11 (GSTF11), and LYCOPENE Ε-CYCLASE (LCYE). Notably, the relative abundance of genes in different categories of regulatory divergence was associated with the inferred magnitude of constraints like expression level and breadth. Overall, our study suggests distinct selective constraints and modes of gene expression inheritance among different regulatory mutations underlying lotus petal color divergence.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
14
|
Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: achievements and perspectives. Curr Opin Biotechnol 2023; 79:102856. [PMID: 36473330 DOI: 10.1016/j.copbio.2022.102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
The plant kingdom represents the biggest source of feedstock, food, and added-value compounds. Engineering plant metabolic pathways to increase the phytochemical production or improve the nutraceutical value of crops is challenging because of the intricate interaction networks that link multiple genes, enzymatic steps, and metabolites, even when pathways are fully elucidated. The development of clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) technologies has helped to overcome limitations in metabolic engineering, providing efficient and versatile tools for multigene editing. CRISPR approaches in plants were shown to have a remarkable efficiency in genome editing of different species to improve agronomic and metabolic traits. Here, we give an overview of the different achievements and perspectives of CRISPR technology in plant metabolic engineering.
Collapse
|
15
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
16
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
17
|
Sethi A, Bhandawat A, Pati PK. Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites. PLANTA 2022; 256:119. [PMID: 36378350 PMCID: PMC9664027 DOI: 10.1007/s00425-022-04024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Cytochorme P450s (CYPs) play a critical role in the catalysis of secondary metabolite biosynthetic pathways. For their commercial use, various strategies for metabolic pathway engineering using CYP as a potential target have been explored. Plants produce a vast diversity of secondary metabolites which are being used to treat various ailments and diseases. Some of these metabolites are difficult to obtain in large quantities limiting their industrial use. Cytochrome P450 enzymes (CYPs) are important catalysts in the biosynthesis of highly valued secondary metabolites, and are found in all domains of life. With the development of high-throughput sequencing and high-resolution mass spectrometry, new biosynthetic pathways and associated CYPs are being identified. In this review, we present CYPs identified from medicinal plants as a potential game changer in the metabolic engineering of secondary metabolic pathways. We present the achievements made so far in enhancing the production of important bioactivities through pathway engineering, giving some popular examples. At last, current challenges and possible strategies to overcome the limitations associated with CYP engineering to enhance the biosynthesis of target secondary metabolites are also highlighted.
Collapse
Affiliation(s)
- Anshika Sethi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Bhandawat
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
18
|
Banh ATM, Thiele B, Chlubek A, Hombach T, Kleist E, Matsubara S. Combination of long-term 13CO 2 labeling and isotopolog profiling allows turnover analysis of photosynthetic pigments in Arabidopsis leaves. PLANT METHODS 2022; 18:114. [PMID: 36183136 PMCID: PMC9526918 DOI: 10.1186/s13007-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Living cells maintain and adjust structural and functional integrity by continual synthesis and degradation of metabolites and macromolecules. The maintenance and adjustment of thylakoid membrane involve turnover of photosynthetic pigments along with subunits of protein complexes. Quantifying their turnover is essential to understand the mechanisms of homeostasis and long-term acclimation of photosynthetic apparatus. Here we report methods combining whole-plant long-term 13CO2 labeling and liquid chromatography - mass spectrometry (LC-MS) analysis to determine the size of non-labeled population (NLP) of carotenoids and chlorophylls (Chl) in leaf pigment extracts of partially 13C-labeled plants. RESULTS The labeling chamber enabled parallel 13CO2 labeling of up to 15 plants of Arabidopsis thaliana with real-time environmental monitoring ([CO2], light intensity, temperature, relative air humidity and pressure) and recording. No significant difference in growth or photosynthetic pigment composition was found in leaves after 7-d exposure to normal CO2 (~ 400 ppm) or 13CO2 in the labeling chamber, or in ambient air outside the labeling chamber (control). Following chromatographic separation of the pigments and mass peak assignment by high-resolution Fourier-transform ion cyclotron resonance MS, mass spectra of photosynthetic pigments were analyzed by triple quadrupole MS to calculate NLP. The size of NLP remaining after the 7-d 13CO2 labeling was ~ 10.3% and ~ 11.5% for all-trans- and 9-cis-β-carotene, ~ 21.9% for lutein, ~ 18.8% for Chl a and 33.6% for Chl b, highlighting non-uniform turnover of these pigments in thylakoids. Comparable results were obtained in all replicate plants of the 13CO2 labeling experiment except for three that were showing anthocyanin accumulation and growth impairment due to insufficient water supply (leading to stomatal closure and less 13C incorporation). CONCLUSIONS Our methods allow 13CO2 labeling and estimation of NLP for photosynthetic pigments with high reproducibility despite potential variations in [13CO2] between the experiments. The results indicate distinct turnover rates of carotenoids and Chls in thylakoid membrane, which can be investigated in the future by time course experiments. Since 13C enrichment can be measured in a range of compounds, long-term 13CO2 labeling chamber, in combination with appropriate MS methods, facilitates turnover analysis of various metabolites and macromolecules in plants on a time scale of hours to days.
Collapse
Affiliation(s)
- Anh Thi-Mai Banh
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Björn Thiele
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
- IBG-3: Agrosphere, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antonia Chlubek
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Hombach
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Einhard Kleist
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
19
|
Devi A, Seth R, Masand M, Singh G, Holkar A, Sharma S, Singh A, Sharma RK. Spatial Genomic Resource Reveals Molecular Insights into Key Bioactive-Metabolite Biosynthesis in Endangered Angelica glauca Edgew. Int J Mol Sci 2022; 23:ijms231911064. [PMID: 36232367 PMCID: PMC9569870 DOI: 10.3390/ijms231911064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Angelica glauca Edgew, which is an endangered medicinal and aromatic herb, is a rich source of numerous industrially important bioactive metabolites, including terpenoids, phenolics, and phthalides. Nevertheless, genomic interventions for the sustainable utilization and restoration of its genetic resources are greatly offset due to the scarcity of the genomic resources and key regulators of the underlying specialized metabolism. To unravel the global atlas of the specialized metabolism, the first spatial transcriptome sequencing of the leaf, stem, and root generated 109 million high-quality paired-end reads, assembled de novo into 81,162 unigenes, which exhibit a 61.53% significant homology with the six public protein databases. The organ-specific clustering grouped 1136 differentially expressed unigenes into four subclusters differentially enriched in the leaf, stem, and root tissues. The prediction of the transcriptional-interactome network by integrating enriched gene ontology (GO) and the KEGG metabolic pathways identified the key regulatory unigenes that correspond to terpenoid, flavonoid, and carotenoid biosynthesis in the leaf tissue, followed by the stem and root tissues. Furthermore, the stem and root-specific significant enrichments of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and caffeic acid 3-O-methyltransferase (COMT) indicate that phenylalanine mediated the ferulic acid biosynthesis in the stem and root. However, the root-specific expressions of NADPH-dependent alkenal/one oxidoreductase (NADPH-AOR), S-adenosyl-L-methionine-dependent methyltransferases (SDMs), polyketide cyclase (PKC), and CYP72A15 suggest the “root” as the primary site of phthalide biosynthesis. Additionally, the GC-MS and UPLC analyses corresponded to the organ-specific gene expressions, with higher contents of limonene and phthalide compounds in the roots, while there was a higher accumulation of ferulic acid in the stem, followed by in the root and leaf tissues. The first comprehensive genomic resource with an array of candidate genes of the key metabolic pathways can be potentially utilized for the targeted upscaling of aromatic and pharmaceutically important bioactive metabolites. This will also expedite genomic-assisted conservation and breeding strategies for the revival of the endangered A. glauca.
Collapse
Affiliation(s)
- Amna Devi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Mamta Masand
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashlesha Holkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shikha Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Environmental Technology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or
| |
Collapse
|
20
|
Babele PK, Kudapa H, Singh Y, Varshney RK, Kumar A. Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health. FRONTIERS IN PLANT SCIENCE 2022; 13:902536. [PMID: 36035707 PMCID: PMC9412166 DOI: 10.3389/fpls.2022.902536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/18/2022] [Indexed: 05/29/2023]
Abstract
The ever-changing climate and the current COVID-19 pandemic compound the problems and seriously impact agriculture production, resulting in socio-economic insecurities and imposing health implications globally. Most of the poor and malnourished population in the developing countries depends on agriculture for food, income, and employment. Impact of climate change together with the COVID-19 outbreak revealed immense problems highlighting the importance of mainstreaming climate-resilient and low input crops with more contemporary agriculture practices. Orphan millets play a vital role in the poor and malnourished population's livelihood, food and nutrition security. Recognizing their unique potential, the United Nations-Food and Agriculture Organization has announced the year 2023 as the "International Year of Millets". However, despite the unique properties for present and future agriculture of orphan millets, their cultivation is declining in many countries. As a result, millets have gained attention from researchers which eventually decelerated "multi-omics" resource generation. This review summarizes the benefits of millets and major barriers/ bottlenecks in their improvement. We also discuss the pre- and post-harvest technologies; policies required to introduce and establish millets in mainstream agriculture. To improve and ensure the livelihood of the poor/malnourished population, intensive efforts are urgently needed in advancing the research and development, implementing pre- and post-harvest technological intervention strategies, and making favorable policies for orphan crops to accomplish food and nutrition security. National and international collaborations are also indispensable to address the uncertain effects of climate change and COVID-19.
Collapse
Affiliation(s)
- Piyoosh K. Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Himabindu Kudapa
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yogeshwar Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Murdoch's Centre for Crop Research & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Anil Kumar
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
21
|
Beilsmith K, Henry CS, Seaver SMD. Genome-scale modeling of the primary-specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102244. [PMID: 35714443 DOI: 10.1016/j.pbi.2022.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Environmental challenges and development require plants to reallocate resources between primary and specialized metabolites to survive. Genome-scale metabolic models, which map carbon flux through metabolic pathways, are a valuable tool in the study of tradeoffs that arise at this interface. Due to annotation gaps, models that characterize all the enzymatic steps in individual specialized pathways and their linkages to each other and to central carbon metabolism are difficult to construct. Recent studies have successfully curated subsystems of specialized metabolism and characterized the interfaces where flux is diverted to the precursors of glucosinolates, terpenes, and anthocyanins. Although advances in metabolite profiling can help to constrain models at this interface, quantitative analysis remains challenging because of the different timescales on which specialized metabolites from constitutive and reactive pathways accumulate.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Christopher S Henry
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Samuel M D Seaver
- Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
22
|
Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. Int J Biol Macromol 2022; 214:632-641. [PMID: 35760163 DOI: 10.1016/j.ijbiomac.2022.06.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Productivity enhancement approaches, such as elicitation can overcome the limitations of low metabolite(s) yield in in vitro plant cell culture platforms. Application of biotic/abiotic elicitors triggers molecular responses that lead to a concomitant enhancement in the production of metabolites. Nanoparticles have been tested as alternatives to commonly studied biotic/abiotic elicitors. However, most nanoparticles explored are of metallic origin, which raises concerns about their cytotoxicity, disposal post-elicitation, and may limit downstream applications of metabolites. Here, we report the synthesis and application of biopolymeric methyl jasmonate-loaded chitosan nanoparticles (MJ-CNPs) and empty CNPs (size <100 nm) as nano-elicitors, which were simple to synthesize, cost-effective and safe. Enzymatic and metabolic investigations revealed that MJ-CNPs and empty CNPs improve and prolong phenylalanine ammonia-lyase enzyme activity and production of phenolics and flavonoids. The data provides the first evidence of MJ-CNPs and empty CNPs as nano-elicitors that prolong the production of metabolites in plant cell suspension cultures.
Collapse
|
23
|
Rattan S, Kumar P, Kaur E, Sood A, Acharya V, Warghat AR. Comparative transcriptome and tissue-specific expression analysis of genes reveal tissue-cultured plants as an alternative source for phenylethanoids and phenylpropanoids in Rhodiola imbricata (Edgew.). Gene X 2022; 836:146672. [PMID: 35714804 DOI: 10.1016/j.gene.2022.146672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Rhodiola imbricata (Crassulaceae) is a traditional trans-Himalayan endangered medicinal herb with immense therapeutic applications. Over the years, over-exploitation, un-managed harvesting, and lack of captive cultivation procedures persuaded threat to its wild habitat. Plant tissue culture and RNA-Seq-based molecular bioprospection of key regulatory genes aid the understanding of molecular dynamics involved in specialized metabolites (phenylethanoids and phenylpropanoids) biosynthesis and its sustainable production. Hence, comparative transcriptomic analysis was performed using leaf and root tissues from the wild and tissue-cultured plants, revealing tissue-specific production of salidroside and rosavin. The transcriptome profiling resulted in 345 million high-quality reads yielding 92,380 unique transcripts with an N50 of 1260 bp. Tissue-specific gene expression analysis revealed that both phenylethanoids and phenylpropanoids biosynthesis are predominantly associated with the shikimate pathway. In addition to RNA-Seq data, the downstream biosynthesis pathways genes viz., phospho-2-dehydro-3-deoxyheptonate aldolase (DAHPS), 3-dehydroquinate synthase (DHQS), shikimate kinase (SK), chorismate mutase (CM), arogenate dehydrogenase (TYRAAT), aromatic-L-amino-acid decarboxylase (TDC), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4-CL), cinnamoyl-CoA reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD) showed higher expression pattern in wild plant tissues compared to tissue-cultured plants. The transcript fold expression determined by RT-qPCR results followed similar patterns as those observed in RNA-seq and targeted metabolite profiling data. Salidroside and rosavin content in wild plants exhibited 2.40 fold and 1.77 fold increase accumulation compared to the tissue-cultured plant. The present investigation explained the tissue and condition-specific significant differences between the expression of proposed biosynthetic pathway genes and salidroside and rosavin content. Additionally, NAC, bHLH, and ARF were the most abundant transcription factor families found in the transcriptomic analysis of R. imbricata. The generated transcriptome dataset provides a valuable gene(s)/transcription factors hub that can be used for the sustainable production of salidroside and rosavin in R. imbricata under tissue culture conditions.
Collapse
Affiliation(s)
- Shiv Rattan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ekjot Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archit Sood
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
25
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
26
|
Li Q, Jia E, Yan Y, Ma R, Dong J, Ma P. Using the Strategy of Inducing and Genetically Transforming Plant Suspension Cells to Produce High Value-Added Bioactive Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:699-710. [PMID: 35018771 DOI: 10.1021/acs.jafc.1c05712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants can produce many functional bioactive substances. The suspension cell system of plants can be constructed based on its characteristics to realize the large-scale production of valuable products. In this review, we mainly talk about the main strategies, elicitation, and genetic transformation to improve the yield of active substances by using this system. Meanwhile, we focus on the challenges hiding in the practical application and the future prospects and provide new ideas and the theoretical basis for obtaining numerous bioactive substances from plants.
Collapse
Affiliation(s)
- Qian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Entong Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yurong Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, People's Republic of China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
27
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
28
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
30
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
31
|
Kumar P, Acharya V, Warghat AR. Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) - High value Himalayan medicinal herb. PHYTOCHEMISTRY 2021; 183:112631. [PMID: 33370713 DOI: 10.1016/j.phytochem.2020.112631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.) is a critically endangered medicinal herb of immense importance due to its pharmaceutical bioactive compound, especially sipeimine, used for the treatment of chronic respiratory disorders. However, the industrial demand for sipeimine solely depends on its endangered natural habitat. Therefore; there is an utmost need for its biodiversity conservation as well as for the sustainable utilization of phytochemicals. Plant cell culture and transcriptomics-based molecular bioprospection of key regulatory genes involved in sipeimine biosynthesis as such will play a crucial role in exploring the unexplored traits, that are in supply crisis or nearly in extinction stage. De novo comparative transcriptome sequencing of the bulb (in vivo), callus, and regenerated plantlets (in vitro) resulted in more than 150 million high-quality paired-end clean reads that assembled into final 31,428 transcripts. Functional annotation and unigenes classification with multiple public databases such as KEGG, Refseq, Uniprot, TAIR, GO, and COG, etc. along with chemical structures and functional biocatalytic activity analysis of different steroidal alkaloids facilitated the identification of 30 unigenes specific to sipeimine biosynthesis. Additionally, ABC transporters and TFs like bHLH, MYC, MYB, and WRKY suggests their possible role in metabolite translocation and regulation in vivo as well as in vitro tissues. Differential gene expression and quantitative analysis revealed that the MVA pathway probably the predominant route for 5C intermediate (IPP & DMAPP) biosynthesis. Further, the genes involved in the downstream biosynthesis pathway viz. SQLE, CAS1, SMT1, SMO1, SMO2, SC5DL, DHCR7, DHCR24, CYP710A, 3β-HSD, CYP90D2, and CYP374A6 shown similar expression pattern with RNA-Seq and qRT-PCR findings. The positive correlation between higher expression of proposed biosynthetic pathway genes and relatively higher accumulation of sipeimine in differentiated naturally grown bulb tissues (in vivo), undifferentiated cells (callus), and de-differentiated tissues i.e. regenerated plantlets (in vitro) has been evident from the present study. Comprehensive genomic resources created in F. cirrhosa will provide strong evidence of bulb derived in vitro culture as an alternative promising source for steroidal alkaloids biosynthesis and metabolite upscaling through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Pankaj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Ashish R Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
32
|
Lynch JH, Huang XQ, Dudareva N. Silent constraints: the hidden challenges faced in plant metabolic engineering. Curr Opin Biotechnol 2021; 69:112-117. [PMID: 33429160 DOI: 10.1016/j.copbio.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Metabolic engineering is embraced as a method to sustainably enhance production of valuable phytochemicals with beneficial properties. However, successful production of these compounds in plants is not always predictable even when the pathways are fully known, frequently due to the lack of comprehensive understanding of plant metabolism as a whole, and interconnections between different primary, secondary, and hormone metabolic networks. Here, we highlight critical hidden constraints, including substrate availability, silent metabolism, and metabolic crosstalk, that impair engineering strategies. We explore how these constraints have historically been manifested in engineering attempts and propose how modern advancements will enable future strategies to overcome these impediments.
Collapse
Affiliation(s)
- Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
33
|
Arroo RRJ, Bhambra AS, Hano C, Renda G, Ruparelia KC, Wang MF. Analysis of plant secondary metabolism using stable isotope-labelled precursors. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:62-68. [PMID: 32706176 DOI: 10.1002/pca.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Analysis of biochemical pathways typically involves feeding a labelled precursor to an organism, and then monitoring the metabolic fate of the label. Initial studies used radioisotopes as a label and then monitored radioactivity in the metabolic products. As analytical equipment improved and became more widely available, preference shifted the use stable 'heavy' isotopes like deuterium (2 H)-, carbon-13 (13 C)- and nitrogen-15 (15 N)-atoms as labels. Incorporation of the labels could be monitored by mass spectrometry (MS), as part of a hyphenated tool kits, e.g. Liquid chromatography (LC)-MS, gas chromatography (GC)-MS, LC-MS/MS. MS offers great sensitivity but the exact location of an isotope label in a given metabolite cannot always be unambiguously established. Nuclear magnetic resonance (NMR) can also be used to pick up signals of stable isotopes, and can give information on the precise location of incorporated label in the metabolites. However, the detection limit for NMR is quite a bit higher than that for MS. OBJECTIVES A number of experiments involving feeding stable isotope-labelled precursors followed by NMR analysis of the metabolites is presented. The aim is to highlight the use of NMR analysis in identifying the precise fate of isotope labels after precursor feeding experiments. As more powerful NMR equipment becomes available, applications as described in this review may become more commonplace in pathway analysis. CONCLUSION AND PROSPECTS NMR is a widely accepted tool for chemical structure elucidation and is now increasingly used in metabolomic studies. In addition, NMR, combined with stable isotope feeding, should be considered as a tool for metabolic flux analyses.
Collapse
Affiliation(s)
- Randolph R J Arroo
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Avninder S Bhambra
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | | | - Gülin Renda
- Faculty of Pharmacy, Karadeniz Technical University, Ortahisar/Trabzon, Turkey
| | - Ketan C Ruparelia
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Meng F Wang
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
34
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol Adv 2020; 45:107635. [PMID: 32976930 DOI: 10.1016/j.biotechadv.2020.107635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Plant cell suspension culture (PCSC) has emerged as a viable technology to produce plant specialized metabolites (PSM). While Taxol® and ginsenoside are two examples of successfully commercialized PCSC-derived PSM, widespread utilization of the PCSC platform has yet to be realized primarily due to a lack of understanding of the molecular genetics of PSM biosynthesis. Recent advances in computational, molecular and synthetic biology tools provide the opportunity to rapidly characterize and harness the specialized metabolic potential of plants. Here, we discuss the prospects of integrating computational modeling, artificial intelligence, and precision genome editing (CRISPR/Cas and its variants) toolboxes to discover the genetic regulators of PSM. We also explore how synthetic biology can be applied to develop metabolically optimized PSM-producing native and heterologous PCSC systems. Taken together, this review provides an interdisciplinary approach to realize and link the potential of next-generation computational and molecular tools to convert PCSC into commercially viable PSM-producing biofactories.
Collapse
Affiliation(s)
- Sagar S Arya
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India; Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - James E Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - David M Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India.
| |
Collapse
|
35
|
Behzadipour Y, Sadeghian I, Ghaffarian Bahraman A, Hemmati S. Introducing a delivery system for melanogenesis inhibition in melanoma B16F10 cells mediated by the conjugation of tyrosine ammonia-lyase and a TAT-penetrating peptide. Biotechnol Prog 2020; 37:e3071. [PMID: 32840065 DOI: 10.1002/btpr.3071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Hyperpigmentation disorders negatively influence an individual's quality of life and may cause emotional distress. Over the years, various melanogenesis inhibitors (mainly tyrosinase inhibitors) have been developed, most of which with low efficacy or high toxicity. Although metabolic engineering by deviation in the flux of substrate is of considerable interest, trials to develop a melanogenesis inhibitor based on L-tyrosine (L-Tyr) restriction are missing. We propose a novel proteinaceous melanogenesis inhibitor called tyrosine ammonia-lyase (TAL), an enzyme that catalyzes the conversion of L-Tyr to p-coumaric acid and ammonia. Since the cell membrane can act as a barrier for intracellular protein delivery, we have covalently conjugated a recombinant TAL enzyme from Rhodobacter sphaeroides (RsTAL) to a trans-activator of transcription (TAT) cell-penetrating peptide (CPP) to afford the intracellular delivery. The heterologously expressed TAT-RsTAL fusion protein was delivered successfully into B16F10 melanocytes as confirmed by the direct fluorescence microscopy with increased intensity from 30 to 180 min. TAT-RsTAL showed sufficient intracellular activity of about 0.83 ± 0.04 and 0.34 ± 0.03 nmol•mg-1 •s-1 for the native and inclusion body-extracted conjugates, respectively. The conjugate inhibited melanin biosynthesis in B16F10 cells in a time-dependent manner. Melanin accumulation was inhibited by 12.7 ± 6.2%, 28.2 ± 5.7%, and 33.9 ± 2.9% compared to the nontreated control groups after 24, 48, and 72 hr of incubation, respectively. L-Tyr restriction had no significant effect on the cell viability up to a concentration of 100 μgml-1 even after 72 hr. According to the observed hypopigmentary effect of the conjugate in this study, TAT-RsTAL can be suggested as a melanogenesis inhibitor for further investigations.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Issa Sadeghian
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Comparative transcriptome analysis to identify putative genes related to trichome development in Ocimum species. Mol Biol Rep 2020; 47:6587-6598. [PMID: 32860161 DOI: 10.1007/s11033-020-05710-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
Genus Ocimum is known to have species possessing important therapeutic essential oil. The major phytoconstituents of essential oil in Ocimum species are phenylpropanoids and terpenoids. The essential oil is accumulated in the trichomes; the specialized structures predominantly found on leaves and other tissues. The development of trichome is integrated with development of plant and leaf and also tightly coordinated with the primary and secondary metabolic pathways producing essential oil constituents. In continuation to our studies on elucidating/understanding the mechanism of biosynthesis of essential oil pathways in Ocimum species, we have performed comparative transcriptome analysis to investigate the role of trichome-related gene expression in the regulation of biosynthetic pathways of essential oil. The essential oil biogenesis is tightly integrated with primary metabolic activities, the analysis for the expression pattern of genes related to primary metabolism and its relationship with secondary metabolism was evaluated in comparative manner. Physiological parameters in relation to primary metabolism such as photosynthetic pigment content, soluble sugar content, and invertase enzymes along with morphological parameters were analysed in O. basilicum and O. sanctum. Differential expression profiling uncovered about 8116 and 2810 differentially expressed transcripts in O. basilicum and O. sanctum, respectively. Enrichment of differentially expressed genes were analysed in relation to metabolic pathways, primary metabolism and secondary metabolism. Trichome related genes identified from the Ocimum species vis-à-vis their expression profiles suggested higher expression in O. basilicum. The findings in this study provide interesting insights into the role of trichome-related transcripts in relation to essential oil content in Ocimum species. The study is valuable as this is the first study on revealing the transcripts and their role in trichome development and essential oil biogenesis in two major species of Ocimum.
Collapse
|
37
|
The Secretory Apparatus of Tabernaemontana ventricosa Hochst. ex A.DC. (Apocynaceae): Laticifer Identification, Characterization and Distribution. PLANTS 2020; 9:plants9060686. [PMID: 32481708 PMCID: PMC7355860 DOI: 10.3390/plants9060686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Due to the inconsistencies in the interpretation of laticifers within the Apocynaceae, the current study aimed to distinguish, for the first time, the type and distribution of the laticifers in the embryos, seedlings and adult plants of Tabernaemontana ventricosa (Forest Toad tree). The characterization and distribution of laticifers were determined using light and electron microscopy. The findings revealed the presence of articulated anastomosing laticifers. The laticifers were found to have originated from ground meristematic and procambium cells and were randomly distributed in all ground and vascular tissue, displaying complex branching conformations. The presence of chemical constituents within the laticifers and latex determined by histochemical analysis revealed the presence of alkaloids, phenolics, neutral lipids, terpenoids, mucilage, pectin, resin acids, carboxylated polysaccharides, lipophilic, and hydrophilic substances and proteins. These secondary metabolites perform an indispensable role in preventing herbivory, hindering and deterring micro-organisms and may possibly have medicinal importance. The outcomes of the present study outlined the first micromorphology, anatomy, ultrastructural and chemical analysis of the laticifers of T. ventricosa. In addition, this investigation similarly established the probable functions of latex and laticifers.
Collapse
|