1
|
Kamoku C, Bhavaraju P, Travis C, Taquillo L, Nielsen DR. Photosynthetic sorbitol production in Synechococcus sp. PCC 7002 is enhanced by addressing phosphatase promiscuity, nutrient availability and Calvin cycle bottlenecks. Metab Eng 2025; 91:181-191. [PMID: 40320001 DOI: 10.1016/j.ymben.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/26/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Cyanobacteria represent promising biocatalysts for producing carbohydrates, including sorbitol, a naturally-occurring, fermentable sugar alcohol with conventional uses as a sweetener, pharmaceutical additive, and biodegradable plasticizer. Previously, Synechocystis sp. PCC 6803 was engineered to produce sorbitol, reaching a final titer of 2.3 g/L after 18 days. To improve upon this performance, sorbitol production was herein engineered in the faster growing strain Synechococcus sp. PCC 7002. Upon introducing the sorbitol biosynthetic pathway, up to 500 mg/L sorbitol was initially produced after seven days. However, due to the initial use of two highly promiscuous sugar phosphatase variants, this also resulted in the unwanted co-production of ribose and growth inhibition due to depletion of ribose-5-phosphate from the Calvin cycle. This off-target effect was ultimately mitigated via the discovery that mannitol-1-phosphate phosphatase from Eimeria tenella also dephosphorylates sorbitol-6-phosphate to sorbitol with greater specificity, leading to improved growth and sorbitol production. Next, two bottleneck enzymes in the Calvin cycle, namely fructose-bisphosphate aldolase (FBA) and bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase (BiBPase), were overexpressed both individually and in combination, resulting in sorbitol production up to 1.3 g/L. Finally, upon optimizing the culture media to address nutrient limitation, the final strain produced up to 3.6 g/L sorbitol in nine days, respectively representing 1.5- and 3-fold increases in titer and productivity relative to previously-engineered Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Cody Kamoku
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Pranav Bhavaraju
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Collin Travis
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Luis Taquillo
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - David R Nielsen
- Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
2
|
Roussou S, Pan M, Krömer JO, Lindblad P. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Metab Eng 2025; 88:250-260. [PMID: 39863056 DOI: 10.1016/j.ymben.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO2 using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells. By inserting a heterologous phosphoketolase (PKPa) in the acs locus, encoding acetyl-CoA synthetase responsible for the irreversible conversion of acetate to acetyl-CoA, an increased level of 40 times was observed. Metabolite analyses indicate an enhanced Calvin-Benson-Bassham cycle, based on increased levels of glyceraldehyde 3-phosphate and fructose-1,6-biphosphate, while the decreased levels of 3-phosphoglycerate and pyruvate suggest a quick consumption of the fixed carbon. Acetyl-P and erythrose-4-phosphate showed significantly increased levels, as products of phosphoketolase, while acetyl-CoA remained stable through the experiment. The results of intra- and extra-cellular acetate levels clearly demonstrate an efficient excretion of produced acetate from the cells in the engineered strain. Knock-out of ach and pta showed a reduction in acetate production however, it was not as low as in cells with a single knock-out of ach. Overexpressing acetyl-CoA hydrolase (Ach) and acetate kinase (AckA) did not significantly increase production. In contrast, overexpressing phosphotransacetylase (Pta) in cells containing an inserted PKPa resulted in 80 times more acetate reaching 2.3 g/L after 14 days of cultivation.
Collapse
Affiliation(s)
- Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Minmin Pan
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Jens O Krömer
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
4
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Böhm J, Kauss K, Michl K, Engelhardt L, Brouwer EM, Hagemann M. Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria. Front Microbiol 2023; 14:1238737. [PMID: 37649635 PMCID: PMC10465007 DOI: 10.3389/fmicb.2023.1238737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains.
Collapse
Affiliation(s)
- Julien Böhm
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
- Department Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Karsten Kauss
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Klaudia Michl
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lisa Engelhardt
- Department Microbiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Gao EB, Wu J, Ye P, Qiu H, Chen H, Fang Z. Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO 2-to-ethanol under an atmospheric environment. Front Microbiol 2023; 14:1211004. [PMID: 37323905 PMCID: PMC10265512 DOI: 10.3389/fmicb.2023.1211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are an excellent microbial photosynthetic platform for sustainable carbon dioxide fixation. One bottleneck to limit its application is that the natural carbon flow pathway almost transfers CO2 to glycogen/biomass other than designed biofuels such as ethanol. Here, we used engineered Synechocystis sp. PCC 6803 to explore CO2-to-ethanol potential under atmospheric environment. First, we investigated the effects of two heterologous genes (pyruvate decarboxylase and alcohol dehydrogenase) on ethanol biosynthesis and optimized their promoter. Furthermore, the main carbon flow of the ethanol pathway was strengthened by blocking glycogen storage and pyruvate-to-phosphoenolpyruvate backflow. To recycle carbon atoms that escaped from the tricarboxylic acid cycle, malate was artificially guided back into pyruvate, which also created NADPH balance and promoted acetaldehyde conversion into ethanol. Impressively, we achieved high-rate ethanol production (248 mg/L/day at early 4 days) by fixing atmospheric CO2. Thus, this study exhibits the proof-of-concept that rewiring carbon flow strategies could provide an efficient cyanobacterial platform for sustainable biofuel production from atmospheric CO2.
Collapse
Affiliation(s)
- E-Bin Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Penglin Ye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiyan Qiu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
7
|
Toepel J, Karande R, Klähn S, Bühler B. Cyanobacteria as whole-cell factories: current status and future prospectives. Curr Opin Biotechnol 2023; 80:102892. [PMID: 36669448 DOI: 10.1016/j.copbio.2023.102892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Cyanobacteria as phototrophic microorganisms bear great potential to produce chemicals from sustainable resources such as light and CO2. Most studies focus on either strain engineering or tackling metabolic constraints. Recently gained knowledge on internal electron and carbon fluxes and their regulation provides new opportunities to efficiently channel cellular resources toward product formation. Concomitantly, novel photobioreactor concepts are developed to ensure sufficient light supply. This review summarizes the newest developments in the field of cyanobacterial engineering to finally establish photosynthesis-based production processes. A holistic approach tackling genetic, metabolic, and biochemical engineering in parallel is considered essential to turn their application into an ecoefficient and economically feasible option for a future green bioeconomy.
Collapse
Affiliation(s)
- Jörg Toepel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Research and Transfer Center for bioactive Matter b-ACTmatter, University of Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
8
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
9
|
Huffine CA, Zhao R, Tang YJ, Cameron JC. Role of carboxysomes in cyanobacterial CO 2 assimilation: CO 2 concentrating mechanisms and metabolon implications. Environ Microbiol 2023; 25:219-228. [PMID: 36367380 DOI: 10.1111/1462-2920.16283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.
Collapse
Affiliation(s)
- Clair A Huffine
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
10
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
11
|
Lindberg P, Kenkel A, Bühler K. Introduction to Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:1-24. [PMID: 37009973 DOI: 10.1007/10_2023_217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cyanobacteria are highly interesting microbes with the capacity for oxygenic photosynthesis. They fulfill an important purpose in nature but are also potent biocatalysts. This chapter gives a brief overview of this diverse phylum and shortly addresses the functions these organisms have in the natural ecosystems. Further, it introduces the main topics covered in this volume, which is dealing with the development and application of cyanobacteria as solar cell factories for the production of chemicals including potential fuels. We discuss cyanobacteria as industrial workhorses, present established chassis strains, and give an overview of the current target products. Genetic engineering strategies aiming at the photosynthetic efficiency as well as approaches to optimize carbon fluxes are summarized. Finally, main cultivation strategies are sketched.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Amelie Kenkel
- Helmholtzcenter for Environmental Research, Leipzig, Germany
| | - Katja Bühler
- Helmholtzcenter for Environmental Research, Leipzig, Germany.
| |
Collapse
|
12
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J, Singh S, Singh G. Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Front Microbiol 2022; 13:939347. [PMID: 35903468 PMCID: PMC9325326 DOI: 10.3389/fmicb.2022.939347] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
With the aim to alleviate the increasing plastic burden and carbon footprint on Earth, the role of certain microbes that are capable of capturing and sequestering excess carbon dioxide (CO2) generated by various anthropogenic means was studied. Cyanobacteria, which are photosynthetic prokaryotes, are promising alternative for carbon sequestration as well as biofuel and bioplastic production because of their minimal growth requirements, higher efficiency of photosynthesis and growth rates, presence of considerable amounts of lipids in thylakoid membranes, and cosmopolitan nature. These microbes could prove beneficial to future generations in achieving sustainable environmental goals. Their role in the production of polyhydroxyalkanoates (PHAs) as a source of intracellular energy and carbon sink is being utilized for bioplastic production. PHAs have emerged as well-suited alternatives for conventional plastics and are a parallel competitor to petrochemical-based plastics. Although a lot of studies have been conducted where plants and crops are used as sources of energy and bioplastics, cyanobacteria have been reported to have a more efficient photosynthetic process strongly responsible for increased production with limited land input along with an acceptable cost. The biodiesel production from cyanobacteria is an unconventional choice for a sustainable future as it curtails toxic sulfur release and checks the addition of aromatic hydrocarbons having efficient oxygen content, with promising combustion potential, thus making them a better choice. Here, we aim at reporting the application of cyanobacteria for biofuel production and their competent biotechnological potential, along with achievements and constraints in its pathway toward commercial benefits. This review article also highlights the role of various cyanobacterial species that are a source of green and clean energy along with their high potential in the production of biodegradable plastics.
Collapse
|
14
|
Srisawat P, Higuchi-Takeuchi M, Numata K. Microbial autotrophic biorefineries: Perspectives for biopolymer production. Polym J 2022. [DOI: 10.1038/s41428-022-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe use of autotrophic microorganisms to fabricate biochemical products has attracted much attention in both academia and industry. Unlike heterotrophic microorganisms that require carbohydrates and amino acids for growth, autotrophic microorganisms have evolved to utilize either light (photoautotrophs) or chemical compounds (chemolithotrophs) to fix carbon dioxide (CO2) and drive metabolic processes. Several biotechnological approaches, including synthetic biology and metabolic engineering, have been proposed to harness autotrophic microorganisms as a sustainable/green production platform for commercially essential products such as biofuels, commodity chemicals, and biopolymers. Here, we review the recent advances in natural autotrophic microorganisms (photoautotrophic and chemoautotrophic), focusing on the biopolymer production. We present current state-of-the-art technologies to engineer autotrophic microbial cell factories for efficient biopolymer production.
Collapse
|
15
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
16
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
17
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
18
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
19
|
Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:240. [PMID: 34920731 PMCID: PMC8684110 DOI: 10.1186/s13068-021-02091-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 06/07/2023]
Abstract
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Collapse
Affiliation(s)
- Fraser Andrews
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Lancaster Business Park, Caton Road, Lancaster, LA1 3SW, Lancashire, UK.
| |
Collapse
|
20
|
Jaiswal D, Sahasrabuddhe D, Wangikar PP. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research. Curr Opin Biotechnol 2021; 73:314-322. [PMID: 34695729 DOI: 10.1016/j.copbio.2021.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria, a group of photoautotrophic prokaryotes, are attractive hosts for the sustainable production of chemicals from carbon dioxide and sunlight. However, the rates, yields, and titers have remained well below those needed for commercial deployment. We argue that the following areas will be central to the development of cyanobacterial cell factories: engineered and well-characterized host strains, model-guided pathway design, and advanced synthetic biology tools. Although several foundational studies report improved strain properties, translational research will be needed to develop engineered hosts and deploy them for metabolic engineering. Further, the recent developments in metabolic modeling and synthetic biology of cyanobacteria will enable nimble strategies for strain improvement with the complete cycle of design, build, test, and learn.
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
21
|
Allahverdiyeva Y, Aro EM, van Bavel B, Escudero C, Funk C, Heinonen J, Herfindal L, Lindblad P, Mäkinen S, Penttilä M, Sivonen K, Skogen Chauton M, Skomedal H, Skjermo J. NordAqua, a Nordic Center of Excellence to develop an algae-based photosynthetic production platform. PHYSIOLOGIA PLANTARUM 2021; 173:507-513. [PMID: 33709388 DOI: 10.1111/ppl.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Bert van Bavel
- Section of Environmental Pollutants, Norwegian Institute for Water Research, Oslo, Norway
| | - Carlos Escudero
- Section of Environmental Pollutants, Norwegian Institute for Water Research, Oslo, Norway
| | | | - Jarna Heinonen
- Department of Management and Entrepreneurship, School of Economics, University of Turku, Turku, Finland
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Mäkinen
- Department of Production Systems, Natural Resources Institute Finland, Jokioinen, Finland
| | - Merja Penttilä
- Devision of Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Hanne Skomedal
- Division of Biotechnology and Plant Health, NIBIO, Ås, Norway
| | - Jorunn Skjermo
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| |
Collapse
|
22
|
Liu X, Xie H, Roussou S, Lindblad P. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production. Curr Opin Biotechnol 2021; 73:143-150. [PMID: 34411807 DOI: 10.1016/j.copbio.2021.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria are natural photosynthetic microbes which can be engineered for sustainable conversion of solar energy and carbon dioxide into chemical products. Attempts to improve target production often require an improved understanding of the native cyanobacterial host system. Valuable insights into cyanobacterial metabolism, biochemistry and physiology have been steadily increasing in recent years, stimulating key advancements of cyanobacteria as cell factories for biochemical, including biofuel, production. In the present review, we summarize the current progress in engineering cyanobacteria and discuss the achieved and potential utilization of these advances in cyanobacteria for the production of the bulk chemical butanol, specifically isobutanol and 1-butanol.
Collapse
Affiliation(s)
- Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|