1
|
Alsaihaty Z, Abdel-Rahman W, Balaji K, Alkhaldi M, Alghufaili A, Alghadban S, El Lathy H, Manan HA, Sabarudin A, Yahya N. Dose comparison between hybrid volumetric modulated arc therapy, volumetric modulated arc therapy, and three-dimensional conformal radiotherapy for breast/chest wall irradiation, including regional lymph node irradiation using deep inspiration breath-hold technique. Cancer Radiother 2025; 29:104589. [PMID: 40020437 DOI: 10.1016/j.canrad.2025.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 03/03/2025]
Abstract
PURPOSE Breast radiation treatment has been linked to complications such as pneumonitis and cardiac toxicity, necessitating dose optimization. This study aims to determine the optimal integration plan of volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) in a deep inspiration breath-hold regimen. MATERIALS AND METHODS CT imaging data from twenty patients with breast or chest wall cancer, either right or left-sided, and with supraclavicular and internal mammary chain lymph nodes were retrieved. The CT data planned with a hybrid VMAT of three different weighting proportions: 30 % using 3DCRT and 70 % using VMAT, 50 % using 3DCRT and 50 % using VMAT, and 70% using 3DCRT and 30 % using VMAT and compared with full 3DCRT and full VMAT plan (classic and five arc design). RESULTS The homogeneity and conformity indices were better in the hybrid VMAT plans than in plans using VMAT or 3DCRT alone (P<0.005). Results of all hybrid VMAT plans showed a considerable drop of volumes receiving more than 4Gy, 8Gy or 16Gy in the ipsilateral lung compared to the full VMAT plan (P<0.001). There was a noticeable decrease in the mean dose to the heart and the dose in 5% of the contralateral breast in the plan using 70 % 3DCRT and 30 % VMAT compared to full VMAT (P<0.001). The plan using 70 % 3DCRT and 30% VMAT achieved a balance between the target and surrounding areas, compared to using only 3DCRT or VMAT. CONCLUSION A hybrid plan using 70 % 3DCRT contribution achieved a balanced outcome for breast or chest wall irradiation, considering both planning target volume and organs at risk. Utilizing our VMAT arc design, incorporating one shortened arc can significantly reduce doses to organs at risk further. It is important to consider the patient's anatomy when making this decision.
Collapse
Affiliation(s)
- Zainab Alsaihaty
- Diagnostic Imaging and Radiotherapy, CODTIS, Faculty of Health Sciences, The National University of Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia; Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Wamied Abdel-Rahman
- Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Karunakaran Balaji
- Department of Radiation Oncology, Gleneagles Global Hospitals, Chennai 600100, India
| | - Mashaal Alkhaldi
- Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Abdulraouf Alghufaili
- Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Shama Alghadban
- Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Hala El Lathy
- Department of Radiation Oncology, King Fahd Specialist Hospital, 31444 Dammam, Saudi Arabia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Akmal Sabarudin
- Diagnostic Imaging and Radiotherapy, CODTIS, Faculty of Health Sciences, The National University of Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, CODTIS, Faculty of Health Sciences, The National University of Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Pakdeesaneha T, Chankow K, Techarungchaikul S, Thongsima T, Kongtia M, Tharasanit T. Comparison of Fine-Needle Aspiration and Core Needle Biopsy for the Pre-Operative Diagnosis of Canine and Feline Mammary Gland Tumours. Vet Comp Oncol 2024; 22:566-573. [PMID: 39234805 DOI: 10.1111/vco.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Mammary gland tumours are common neoplasms that affect female dogs and cats. We compared the accuracy of pre-surgical fine-needle aspiration (FNA) and core needle biopsy (CNB) diagnosing feline (n = 64) and canine (n = 83) mammary gland tumours with excisional histopathology as the gold standard for the definitive diagnosis. We also explored the impact of CNB needle sizes (18G and 16G). FNA, 18G CNB and 16G CNB demonstrated similar accuracy regarding the diagnosis of feline mammary tumours, ranging from 90% to 97.7% (p > 0.05). However, these techniques displayed lower diagnostic accuracy for canine mammary gland tumours: 46.7%-50.9% for FNA, 63.3% for 18G CNB and 73.6% for 16G CNB. In conclusion, FNA and CNB can be used optionally as pre-surgical diagnostic methods for feline and canine mammary gland tumours. However, factors that affect diagnostic accuracy, such as species and diagnostic techniques, should be considered.
Collapse
Affiliation(s)
- Thitida Pakdeesaneha
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The College of Veterinary Specialties of Thailand, Bangkok, Thailand
| | - Katriya Chankow
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirichai Techarungchaikul
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Thongsima
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The College of Veterinary Specialties of Thailand, Bangkok, Thailand
| | - Mintraporn Kongtia
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The College of Veterinary Specialties of Thailand, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Yang D, Murr C, Li X, Yoo S, Blitzblau R, McDuff S, Stephens S, Wu QJ, Wu Q, Sheng Y. Understanding and modeling human-AI interaction of artificial intelligence tool in radiation oncology clinic using deep neural network: a feasibility study using three year prospective data. Phys Med Biol 2024; 69:225018. [PMID: 39488080 DOI: 10.1088/1361-6560/ad8e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Objective.Artificial intelligence (AI) based treatment planning tools are being implemented in clinic. However, human interactions with such AI tools are rarely analyzed. This study aims to comprehend human planner's interaction with the AI planning tool and incorporate the analysis to improve the existing AI tool.Approach.An in-house AI tool for whole breast radiation therapy planning was deployed in our institution since 2019, among which 522 patients were included in this study. The AI tool automatically generates fluence maps of the tangential beams to create anAI plan. Human planner makes fluence edits deemed necessary and after attending physician approval for treatment, it is recorded asfinal plan. Manual modification value maps were collected, which is the difference between theAI-planand thefinal plan. Subsequently, a human-AI interaction (HAI) model using full scale connected U-Net was trained to learn such interactions and perform plan enhancements. The trained HAI model automatically modifies theAI planto generate AI-modified plans (AI-m plan), simulating human editing. Its performance was evaluated against originalAI-planandfinal plan. Main results. AI-m planshowed statistically significant improvement in hotspot control over theAI plan, with an average of 25.2cc volume reduction in breast V105% (p= 0.011) and 0.805% decrease in Dmax (p< .001). It also maintained the same planning target volume (PTV) coverage as thefinal plan, demonstrating the model has captured the clinic focus of improving PTV hot spots without degrading coverage.Significance.The proposed HAI model has demonstrated capability of further enhancing theAI planvia modeling human-AI tool interactions. This study shows analysis of human interaction with the AI planning tool is a significant step to improve the AI tool.
Collapse
Affiliation(s)
- Dongrong Yang
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Cameron Murr
- Duke University, Durham, NC, United States of America
| | - Xinyi Li
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Sua Yoo
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Rachel Blitzblau
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Susan McDuff
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Sarah Stephens
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Q Jackie Wu
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| | - Yang Sheng
- Department of Radiation Oncology, Duke University, Durham, NC, United States of America
| |
Collapse
|
4
|
Jabeen K, Khan MA, Damaševičius R, Alsenan S, Baili J, Zhang YD, Verma A. An intelligent healthcare framework for breast cancer diagnosis based on the information fusion of novel deep learning architectures and improved optimization algorithm. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 137:109152. [DOI: 10.1016/j.engappai.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2024]
|
5
|
Costin IC, Marcu LG. Correlations between patient-specific parameters and dosimetric indices for personalized breast cancer radiotherapy. Sci Rep 2024; 14:26141. [PMID: 39478060 PMCID: PMC11526019 DOI: 10.1038/s41598-024-75858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Treatment planning parameters in radiotherapy are key elements that dictate the success of treatment outcome. While some parameters are commonly evaluated irrespective of cancer type, others are site-dependent and strongly patient specific. Given the critical influence of planning parameters on personalized therapy, the aim of this study was to evaluate the correlations between the dosimetric indices (conformity, homogeneity and mismatch indices) related to tumor coverage and the patient-specific parameters which encompass parameters pertaining to organs at risk (widths and lengths of heart and ipsilateral lung included in treatment fields, mean/maximum doses to heart, ipsilateral lung, left anterior descending aorta and contralateral breast) and tumor volume. Forty breast cancer patients were divided into two groups according to tumor location: twenty with left-sided (group A) and twenty with right-sided breast cancer (group B). Conformal (3DCRT), intensity modulated (IMRT) and volumetric arc modulated (VMAT) radiotherapy techniques were used for plan creation. Moderate to strong correlations were found for ipsilateral lung parameters for both groups of patients regardless of the treatment technique. Moderate to strong correlations were found for heart parameters in group A patients, while no correlations were observed in group B. The mismatch index presented moderate to strong correlations with tumor volume for all treatment techniques (r = -0.861 3DCRT, r = -0.556 IMRT, r = -0.533 VMAT) particularly in group A. The evaluated correlations indicate the role of dosimetric indices in personalized treatment planning.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- Faculty of Physics, West University of Timisoara, 300223, Timisoara, Romania.
- Bihor County Emergency Clinical Hospital, 410167, Oradea, Romania.
| | - Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, 410087, Oradea, Romania
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
6
|
Feighan L, MacDonald-Wicks L, Callister R, Surjan Y. The effectiveness of exercise and/or nutritional interventions to improve the quality of life of women with breast cancer receiving radiation therapy: a scoping review. Support Care Cancer 2024; 32:745. [PMID: 39441426 PMCID: PMC11499338 DOI: 10.1007/s00520-024-08933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Currently, in Australia, 1 in 8 women are diagnosed with breast cancer. A common adjuvant treatment for breast cancer is radiation therapy (RT). The amalgamation of side effects caused by RT treatment can ultimately affect a patient's quality of life (QoL). With increasing breast cancer survival, a greater focus on the non-lethal consequences of this disease and its treatment is warranted. Exercise and nutrition have proven beneficial in promoting and supporting overall health and managing chronic diseases. Furthermore, exercise has demonstrated improvement and sustainment to QoL. The focus of this scoping literature review was to determine the scale of evidence regarding the effectiveness of exercise and/or nutritional interventions for women with breast cancer receiving radiation therapy. An online search of five databases was conducted to identify studies published between 2000 and 2023. The 58 studies included in the scoping review comprised 46 interventions and 4615 women with breast cancer who received radiation therapy participated. Most studies (90%; n = 52) were 'exercise only' based, 3% (n = 2) were 'nutrition only', and the remaining 7% (n = 4) of studies were combined exercise and nutrition interventions. The findings from this review highlight most studies are dedicated to investigating exercise. Further research is required to fully understand the potential benefits of these interventions and their synergistic impact on the quality of life of women with breast cancer receiving radiation therapy.
Collapse
Affiliation(s)
- Laura Feighan
- Global Centre for Research and Training in Radiation Oncology, School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Newcastle, NSW, Australia
| | - Lesley MacDonald-Wicks
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Newcastle, NSW, Australia
| | - Robin Callister
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Newcastle, NSW, Australia
| | - Yolanda Surjan
- Global Centre for Research and Training in Radiation Oncology, School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Newcastle, NSW, Australia.
| |
Collapse
|
7
|
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A, Behzadifard M. Concise review: breast cancer stems cells and their role in metastases. Ann Med Surg (Lond) 2024; 86:5266-5275. [PMID: 39238997 PMCID: PMC11374310 DOI: 10.1097/ms9.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been suggested to be responsible for the development of Breast cancer (BC). The aim of this study was to evaluate BCSCs and the target organs microenvironment immunophenotyping markers in common BC metastases, and therapeutic targets regarding to the mentioned criteria. Material and methods This narrative review involved searching international databases; PubMed, Google Scholar using predetermined keywords including breast cancer, breast cancer stem cells, breast cancer metastases, immunophenotyping, immunohistochemistry and metastases. The search results were assessed based on the title, abstract, and full text of the articles, and relevant findings were included in the review. Results BCSCs express high amounts of aldehyde dehydrogenase 1 (ALDH1), Ganglioside 2 (GD2), CD44 and CD133 but are negative for CD24 marker. CXCR4 and OPN have high expression in the cells and may contribute in BC metastasis to the bone. Nestin, CK5, prominin-1 (CD133) markers in BCSCs have been reported to correlate with brain metastasis. High expression of CD44 in BCSCs and CXCL12 expression in the liver microenvironment may contribute to BC metastasis to the liver. Aberrantly expressed vascular cell adhesion molecule-1 (VCAM-1) that binds to collagen and elastin fibers on pulmonary parenchyma, and CXCR4 of BCSCs and CXCL12 in lung microenvironment may promote the cells homing and metastasis to lung. Conclusion As in various types of BC metastases different markers that expressed by the cells and target organ microenvironment are responsible, BCSCs immunophenotyping can be used as target markers to predict the disease prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Amir Atashi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
| | - Alireza Momeni
- Department of hematology and Oncology, School of Medicine
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
8
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
9
|
Alsaihaty Z, Abdul Manan H, Sabarudin A, Yahya N. Hybrid Treatment Planning for Chest Wall Irradiation Utilizing Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT): A Systematic Review. Cureus 2024; 16:e59583. [PMID: 38832195 PMCID: PMC11144584 DOI: 10.7759/cureus.59583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Novel hybrid approaches for chest wall irradiation show promising outcomes regarding target coverage and sparing organs at risk (OARs). In this systematic review, we compared hybrid volumetric modulated arc therapy (H-VMAT) or hybrid intensity-modulated radiotherapy (H-IMRT) techniques with non-hybrid techniques, such as three-dimensional conformal radiation therapy (3DCRT), field-in-field (FIF), intensity-modulated arc therapy (IMRT), and volumetric modulated arc therapy (VMAT), for breast cancer patients with mastectomy. Our focus was the plan quality and dose distribution to the OARs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist, we performed a systematic review and quality appraisal of primary studies evaluating hybrid therapy to the chest wall and the OARs. An extensive online search of PubMed and Scopus databases was conducted using appropriate keywords. The dose to the OARs (lung, heart, and contralateral breast), planning target volume (PTV), homogeneity index (HI), and conformity index (CI) were extracted. The data were then tabulated and compared for the outcomes between modalities among the studies. Nine studies that met the search criteria were selected to evaluate the PTV coverage and dosimetric results of hybrid and non-hybrid techniques. In terms of 95% PTV coverage, among nine reviewed studies, the largest difference between the two techniques was between VMAT (47.6 Gy) and H-VMAT (48.4 Gy); for the conformity index, the largest difference was noted between 3DCRT (0.58) and H-VMAT (0.79). In both cases, differences were statistically significant (P < 0.005). Two studies showed dose homogeneity improvement within the treatment target in H-VMAT (0.15 and 0.07) compared with 3DCRT (0.41 and 0.12), with a P value of <0.001. Two studies did not report on the homogeneity index, and three others observed no statistical difference. Regarding OARs, in the comparison of H-VMAT and VMAT, the largest significant change was in the volume receiving 5 Gy (V5Gy) of the ipsilateral lung and the V10Gy of the contralateral lung. For the ipsilateral lung, V5Gy was 90.7% with VMAT versus 51.45% with H-VMAT. For the contralateral lung, V10Gy was 54.9% with VMAT versus 50.5% with H-VMAT. In six studies, the mean dose of the contralateral breast was lower in hybrid techniques than in single modalities: VMAT (4.2%, 6.0%, 1.9%, 7.1%, 4.57%) versus H-VMAT (1.4%, 3.4%, 1.8%, 3.5%, 2.34%) and IMRT (9.1%) versus H-IMRT (4.69%). Although most studies did not report on monitor units and treatment time, those that included them showed that hybrids had lower monitor units and shorter treatment times. Hybrid techniques in radiotherapy, such as combining two modalities, can indeed facilitate lower doses to OARs for patients with a high risk of toxicities. Prospective clinical studies are needed to determine the outcomes of breast cancer treated with hybrid techniques.
Collapse
Affiliation(s)
- Zainab Alsaihaty
- Radiation Therapy, King Fahad Specialist Hospital, Dammam, SAU
- Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, National University of Malaysia, Kuala Lumpur, MYS
| | - Akmal Sabarudin
- Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
10
|
Rayn K, Clark R, Hoxha K, Magliari A, Neylon J, Xiang MH, O'Connell DP. An IMRT planning technique for treating whole breast or chest wall with regional lymph nodes on Halcyon and Ethos. J Appl Clin Med Phys 2024; 25:e14295. [PMID: 38335253 PMCID: PMC11087171 DOI: 10.1002/acm2.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE/OBJECTIVE Field size limitations on Halcyon and Ethos treatment machines largely preclude use of the conventional monoisocentric three-field technique for breast/chest wall and regional lymph nodes. We present an alternative, IMRT-based planning approach that facilitates treatment on Halcyon and Ethos while preserving plan quality. MATERIALS/METHODS Eight breast and regional node cases (four left-sided, four right-sided) were planned for an Ethos machine using a 15-17 field IMRT technique. Institutional plan quality metrics for CTV and PTV coverage and OAR sparing were assessed. Five plans (four right-sided, one left-sided) were also planned using a hybrid 3D multisocenter technique. CTV coverage and OAR sparing were compared to the IMRT plans. Eclipse scripting tools were developed to aid in beam placement and plan evaluation through a set of dosimetric scorecards, and both are shared publicly. RESULTS On average, the IMRT plans achieved breast CTV and PTV coverage at 50 Gy of 97.9% and 95.7%, respectively. Supraclavicular CTV and PTV coverages at 45 Gy were 100% and 95.5%. Axillary lymph node CTV and PTV coverages at 45 Gy were 100% and 97.1%, and IMN CTV coverage at 45 Gy was 99.2%. Mean ipsilateral lung V20 Gy was 19.3%, and average mean heart dose was 1.6 Gy for right-sided cases and 3.0 Gy for left-sided. In comparison to the hybrid 3D plans, IMRT plans achieved higher breast and supraclavicular CTV coverage (99.9% vs. 98.6% and 99.9% vs. 93.4%), higher IMN coverage (99.6% vs. 78.2%), and lower ipsilateral lung V20 Gy (19.6% vs. 28.2%). CONCLUSION Institutional plan quality benchmarks were achieved for all eight cases using the IMRT-based planning approach. The IMRT-based planning approach offered superior conformity and OAR sparing than a competing hybrid 3D approach.
Collapse
Affiliation(s)
- Kareem Rayn
- Varian Medical AffairsPalo AltoCaliforniaUSA
| | - Ryan Clark
- Varian Medical AffairsPalo AltoCaliforniaUSA
| | - Klea Hoxha
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Jack Neylon
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Michael H. Xiang
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Dylan P. O'Connell
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
11
|
Zeverino M, Piccolo C, Wuethrich D, Jeanneret-Sozzi W, Marguet M, Bourhis J, Bochud F, Moeckli R. Clinical implementation of deep learning-based automated left breast simultaneous integrated boost radiotherapy treatment planning. Phys Imaging Radiat Oncol 2023; 28:100492. [PMID: 37780177 PMCID: PMC10534254 DOI: 10.1016/j.phro.2023.100492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Background and purpose Automation in radiotherapy treatment planning aims to improve both the quality and the efficiency of the process. The aim of this study was to report on a clinical implementation of a Deep Learning (DL) auto-planning model for left-sided breast cancer. Materials and methods The DL model was developed for left-sided breast simultaneous integrated boost treatments under deep-inspiration breath-hold. Eighty manual dose distributions were revised and used for training. Ten patients were used for model validation. The model was then used to design 17 clinical auto-plans. Manual and auto-plans were scored on a list of clinical goals for both targets and organs-at-risk (OARs). For validation, predicted and mimicked dose (PD and MD, respectively) percent error (PE) was calculated with respect to manual dose. Clinical and validation cohorts were compared in terms of MD only. Results Median values of both PD and MD validation plans fulfilled the evaluation criteria. PE was < 1% for targets for both PD and MD. PD was well aligned to manual dose while MD left lung mean dose was significantly less (median:5.1 Gy vs 6.1 Gy). The left-anterior-descending artery maximum dose was found out of requirements (median values:+5.9 Gy and + 2.9 Gy, for PD and MD respectively) in three validation cases, while it was reduced for clinical cases (median:-1.9 Gy). No other clinically significant differences were observed between clinical and validation cohorts. Conclusion Small OAR differences observed during the model validation were not found clinically relevant. The clinical implementation outcomes confirmed the robustness of the model.
Collapse
Affiliation(s)
- Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Consiglia Piccolo
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Diana Wuethrich
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Wendy Jeanneret-Sozzi
- Radiation Oncology Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Maud Marguet
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Francois Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
12
|
Al-Shareef JM, Abousahmeen AM, Saud MAB, Al-Aqmar DM, Elfagieh M, Alwoddi BA, Adam AA, Eltayef NE, Saied FSB, Makki AM, Saleem AB. Comparison of photon versus electron for tumor bed boost radiotherapy post-breast conserving surgery. J Med Imaging Radiat Sci 2023; 54:421-428. [PMID: 37248107 DOI: 10.1016/j.jmir.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The standard treatment (photon or electron) for tumor bed boost in breast cancer has not yet been clearly established. The aim of this work was to compare photon vs. electron for tumor bed boost radiotherapy post breast-conserving surgery and whole-breast irradiation concerning different dosimetric parameters. METHODS This study included 51 patients who underwent conservative surgery and adjuvant radiotherapy. Of these, 28 patients had right-sided and 23 patients had a left-sided tumors. All patients in this study were treated with photon and then re-planned with electron plans. RESULTS Both techniques electron and photon plans provided acceptable results while there was a better performance of the latter in terms of target coverage with statistical significance (p < 0.05). The global and maximum dose was significantly higher with electron compared to photon. Homogeneity index (HI) and conformity index (CI) and conformity number (CN) were better in photon plans, especially in deep-seated tumors. The quality of electron plans differed between patients according to depth, irregular shapes, and location of the tumor bed boost. The results of organs at risk (OARs) for ipsilateral lung and heart showed that photon plans were better than electron plans (p < 0.05), especially at a low dose (V2Gy and V1Gy) for ipsilateral lung. For contralateral breast, both photon and electron had nearly comparable results, where the dose delivered to the contralateral breast for both techniques was close to zero. Interestingly, the number of monitor units (MU) was reduced in electron compared to photon by 15.94% (p < 0.001). CONCLUSIONS This study recommends the use of photon in treatment of tumor bed boost in conservative breast cancer and then electron as a second line when the former is not available.
Collapse
Affiliation(s)
- Jamal M Al-Shareef
- Department of Medical Physics, National Cancer Institute, Misurata, Libya; Department of Physics, Sana'a University, Sana'a, Yemen.
| | - Awatif Mohamed Abousahmeen
- Department of Radiotherapy, National Cancer Institute, Misurata, Libya; Faculty of Medicine, Misurata University, Misurata, Libya; Department of Radiotherapy, Tripoli University Hospital, Tripoli, Libya
| | - Mohammed Ahmed Ben Saud
- Department of Radiotherapy, National Cancer Institute, Misurata, Libya; Faculty of Medicine, Misurata University, Misurata, Libya
| | - Dalal M Al-Aqmar
- Department of Medical Physics, National Cancer Institute, Misurata, Libya; Department of Physics, Ibb University, Ibb, Yemen
| | - Mohamed Elfagieh
- Department of Surgical, National Cancer Institute, Misurata, Libya; Faculty of Medicine, Misurata University, Misurata, Libya
| | | | - Asma A Adam
- Department of Medical Physics, National Cancer Institute, Misurata, Libya
| | - Noria Em Eltayef
- Department of Medical Physics, National Cancer Institute, Misurata, Libya
| | - Fadwa S Ben Saied
- Department of Medical Physics, National Cancer Institute, Misurata, Libya
| | - Ahmed M Makki
- Department of Medical Physics, National Cancer Institute, Misurata, Libya
| | | |
Collapse
|
13
|
Bharati A, Rath S, Khurana R, Rastogi M, Mandal SR, Gandhi AK, Hadi R, Srivastava AK, Mishra SP. Dosimetric Comparision of Coplanar versus Noncoplanar Volumetric Modulated Arc Therapy for Treatment of Bilateral Breast Cancers. J Med Phys 2023; 48:252-258. [PMID: 37969151 PMCID: PMC10642589 DOI: 10.4103/jmp.jmp_36_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction The purpose of this study was to compare the dosimetric parameters of volumetric modulated arc therapy (VMAT) treatment plans using coplanar and noncoplanar beams in patients with bilateral breast cancer/s (BBCs) in terms of organ at risk sparing and target volume coverage. The hypothesis was to test whether VMAT with noncoplanar beams can result in lesser dose delivery to critical organs such as heart and lung, which will result in lesser overall toxicity. Materials and Methods Data of nine BBC cases treated at our hospital were retrieved. Computed tomography simulation data of these cases was used to generate noncoplanar VMAT plans and the parameters were compared with standard VMAT coplanar plans. Contouring was done using radiation therapy oncology group guidelines. Forty-five Gray in 25 fractions was planned followed by 10 Gy in five fractions boost in breast conservation cases. Results No significant difference in planning target volume (PTV) coverage was found for the right breast/chestwall (P = 0.940), left breast/chestwall (P = 0.872), and in the total PTV (P = 0.929). Noncoplanar beams resulted in better cardiac sparing in terms of Dmean heart. The difference in mean dose was >1 Gy (8.80 ± 0.28 - 7.28 ± 0.33, P < 0.001). The Dmean, V20 and V30 values for total lung slightly favor noncoplanar beams, although there was no statistically significant difference. The average monitor units (MUs) were similar for coplanar plans (1515 MU) and noncoplanar plans (1455 MU), but the overall treatment time was higher in noncoplanar plans due to more complex setup and beam arrangement. For noncoplanar VMAT plans, the mean conformity index was slightly better although the homogeneity indices were similar. Conclusion VMAT plans with noncoplanar beam arrangements had significant dosimetric advantages in terms of sparing of critical organs, that is Dmean of heart doses with almost equivalent lung doses and equally good target coverage. Larger studies with clinical implications need to be considered to validate this data.
Collapse
Affiliation(s)
- Avinav Bharati
- Department of Radiation Oncology, NCI-AIIMS, New Delhi, India
| | - Satyajeet Rath
- Department of Radiation Oncology, Gujarat Cancer and Research Institute, Ahmedabad, India
| | - Rohini Khurana
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Madhup Rastogi
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | | | - Ajeet Kumar Gandhi
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Rahat Hadi
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Anoop K. Srivastava
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Surendra Prasad Mishra
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
14
|
Mishra SS, Nanda S, Ahirwar MK, Simran, Rath SM. Advancing Precision in Post-mastectomy Chest Wall Radiotherapy: A Comparative Dosimetric Analysis of Volumetric-Modulated Arc Therapy (VMAT) and Intensity-Modulated Radiotherapy (IMRT) Based on Institutional Experience. Cureus 2023; 15:e38464. [PMID: 37276065 PMCID: PMC10235212 DOI: 10.7759/cureus.38464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Post-mastectomy radiation therapy (PMRT) is an important component in the management of breast cancer patients who have undergone mastectomy. Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are two popular methods of delivering PMRT. With IMRT, high radiation doses are directed at the tumor, while exposure to healthy tissue is kept to a minimum. VMAT, on the other hand, is a more advanced version of IMRT that allows for faster radiation dose delivery while maintaining precision. The complexity of the VMAT treatment planning and delivery process, on the other hand, may increase the risk of technical errors, which can reduce treatment effectiveness. Studies have compared VMAT and IMRT in PMRT for breast cancer patients, but most have found no significant differences in treatment outcomes between the two methods. Individual patient factors such as treatment goals, available resources, and other characteristics may influence the choice between the two techniques. PURPOSE This prospective observational study aimed to compare the dosimetry of two cutting-edge modern radiotherapy techniques for post-mastectomy breast cancer patients receiving hypofractionated doses. METHODS For 58 patients with breast cancer, 116 plans for radiotherapy treatment were generated by both VMAT and IMRT. To maintain the uniformity of contouring, every CT image was contoured by the same physician, and Radiotherapy Oncology Group (RTOG) contouring guidelines were strictly followed during contouring. RESULTS Both techniques had comparable target volume coverage, but VMAT produced a significantly better conformity index than IMRT for both the left (0.71 vs. 0.65) and right (0.72 vs. 0.66) breasts (p-value < 0.05). VMAT plans had significantly higher low-dose spillage to the ipsilateral lung (V5Gy and V10Gy) but significantly lower high-dose spillage (V20Gy, V30Gy, and V40Gy) than IMRT plans (p-value < 0.05). Dmax and Dmean for the ipsilateral lung were comparable for both techniques. When compared to alternative treatment approaches, IMRT treatment plans were found to be more effective in minimizing radiation exposure to the heart for all patients with right-sided breast cancer, resulting in considerably lower levels of Dmean, V5Gy, V10Gy, V20Gy, and V35Gy. Plans for VMAT treatment were found to be significantly superior to left-side chest wall radiotherapy in terms of lower exposure to the heart for higher doses. IMRT plans, on the other hand, were successful in dramatically lowering the levels of Dmax that reached the spinal cord for both right- and left-sided breast cancers. CONCLUSION Apart from similar planning target volume (PTV) coverage to IMRT plans, VMAT produced significantly better conformity. VMAT plans have more low-dose spillage to normal tissues, while IMRT plans spare various organs at risk significantly better at lower doses in both right and left-sided breast cancer. VMAT was found to be better at sparing the heart (in left-sided breast cancer only) and ipsilateral lung at a high dose range. The best radiotherapy approach for breast cancer should be established on an individual basis, taking into account tumor laterality and the risk-benefit ratio.
Collapse
Affiliation(s)
- Shiv S Mishra
- Radiation Oncology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Siddhartha Nanda
- Radiation Oncology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Manish K Ahirwar
- Radiation Oncology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Simran
- Radiation Oncology, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Swaroopa M Rath
- Medicine, Srirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, IND
| |
Collapse
|
15
|
Abdollahi S, Hadizadeh Yazdi MH, Mowlavi AA, Ceberg S, Aznar MC, Tabrizi FV, Salek R, Ghodsi A, Shams A. A dose planning study for cardiac and lung dose sparing techniques in left breast cancer radiotherapy: Can free breathing helical tomotherapy be considered as an alternative for deep inspiration breath hold? Tech Innov Patient Support Radiat Oncol 2023; 25:100201. [PMID: 36798947 PMCID: PMC9926227 DOI: 10.1016/j.tipsro.2023.100201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose To investigate the possibility to be able to offer left sided breast cancer patients, not suitable for DIBH, an organ at risk saving treatment. Materials and Methods Twenty patients receiving radiotherapy for left breast cancer in DIBH were enrolled in the study. Planning CT scans were acquired in the same supine treatment position in FB and DIBH. 3DCRT_DIBH plans were designed and optimized using two parallel opposed tangent beams (with some additional segments) for the breast and chest wall and anterior-posterior fields for regional lymph nodes irradiation. Additionally, FB helical tomotherapy plans were optimized to minimize heart and lung dose. All forty plans were optimized with at least 95% of the total CTV covered by the 95% of prescribed dose of 50 Gy in 25 fractions. Results HT_FB plans showed significantly better dose homogeneity and conformity compared to the 3DCRT_DIBH specially for regional nodal irradiation. The heart mean dose was almost comparable in 3DCRT_DIBH and HT_FB while the volume (%) of the heart receiving 25 Gy had a statistically significant reduction from 7.90 ± 3.33 in 3DCRT_DIBH to 0.88 ± 0.66 in HT_FB. HT_FB was also more effective in left descending artery (LAD) mean dose reduction about 100% from 30.83 ± 9.2 Gy to 9.7 ± 3.1. The ipsilateral lung volume receiving 20 Gy has a further reduction of 43 % in HT_FB compared with 3DCRT_DIBH. For low dose comparison, 3DCRT_DIBH was superior for contralateral organ sparing compared to the HT_FB due to the limited angle for dose delivery. Conclusion For patients who cannot be a candidate for DIBH for any reason, HT in free breathing may be a good alternative and provides heart and ipsilateral lung dose sparing, however with the cost of increased dose to contralateral breast and lung.
Collapse
Affiliation(s)
- Sara Abdollahi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Medical Physics Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | | - Ali Asghar Mowlavi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author at: Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sofie Ceberg
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Marianne Camille Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Roham Salek
- Radiotherapy and Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran,Radiotherapy and Oncology Department, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza Ghodsi
- Department of Statistics, Hakim Sabzevari University, Sabzevar, Iran
| | - Ali Shams
- Medical Physics Department, Seyed-al-Shohada Hospital, Isfahan, Iran
| |
Collapse
|
16
|
Eid RA, Alaa Edeen M, Shedid EM, Kamal ASS, Warda MM, Mamdouh F, Khedr SA, Soltan MA, Jeon HW, Zaki MSA, Kim B. Targeting Cancer Stem Cells as the Key Driver of Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2023; 24:ijms24021786. [PMID: 36675306 PMCID: PMC9861138 DOI: 10.3390/ijms24021786] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
The emerging concept of cancer stem cells (CSCs) as the key driver behind carcinogenesis, progression, and diversity has displaced the prior model of a tumor composed of cells with similar subsequently acquired mutations and an equivalent capacity for renewal, invasion, and metastasis. This significant change has shifted the research focus toward targeting CSCs to eradicate cancer. CSCs may be characterized using cell surface markers. They are defined by their capacity to self-renew and differentiate, resist conventional therapies, and generate new tumors following repeated transplantation in xenografted mice. CSCs' functional capabilities are governed by various intracellular and extracellular variables such as pluripotency-related transcription factors, internal signaling pathways, and external stimuli. Numerous natural compounds and synthetic chemicals have been investigated for their ability to disrupt these regulatory components and inhibit stemness and terminal differentiation in CSCs, hence achieving clinical implications. However, no cancer treatment focuses on the biological consequences of these drugs on CSCs, and their functions have been established. This article provides a biomedical discussion of cancer at the time along with an overview of CSCs and their origin, features, characterization, isolation techniques, signaling pathways, and novel targeted therapeutic approaches. Additionally, we highlighted the factors endorsed as controlling or helping to promote stemness in CSCs. Our objective was to encourage future studies on these prospective treatments to develop a framework for their application as single or combined therapeutics to eradicate various forms of cancer.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Eslam M. Shedid
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Al Shaimaa S. Kamal
- Biotechnology Department, Faculty of Agriculture, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Mona M. Warda
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Sohila A. Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
17
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
18
|
Karaca S. The use of Hybrid Techniques in Whole-Breast Radiotherapy: A Systematic Review. Technol Cancer Res Treat 2022; 21:15330338221143937. [PMID: 36537067 PMCID: PMC9772967 DOI: 10.1177/15330338221143937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives The development of new techniques in radiotherapy (RT) provides a better planned target volume (PTV) dose distribution while further improving the protection of organs at risk (OARs). The study aims to present the dosimetric results of studies using hybrid techniques in whole-breast radiotherapy (WBRT). Methods: This systematic literature review was conducted by scanning the relevant literature in PubMed, Scopus, and Web of Science following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Among the parameters are dose values for PTV and OARs beam contribute ratios, the value of monitors, and treatment times for different RT techniques. Initially, 586 articles were identified; 196 duplicate articles were removed leaving 391 articles for screening. Three-hundred and thirty-seven irrelevant articles were excluded, leaving 54 studies assessed for eligibility. A total of 22 articles met the search criteria to evaluate dosimetric results of hybrid and other RT techniques in WBRT. Results: According to the dosimetric data of the studies, hybrid intensity-modulated RT (H-IMRT) and hybrid volumetric-modulated arc therapy (H-VMAT) techniques give dosimetrically advantageous results in WBRT compared to other RT techniques. Conclusion: Hybrid techniques using appropriate beams contribute value and show great promise in improving dosimetric results in WBRT. However, there is a need for new studies showing the long-term clinical results of hybrid RT.
Collapse
Affiliation(s)
- Sibel Karaca
- Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, Turkey,Sibel Karaca, Faculty of Medicine, Department of Radiation Oncology, Akdeniz University, Antalya, 07070, Turkey.
| |
Collapse
|
19
|
Balaji K, Ramasubramanian V. Integrated scoring approach to assess radiotherapy plan quality for breast cancer treatment. Rep Pract Oncol Radiother 2022; 27:707-716. [PMID: 36196407 PMCID: PMC9521686 DOI: 10.5603/rpor.a2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Proposal of an integrated scoring approach assessing the quality of different treatment techniques in a radiotherapy planning comparison. This scoring method incorporates all dosimetric indices of planning target volumes (PTVs) as well as organs at risk (OARs) and provides a single quantitative measure to select an ideal plan. Materials and methods The radiotherapy planning techniques compared were field-in-field (FinF), intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), hybrid IMRT (H-IMRT), and hybrid VMAT (H-VMAT). These plans were generated for twenty-five locally advanced left-sided breast cancer patients. The PTVs were prescribed a hypofractionation dose of 40.5 Gy in 15 fractions. The integrated score for each planning technique was calculated using the proposed formula. Results An integrated score value that is close to zero indicates a superior plan. The integrated score that incorporates all dosimetric indices (PTVs and OARs) were 1.37, 1.64, 1.72, 1.18, and 1.24 for FinF, IMRT, VMAT, H-IMRT, and H-VMAT plans, respectively. Conclusion The proposed integrated scoring approach is scientific to select a better plan and flexible to incorporate the patient-specific clinical demands. This simple tool is useful to quantify the treatment techniques and able to differentiate the acceptable and unacceptable plans.
Collapse
Affiliation(s)
- Karunakaran Balaji
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India,Department of Radiation Oncology, Gleneagles Global Hospitals, Chennai, India
| | | |
Collapse
|
20
|
Hansen CR, Hussein M, Bernchou U, Zukauskaite R, Thwaites D. Plan quality in radiotherapy treatment planning - Review of the factors and challenges. J Med Imaging Radiat Oncol 2022; 66:267-278. [PMID: 35243775 DOI: 10.1111/1754-9485.13374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
A high-quality treatment plan aims to best achieve the clinical prescription, balancing high target dose to maximise tumour control against sufficiently low organ-at-risk dose for acceptably low toxicity. Treatment planning (TP) includes multiple steps from simulation/imaging and segmentation to technical plan production and reporting. Consistent quality across this process requires close collaboration and communication between clinical and technical experts, to clearly understand clinical requirements and priorities and also practical uncertainties, limitations and compromises. TP quality depends on many aspects, starting from commissioning and quality management of the treatment planning system (TPS), including its measured input data and detailed understanding of TPS models and limitations. It requires rigorous quality assurance of the whole planning process and it links to plan deliverability, assessable by measurement-based verification. This review highlights some factors influencing plan quality, for consideration for optimal plan construction and hence optimal outcomes for each patient. It also indicates some challenges, sources of difference and current developments. The topics considered include: the evolution of TP techniques; dose prescription issues; tools and methods to evaluate plan quality; and some aspects of practical TP. The understanding of what constitutes a high-quality treatment plan continues to evolve with new techniques, delivery methods and related evidence-based science. This review summarises the current position, noting developments in the concept and the need for further robust tools to help achieve it.
Collapse
Affiliation(s)
- Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ruta Zukauskaite
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Pial MMH, Tomitaka A, Pala N, Roy U. Implantable Devices for the Treatment of Breast Cancer. JOURNAL OF NANOTHERANOSTICS 2022; 3:19-38. [PMID: 37600442 PMCID: PMC10438892 DOI: 10.3390/jnt3010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.
Collapse
Affiliation(s)
| | - Asahi Tomitaka
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Computer Science, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
22
|
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front Mol Biosci 2022; 9:836417. [PMID: 35145999 PMCID: PMC8824427 DOI: 10.3389/fmolb.2022.836417] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer that lacks estrogen, progesterone, and human epidermal growth factor receptor 2. This cancer is responsible for more than 15-20% of all breast cancers and is of particular research interest as it is therapeutically challenging mainly because of its low response to therapeutics and highly invasive nature. The non-availability of specific treatment options for TNBC is usually managed by conventional therapy, which often leads to relapse. The focus of this review is to provide up-to-date information related to TNBC epidemiology, risk factors, metastasis, different signaling pathways, and the pathways that can be blocked, immune suppressive cells of the TNBC microenvironment, current and investigation therapies, prognosis, and the role of artificial intelligence in TNBC diagnosis. The data presented in this paper may be helpful for researchers working in the field to obtain general and particular information to advance the understanding of TNBC and provide suitable disease management in the future.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
23
|
Manikandan PS, Sathiyaraj P, Varatharaj C, Ganesh KM, Sathiyan S, Ravikumar M. Dosimetric evaluation of hybrid and volumetric-modulated arc therapy plan for left-sided chest wall irradiation in MONACO treatment planning system. J Cancer Res Ther 2022; 18:1728-1732. [DOI: 10.4103/jcrt.jcrt_707_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
25
|
Shastri AA, Lombardo J, Okere SC, Higgins S, Smith BC, DeAngelis T, Palagani A, Hines K, Monti DA, Volpe S, Mitchell EP, Simone NL. Personalized Nutrition as a Key Contributor to Improving Radiation Response in Breast Cancer. Int J Mol Sci 2021; 23:175. [PMID: 35008602 PMCID: PMC8745527 DOI: 10.3390/ijms23010175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding metabolic and immune regulation inherent to patient populations is key to improving the radiation response for our patients. To date, radiation therapy regimens are prescribed based on tumor type and stage. Patient populations who are noted to have a poor response to radiation such as those of African American descent, those who have obesity or metabolic syndrome, or senior adult oncology patients, should be considered for concurrent therapies with radiation that will improve response. Here, we explore these populations of breast cancer patients, who frequently display radiation resistance and increased mortality rates, and identify the molecular underpinnings that are, in part, responsible for the radiation response and that result in an immune-suppressive tumor microenvironment. The resulting immune phenotype is discussed to understand how antitumor immunity could be improved. Correcting nutrient deficiencies observed in these populations should be considered as a means to improve the therapeutic index of radiation therapy.
Collapse
Affiliation(s)
- Anuradha A. Shastri
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Joseph Lombardo
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Samantha C. Okere
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Stephanie Higgins
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Brittany C. Smith
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Tiziana DeAngelis
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Ajay Palagani
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Kamryn Hines
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Daniel A. Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stella Volpe
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Edith P. Mitchell
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| |
Collapse
|
26
|
Li Y, Wang K, Chen Y, Cai J, Qin X, Lu A, Guan D, Qin G, Chen W. A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer. Front Pharmacol 2021; 12:723147. [PMID: 34899291 PMCID: PMC8660088 DOI: 10.3389/fphar.2021.723147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide and can be treated using various methods; however, side effects of these treatments cannot be ignored. Increasing evidence indicates that compound kushen injection (CKI) can be used to treat BC. However, traditional Chinese medicine (TCM) is characterized by “multi-components” and “multi-targets”, which make it challenging to clarify the potential therapeutic mechanisms of CKI on BC. Herein, we designed a novel system pharmacology strategy using differentially expressed gene analysis, pharmacokinetics synthesis screening, target identification, network analysis, and docking validation to construct the synergy contribution degree (SCD) and therapeutic response index (TRI) model to capture the critical components responding to synergistic mechanisms of CKI in BC. Through our designed mathematical models, we defined 24 components as a high contribution group of synergistic components (HCGSC) from 113 potentially active components of CKI based on ADME parameters. Pathway enrichment analysis of HCGSC targets indicated that Rhizoma Heterosmilacis and Radix Sophorae Flavescentis could synergistically target the PI3K-Akt signaling pathway and the cAMP signaling pathway to treat BC. Additionally, TRI analysis showed that the average affinity of HCGSC and targets involved in the key pathways reached -6.47 kcal/mmol, while in vitro experiments proved that two of the three high TRI-scored components in the HCGSC showed significant inhibitory effects on breast cancer cell proliferation and migration. These results demonstrate the accuracy and reliability of the proposed strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Accelerated hypofractionated radiotherapy for chest wall and nodal irradiation using hybrid techniques. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Aim:
This study compares three different hybrid plans, for left-sided chest wall (CW) and nodal stations irradiation using a hypofractionated dose regimen.
Materials and methods:
Planning target volumes (PTVs) of 25 breast cancer patients that included CW, supraclavicular (SCL) and internal mammary node (IMN) were planned with 3 different hybrid techniques: 3DCRT+IMRT, 3DCRT+VMAT and IMRT+VMAT. All hybrid plans were generated with a hypofractionated dose prescription of 40·5 Gy in 15 fractions. Seventy per cent of the dose was planned with the base-dose component and remaining 30% of the dose was planned with the hybrid component. All plans were evaluated based on the PTVs and organs at risk (OARs) dosimetric parameters.
Results:
The results for PTVs parameters have shown that the 3DCRT+IMRT and 3DCRT+VMAT plans were superior in uniformity index to the IMRT+VMAT plan. The OARs dose parameters were comparable between hybrid plans. The IMRT+VMAT plan provided a larger low dose volume spread to the heart and ipsilateral lung (p < 0·001). The 3DCRT+VMAT plan required less monitor units and treatment time (p = 0·005) than other plans.
Conclusion:
The 3DCRT+VMAT hybrid plan showed superior results with efficient treatment delivery and provide clinical benefit by reducing both low and high dose levels.
Collapse
|
28
|
Ju E, Heo EJ, Park CG, Kim M, Kim KH, Shim JB, Park YJ, Lee NK, Kim CY, Lee S. Dosimetric comparison of VitalBeam ® and Halcyon TM 2.0 for hypofractionated VMAT with simultaneous integrated boost treatment of early-stage left-sided breast cancer. J Appl Clin Med Phys 2021; 22:232-238. [PMID: 34554605 PMCID: PMC8504599 DOI: 10.1002/acm2.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose This study compared the quality of treatment plans for early‐stage, left‐sided breast cancer, as planned for and delivered by the HalcyonTM and VitalBeam®. Materials and methods Fifteen patients diagnosed with early‐stage left‐sided breast cancer, who had received VMAT with hypofractionated SIB, were recruited. All cases were planned using HalcyonTM comprising a dual‐layer MLC (DL‐MLC) and VitalBeam® with a Millennium 120 MLC (VB‐MLC). For the PTVs, the quality of coverage (QC), conformity index (CI), and homogeneity index (HI) were calculated for each plan. The dosimetric differences between the two treatment plans were statistically compared using the Wilcoxon signed‐rank test (p < 0.05). To evaluate delivery efficiency, the average delivery time for each patient's treatment plan was recorded and compared. Results For the PTVs, the two plans (DL‐MLC and VB‐MLC) were comparable in terms of the QC, CI, and HI. However, V30Gy and Dmean for the heart in the DL‐MLC plan were significantly reduced by 0.49% and 14.6%, respectively, compared with those in the VB‐MLC plan (p < 0.05). The Dmean value for the ipsilateral lung in the DL‐MLC plan significantly decreased by 5.5%, compared with that in the VB‐MLC plan (p < 0.05). In addition, the delivery times for the DL‐MLC and VB‐MLC plans were 79 ± 10 and 101 ± 11 s, respectively. Conclusions DL‐MLC plans were found to improve OAR sparing. In particular, when treating left‐sided breast cancer via DL‐MLC plans, the risk of heart toxicity is expected to be reduced.
Collapse
Affiliation(s)
- Eunbin Ju
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea.,Department of Bio-Medical Science, Graduate School of Korea University, Sejong, Korea
| | - Eun Jeong Heo
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea.,Department of Bio-Medical Science, Graduate School of Korea University, Sejong, Korea
| | - Chun Gun Park
- Department of Mathematics, Kyonggi University, Gyeonggi, Korea
| | - Minseok Kim
- Department of Biostatistics and Computing, Yonsei University Graduate school, Seoul, Korea
| | - Kwang Hyeon Kim
- Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
| | - Jang Bo Shim
- Department of Radiation Oncology, Guro Hospital, Korea University Medical Center, Seoul, Korea
| | - Young Je Park
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea
| | - Nam Kwon Lee
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea
| | - Chul Yong Kim
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea
| | - Suk Lee
- Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
29
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Ramanto KN, Widianto KJ, Wibowo SSH, Agustriawan D. The regulation of microRNA in each of cancer stage from two different ethnicities as potential biomarker for breast cancer. Comput Biol Chem 2021; 93:107497. [PMID: 34029828 DOI: 10.1016/j.compbiolchem.2021.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
miRNA has recently emerged as a potential biomarker for breast cancer. Even though many studies have identified ethnic variation affecting miRNA regulation, the effect of cancer stage within specific ethnicities on miRNA epigenetic remains unclear. The present study is designed to investigate miRNA regulation from two distinct ethnicities in specific cancer stages (non-Hispanic white and non-Hispanic black) using the TCGA dataset. Differentially expressed miRNAs were calculated by using the edgeR package. miRNAs with the highest or lowest log fold Change from each cancer stage were selected as a potential biomarker. miRNA-gene interaction was analyzed by using spearman correlation analysis, CLUEGO, and DIANA-mirpath. The association of biomarker candidates with diagnostic and prognostic performance was assessed using ROC and Kaplan-Meier survival analysis. miRNA-gene interaction analysis revealed the involvement of selected miRNAs in cancer progression. From eleven selected aberrant miRNAs, four of the miRNAs (hsa-mir-495, hsa-mir-592, hsa-mir-6501, and hsa-mir-937) are significantly detrimental to breast cancer diagnosis and prognosis. Hence, our result provides valuable information to explore miRNA's role in each cancer stage between non-Hispanic white and non-Hispanic black.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Kresnodityo Jatiputro Widianto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Stefanus Satrio Hadi Wibowo
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - David Agustriawan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
31
|
Jia D, Chen C, Chen C, Chen F, Zhang N, Yan Z, Lv X. Breast Cancer Case Identification Based on Deep Learning and Bioinformatics Analysis. Front Genet 2021; 12:628136. [PMID: 34079578 PMCID: PMC8165442 DOI: 10.3389/fgene.2021.628136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Mastering the molecular mechanism of breast cancer (BC) can provide an in-depth understanding of BC pathology. This study explored existing technologies for diagnosing BC, such as mammography, ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) and summarized the disadvantages of the existing cancer diagnosis. The purpose of this article is to use gene expression profiles of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to classify BC samples and normal samples. The method proposed in this article triumphs over some of the shortcomings of traditional diagnostic methods and can conduct BC diagnosis more rapidly with high sensitivity and have no radiation. This study first selected the genes most relevant to cancer through weighted gene co-expression network analysis (WGCNA) and differential expression analysis (DEA). Then it used the protein-protein interaction (PPI) network to screen 23 hub genes. Finally, it used the support vector machine (SVM), decision tree (DT), Bayesian network (BN), artificial neural network (ANN), convolutional neural network CNN-LeNet and CNN-AlexNet to process the expression levels of 23 hub genes. For gene expression profiles, the ANN model has the best performance in the classification of cancer samples. The ten-time average accuracy is 97.36% (±0.34%), the F1 value is 0.8535 (±0.0260), the sensitivity is 98.32% (±0.32%), the specificity is 89.59% (±3.53%) and the AUC is 0.99. In summary, this method effectively classifies cancer samples and normal samples and provides reasonable new ideas for the early diagnosis of cancer in the future.
Collapse
Affiliation(s)
- Dongfang Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Fangfang Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Ningrui Zhang
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Ziwei Yan
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Xiaoyi Lv
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, China
| |
Collapse
|
32
|
Ashby O, Bridge P. Late effects arising from volumetric modulated arc therapy to the breast: A systematic review. Radiography (Lond) 2021; 27:650-653. [PMID: 32819824 DOI: 10.1016/j.radi.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Volumetric modulated arc therapy (VMAT) to the breast offers the potential for excellent dose conformity with the possibility of integrating a simultaneous boost within the treatment plan. This technique, however, also delivers a low dose to a large amount of healthy tissue. This systematic review aimed to determine if VMAT offers a clinically significant difference in late effects compared with conformal radiotherapy techniques for breast radiotherapy. METHODS A systematic review and quality appraisal of primary studies evaluating VMAT to the breast was performed, adopting the PRISMA checklist. RESULTS A total of 8 studies were included in the review. These demonstrated variation in prescription, outcome measures and cohort characteristics. Findings supported the value of VMAT for reducing organ at risk (OAR) doses but also confirmed the potential secondary cancer risk arising from the low dose bath. Hybrid techniques combining VMAT with tangential intensity modulated or standard radiotherapy showed promise when tangential plans failed to meet objectives. CONCLUSION VMAT alone does not offer any significant benefit to late effects over conventional for breast radiotherapy due to the creation of a low dose bath, despite improving OAR doses. More research into hybrid techniques is warranted to identify the most appropriate treatment for different patient subgroups and tumour locations. IMPLICATIONS FOR PRACTICE VMAT may not be the optimal technique for breast radiotherapy; hybrid plans combining tangential IMRT with VMAT are recommended.
Collapse
Affiliation(s)
- O Ashby
- School of Health Sciences, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK
| | - P Bridge
- School of Health Sciences, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK.
| |
Collapse
|
33
|
Nagata T, Kanamori M, Sekine S, Arai M, Moriyama M, Fujii T. Clinical study of modulated electro-hyperthermia for advanced metastatic breast cancer. Mol Clin Oncol 2021; 14:103. [PMID: 33796292 PMCID: PMC8010507 DOI: 10.3892/mco.2021.2265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/05/2021] [Indexed: 11/06/2022] Open
Abstract
Modulated electro-hyperthermia (mEHT) is a new treatment modality developed to overcome the problems associated with traditional hyperthermia; mEHT uses a precise impedance-matched system and modulated radiofrequency current flow to malignant tumors. It selects the malignant cells based on their biophysical differences, due to their high metabolic rate, individual (autonomic) behavior and membrane status. The aim of the present study was to report the outcomes of mEHT in the treatment of advanced breast cancer. mEHT was examined in 10 patients with advanced metastatic breast cancer and recurrent disease, who were considered incurable by standard therapy protocols. Of the 10 patients, partial response was achieved in 3, disease stability in 3, and progressive disease in 4; however, their quality of life was improved based on their subjective reports. No adverse effects were observed in any of the 10 patients. The present study demonstrated the feasibility of mEHT as a possible therapy for advanced breast cancer cases when standard therapies fail. Moreover, mEHT had no side effects and may be combined with various treatments for long-term therapy.
Collapse
Affiliation(s)
- Takuya Nagata
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Masahiko Kanamori
- Department of Human Science, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Sekine
- Department of Surgery, Kamiichi General Hospital, Toyama 930-0391, Japan
| | - Mie Arai
- Department of Surgery, Toyama Nishi General Hospital, Toyama 939-2716, Japan
| | - Makoto Moriyama
- Department of Surgery, Tomei Atsugi Hospital, Kanagawa 243-8571, Japan
| | - Tsutomu Fujii
- Department of Science and Surgery, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
34
|
Yoo S, Sheng Y, Blitzblau R, McDuff S, Champ C, Morrison J, O’Neill L, Catalano S, Yin FF, Wu QJ. Clinical Experience With Machine Learning-Based Automated Treatment Planning for Whole Breast Radiation Therapy. Adv Radiat Oncol 2021; 6:100656. [PMID: 33748540 PMCID: PMC7966969 DOI: 10.1016/j.adro.2021.100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/05/2022] Open
Abstract
PURPOSE The machine learning-based automated treatment planning (MLAP) tool has been developed and evaluated for breast radiation therapy planning at our institution. We implemented MLAP for patient treatment and assessed our clinical experience for its performance. METHODS AND MATERIALS A total of 102 patients of breast or chest wall treatment plans were prospectively evaluated with institutional review board approval. A human planner executed MLAP to create an auto-plan via automation of fluence maps generation. If judged necessary, a planner further fine-tuned the fluence maps to reach a final plan. Planners recorded the time required for auto-planning and manual modification. Target (ie, breast or chest wall and nodes) coverage and dose homogeneity were compared between the auto-plan and final plan. RESULTS Cases without nodes (n = 71) showed negligible (<1%) differences for target coverage and dose homogeneity between the auto-plan and final plan. Cases with nodes (n = 31) also showed negligible difference for target coverage. However, mean ± standard deviation of volume receiving 105% of the prescribed dose and maximum dose were reduced from 43.0% ± 26.3% to 39.4% ± 23.7% and 119.7% ± 9.5% to 114.4% ± 8.8% from auto-plan to final plan, respectively, all with P ≤ .01 for cases with nodes (n = 31). Mean ± standard deviation time spent for auto-plans and additional fluence modification for final plans were 12.1 ± 9.3 and 13.1 ± 12.9 minutes, respectively, for cases without nodes, and 16.4 ± 9.7 and 26.4 ± 16.4 minutes, respectively, for cases with nodes. CONCLUSIONS The MLAP tool has been successfully implemented for routine clinical practice and has significantly improved planning efficiency. Clinical experience indicates that auto-plans are sufficient for target coverage, but improvement is warranted to reduce high dose volume for cases with nodal irradiation. This study demonstrates the clinical implementation of auto-planning for patient treatment and the significant importance of integrating human experience and feedback to improve MLAP for better clinical translation.
Collapse
Affiliation(s)
- Sua Yoo
- Corresponding author: Sua Yoo, PhD
| | | | | | - Susan McDuff
- Duke University Medical Center, Durham, North Carolina
| | - Colin Champ
- Duke University Medical Center, Durham, North Carolina
| | - Jay Morrison
- Duke University Medical Center, Durham, North Carolina
| | - Leigh O’Neill
- Duke University Medical Center, Durham, North Carolina
| | | | - Fang-Fang Yin
- Duke University Medical Center, Durham, North Carolina
| | - Q. Jackie Wu
- Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
35
|
Nagaraj J, Veluraja K. Is Synchronous Bilateral Breast Irradiation Using Flattening Filter-Free Beam-Based Volumetric-Modulated Arc Therapy Beneficial? A Dosimetric Study. J Med Phys 2021; 45:226-233. [PMID: 33953498 PMCID: PMC8074717 DOI: 10.4103/jmp.jmp_32_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: The aim of this study is to validate the clinical use of flattening filter-free (FFF) beam-based volumetric-modulated arc therapy (VMAT) in synchronous bilateral breast carcinoma (SBBC) patient treatments and to compare with flattening filtered (FF) beam-based VMAT. Materials and Methods: Computed tomography images of 15 SBBC patients were taken for this study. A dose of 50 Gy in 25 fractions was prescribed to planning target volume (PTV). VMAT plans were generated using both FFF and FF 6 MV X-ray beams in Eclipse treatment planning system. PTV and organs at risk (OARs) doses were analyzed quantitatively using dose–volume histograms (DVHs) to meet plan objectives. Pretreatment point and planar dosimetry were performed. Results: The findings were reported as mean ± 1 standard deviation. PTV volume receiving 95% of the prescribed dose was 95.71% ± 0.65% for FF-VMAT and 95.45% ± 1.33% for FFF-VMAT (P = 0.743). Conformity index was 1.12 ± 0.31 (FF-VMAT) and 1.12 ± 0.02 (FFF-VMAT). Right lung mean dose was 10.95 ± 1.33 Gy (FF-VMAT) and 10.60 ± 98.5 (FFF-VMAT). Left lung mean dose was 9.73 ± 1.56 (FF-VMAT) and 9.61 ± 1.53 Gy (FFF-VMAT). Tumor control probability (TCP) was 99.68% ± 0.02% (FF-VMAT) and 99.67% ± 0.01% (FFF-VMAT) (P = 0.390). Uncomplicated TCP was 98.72% ± 0.02% (FF-VMAT) and 98.72% ± 0.01% (FFF-VMAT) (P = 0.508). Conclusion: The planning objective parameters achieved using FFF-based VMAT showed that FFF can also be used clinically to treat bilateral breast carcinomas and the low-dose lung volumes were still lesser with FFF-VMAT plans than FF-VMAT.
Collapse
Affiliation(s)
- Jagadheeskumar Nagaraj
- Department of Physics, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,Department of Radiation Oncology, Yashoda Hospitals, Hyderabad, Telangana, India
| | - K Veluraja
- Department of Physics, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
36
|
Lizar JC, Volpato KC, Brandão FC, da Silva Guimarães F, Arruda GV, Pavoni JF. Tridimensional dose evaluation of the respiratory motion influence on breast radiotherapy treatments using conformal radiotherapy, forward IMRT, and inverse IMRT planning techniques. Phys Med 2021; 81:60-68. [DOI: 10.1016/j.ejmp.2020.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
|
37
|
Yakavets I, Francois A, Benoit A, Merlin JL, Bezdetnaya L, Vogin G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: optimization study. Sci Rep 2020; 10:21273. [PMID: 33277538 PMCID: PMC7718236 DOI: 10.1038/s41598-020-78087-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced fibrosis (RIF) is the main late radiation toxicity in breast cancer patients. Most of the current 3D in vitro breast cancer models are composed by cancer cells only and are unable to reproduce the complex cellular homeostasis within the tumor microenvironment to study RIF mechanisms. In order to account complex cellular interactions within the tumor microenvironment, an advanced 3D spheroid model, consisting of the luminal breast cancer MCF-7 cells and MRC-5 fibroblasts, was developed. The spheroids were generated using the liquid overlay technique in culture media into 96-well plates previously coated with 1% agarose (m/v, in water). In total, 21 experimental setups were tested during the optimization of the model. The generated spheroids were characterized using fluorescence imaging, immunohistology and immunohistochemistry. The expression of ECM components was confirmed in co-culture spheroids. Using α-SMA staining, we confirmed the differentiation of healthy fibroblasts into myofibroblasts upon the co-culturing with cancer cells. The induction of fibrosis was studied in spheroids treated 24 h with 10 ng/mL TGF-β and/or 2 Gy irradiation. Overall, the developed advanced 3D stroma-rich in vitro model of breast cancer provides a possibility to study fibrosis mechanisms taking into account 3D arrangement of the complex tumor microenvironment.
Collapse
Affiliation(s)
- Ilya Yakavets
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Aurelie Francois
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Alice Benoit
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.
| | - Guillaume Vogin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.,UMR 7365 CNRS-UL, IMoPA, Vandœuvre-lès-Nancy, France.,Centre François Baclesse, Centre National de Radiothérapie du Grand-Duché du Luxembourg, Esch Sur Alzette, Luxembourg
| |
Collapse
|
38
|
Jo IY, Kim ES, Kim WC, Min CK, Yeo SG. Dosimetric comparison of incidental axillary irradiation between three-dimensional conformal and volumetric modulated arc techniques for breast cancer. Mol Clin Oncol 2020; 12:551-556. [PMID: 32337037 PMCID: PMC7179387 DOI: 10.3892/mco.2020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/04/2020] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy techniques for breast cancer have evolved with efforts to reduce treatment-related side effects. In the present study, we conducted dosimetric analysis of incidental axillary irradiation between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3D-CRT). A total of 20 patients with early stage left breast cancer who underwent breast-conserving surgery followed by postoperative radiotherapy were analyzed. For VMAT plans, dose-volume constraints were not imposed on the axilla, as with 3D-CRT. We compared the dosimetric parameters of the planning target volumes, organs at risk and axillary level I-III of the two plans. VMAT showed better target coverage and a normal organ-sparing effect compared with 3D-CRT. The incidental axillary irradiation of VMAT was lower; the mean dose and the V40Gy were significantly reduced at all axillary levels, with the exception of no difference in the maximum dose to axillary level I. In conclusion, VMAT decreased incidental axillary irradiation, even in the absence of a dose-volume constraint on the axilla, and can, therefore, decrease the risk of radiotherapy-related lymphedema. However, caution is also required because it is unclear whether this incidental axillary irradiation is beneficial for reducing recurrence on the axilla.
Collapse
Affiliation(s)
- In Young Jo
- Department of Radiation Oncology, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
| | - Eun Seog Kim
- Department of Radiation Oncology, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
| | - Chul Kee Min
- Department of Radiation Oncology, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, Chungnam 31151, Republic of Korea
| |
Collapse
|
39
|
Rafic KM, Patricia S, Timothy Peace B, Sujith CJ, Selvamani B, Ravindran PB. Dosimetric and clinical advantages of adapting the DIBH technique to hybrid solitary dynamic portal radiotherapy for left-sided chest-wall plus regional nodal irradiation. Med Dosim 2020; 45:256-263. [PMID: 32362370 DOI: 10.1016/j.meddos.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 11/15/2022]
Abstract
To evaluate the dosimetric and clinical advantages of using deep-inspiration breath-hold (DIBH) technique in hybrid solitary dynamic portal radiotherapy (hSDPRT) for left-sided chest-wall plus regional nodal irradiation and to demonstrate a simplified strategy for preclinical commissioning and calibration of DIBH-gating technique. Fifteen patients with left-sided breast cancer who underwent postmastectomy radiotherapy using hSDPRT were retrospectively evaluated. Two sets of planning-CT images were acquired for each patient, one with free/normal breathing and the other with DIBH. The hSDPRT plans were computed to deliver about 85% of the prescribed dose using static open fields and 15% of dose using a less complex solitary dynamic field. The dosimetric differences between the paired samples were compared using the Wilcoxon signed-rank test. For clinical commissioning of gated treatments, a respiratory simulator equipped with a microcontroller was programmed to simulate free-breathing and DIBH-patterns using a custom-developed android application. While both the hSDPRT plans displayed identical target coverage on both the image-sets, the DIBH technique resulted in statistically significant differences in various dose-volume metrics of heart, left-anterior-descending artery, and ipsilateral-lung structures. The hSDPRT plan with DIBH entails reduced total monitor unit (354.9 ± 13.6 MU) and breath-hold time ranging from 2.9 ± 0.3 to 13.7 ± 0.8 seconds/field, along with an acceptable impact on overall machine throughput. DIBH is a feasible method to effectively address the delivery uncertainty and produce substantial sparing of heart and lung when combined with hSDPRT. Streamlined procedures for commissioning and calibration of DIBH-gating technique are essential for more efficient clinical practice.
Collapse
Affiliation(s)
- Kather Mohamathu Rafic
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India.
| | - Solomon Patricia
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Balasingh Timothy Peace
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India.
| | - Christopher J Sujith
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Backianathan Selvamani
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India.
| | - Paul B Ravindran
- Department of Radiation Oncology, Christian Medical College, Vellore 632004, Tamil Nadu, India; Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna 1400, Austria.
| |
Collapse
|
40
|
Inoue E, Doi H, Monzen H, Tamura M, Inada M, Ishikawa K, Nakamatsu K, Nishimura Y. Dose-volume Histogram Analysis of Knowledge-based Volumetric-modulated Arc Therapy Planning in Postoperative Breast Cancer Irradiation. In Vivo 2020; 34:1095-1101. [PMID: 32354897 PMCID: PMC7279853 DOI: 10.21873/invivo.11880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM We evaluated the dosimetric profiles of manually generated volumetric-modulated arc therapy (VMAT) plans and performance of a commercial knowledge-based planning system (KBP) in treating breast cancer. MATERIALS AND METHODS We defined the manually generated VMAT plan as the manual plan (MP). Twenty MPs were generated for left-sided breast cancer patients who underwent breast-conserving surgery and used to develop a KBP training set. The other five patients were used for validation. The dosimetric parameters among MPs, tangential irradiation plans (TPs), and KBP-VMAT plans (KBP-Ps) were compared. RESULTS D95 and homogeneity of the planning target volume (PTV) were significantly higher and greater in MPs and KBP-Ps than in TPs. Lung V20, V40 The Dmean for the left anterior descending artery was lower in MPs and KBP-Ps than in TPs. KBP could save time in generating VMAT plans. CONCLUSION MPs and KBP-Ps could ensure higher dose uniformity of PTV than TPs. KBP could faster generate comparable MPs for breast cancer.
Collapse
Affiliation(s)
- Eri Inoue
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osaka, Japan
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osaka, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuki Ishikawa
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
41
|
Arculeo S, Miglietta E, Nava F, Morra A, Leonardi MC, Comi S, Ciardo D, Fiore MS, Gerardi MA, Pepa M, Gugliandolo SG, Livi L, Orecchia R, Jereczek-Fossa BA, Dicuonzo S. The emerging role of radiation therapists in the contouring of organs at risk in radiotherapy: analysis of inter-observer variability with radiation oncologists for the chest and upper abdomen. Ecancermedicalscience 2020; 14:996. [PMID: 32153651 PMCID: PMC7032938 DOI: 10.3332/ecancer.2020.996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Aims To compare the contouring of organs at risk (OAR) between a clinical specialist radiation therapist (CSRT) and radiation oncologists (ROs) with different levels of expertise (senior–SRO, junior–JRO, fellow–FRO). Methods On ten planning computed tomography (CT) image sets of patients undergoing breast radiotherapy (RT), the observers independently contoured the contralateral breast, heart, left anterior descending artery (LAD), oesophagus, kidney, liver, spinal cord, stomach and trachea. The CSRT was instructed by the JRO e SRO. The inter-observer variability of contoured volumes was measured using the Dice similarity coefficient (DSC) (threshold of ≥ 0.7 for good concordance) and the centre of mass distance (CMD). The analysis of variance (ANOVA) was performed and a p-value < 0.01 was considered statistically significant. Results Good overlaps (DSC > 0.7) were obtained for all OARs, except for LAD (DSC = 0.34 ± 0.17, mean ± standard deviation) and oesophagus (DSC = 0.66 ± 0.06, mean ± SD). The mean CMD < 1 cm was achieved for all the OARs, but spinal cord (CMD = 1.22 cm). By pairing the observers, mean DSC > 0.7 and mean CMD < 1 cm were achieved in all cases. The best overlaps were seen for the pairs JRO-CSRT(DSC = 0.82; CMD = 0.49 cm) and SRO-JRO (DSC = 0.80; CMD = 0.51 cm). Conclusions Overall, good concordance was found for all the observers. Despite the short training in contouring, CSRT obtained good concordance with his tutor (JRO). Great variability was seen in contouring the LAD, due to its difficult visualization and identification of CT scans without contrast.
Collapse
Affiliation(s)
- Simona Arculeo
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Eleonora Miglietta
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Fabrizio Nava
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Anna Morra
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Cristina Leonardi
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Comi
- Unit of Medical Physics, European Institute of Oncology IRCCS (IEO), 20141 Milan, Italy
| | - Delia Ciardo
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Massimo Sarra Fiore
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Marianna Alessandra Gerardi
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Simone Giovanni Gugliandolo
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo Piero Palagi 1, 50139 Florence, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS (IEO), 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Samantha Dicuonzo
- Division of Radiation Oncology, European Institute of Oncology IRCCS (IEO), Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
42
|
Cheng HW, Chang CC, Shiau AC, Wang MH, Tsai JT. Dosimetric comparison of helical tomotherapy, volumetric-modulated arc therapy, intensity-modulated radiotherapy, and field-in-field technique for synchronous bilateral breast cancer. Med Dosim 2020; 45:271-277. [PMID: 32122694 DOI: 10.1016/j.meddos.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare the dosimetric characteristics of helical tomotherapy (HT), volumetric-modulated arc therapy (VMAT), intensity-modulated radiotherapy (IMRT), and tangential field-in-field technique (FIF) for the treatment of synchronous bilateral breast cancer (SBBC). METHODS AND MATERIALS Ten patients with early-stage unilateral breast cancer were selected for simulating the patients with SBBC in this retrospective analysis. Treatment plans with HT, VMAT, IMRT, and FIF were generated for each patient with a total dose of 50.4 Gy in 28 fractions to the target. Plan quality, namely conformity index (CI), homogeneity index (HI), dose-volume statistics of organs at risk (OARs), and beam-on time (BOT), were evaluated. RESULTS HT plans showed a lower mean heart dose (3.53 ± 0.31Gy) compared with the other plans (VMAT = 5.6 ± 1.36 Gy, IMRT = 3.80 ± 0.76 Gy, and FIF = 4.84 ± 2.13 Gy). Moreover, HT plans showed a significantly lower mean lung dose (p < 0.01) compared with the other plans: mean right lung doses were 6.81 ± 0.67, 10.32 ± 1.04, 9.07 ± 1.21, and 10.03 ± 1.22 Gy and mean left lung doses were 6.33 ± 0.87, 8.82 ± 0.91, 7.84 ± 1.07, and 8.64 ± 0.99 Gy for HT, VMAT, IMRT, and FIF plans, respectively. The mean dose to the left anterior descending artery was significantly lower in HT plans (p < 0.01) than in the other plans: HT = 19.41 ± 0.51 Gy, VMAT = 25.77 ± 7.23 Gy, IMRT = 27.87 ± 6.48 Gy, and FIF = 30.95 ± 10.17 Gy. FIF plans showed a worse CI and HI compared with the other plans. VMAT plans showed shorter BOT (average, 3.9 ± 0.2 minutes) than did HT (average, 11.0 ± 3.0 minutes), IMRT (average, 6.1 ± 0.5 minutes), and FIF (average, 4.6 ± 0.7 minutes) plans. CONCLUSIONS In a dosimetric comparison for SBBC, HT provided the most favorable dose sparing of OARs. However, HT with longer BOT may increase patient discomfort and treatment uncertainty. VMAT enabled shorter BOT with acceptable doses to OARs and had a better CI than did FIF and IMRT.
Collapse
Affiliation(s)
- Hao-Wen Cheng
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Chieh Chang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ming-Hua Wang
- Department of Radiation Oncology, Landseed Hospital, Taoyuan, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
Díaz Gavela AA, Vaquero Barrón B, del Cerro Peñalver E, Couñago F. Breast radiotherapy in elderly women: myths, controversies, and current techniques in the adjuvant setting. Transl Cancer Res 2020; 9:S37-S55. [PMID: 35117947 PMCID: PMC8797447 DOI: 10.21037/tcr.2019.07.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022]
Abstract
In developed countries, breast cancer (BC) is the most common type of cancer in women, mainly affecting patients over age 60. Due to the increasing life expectancy and population ageing, the incidence of BC is expected to increase significantly in the coming years. However, no standardized clinical guidelines are available to assist in decision-making in elderly patients. Moreover, there is a lack of quality scientific evidence to guide treatment selection in this patient population, who are underrepresented in clinical trials. Consequently, up to 50% of elderly women are treated suboptimally, which implies a worse prognosis and survival. Given that the current estimated life expectancy of a healthy 70-year-old woman is 15 years, any treatment capable of reducing the likelihood of disease recurrence and cancer-specific mortality in this patient population would be beneficial. Adjuvant radiotherapy (RT) is one of the pillars of treatment for BC and it plays a key role in improving local control (LC) and overall survival (OS). Adjuvant RT is clearly indicated in young patients who undergo breast-conserving surgery (BCS) as well as in high risk patients, regardless of age. However, the use of adjuvant RT in older patients with early-stage disease has decreased in recent years-even in patients who undergo BCS-due to outdated concerns about the possible side effects of RT and reports suggesting that RT can be omitted in low-risk patients. One of the greatest challenges currently facing radiation oncologists who specialise in the treatment of BC is the selection of elderly patients who are likely to benefit from adjuvant RT. There is also a clear need to critically evaluate the available evidence and to apply those findings to routine clinical practice. Given this context, the aim of the present review is to clarify the current role of adjuvant RT in the management of BC in older women-particularly those with early-stage disease-and to dispel the myths surrounding the use of RT to treat elderly women. This review primarily focuses on the indications, controversies, and irradiation techniques used in this patient subgroup.
Collapse
Affiliation(s)
- Ana Aurora Díaz Gavela
- Department of Radiation Oncology, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital Quironsalud La Luz, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Elia del Cerro Peñalver
- Department of Radiation Oncology, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital Quironsalud La Luz, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital Quironsalud La Luz, Madrid, Spain
- Universidad Europea, Madrid, Spain
| |
Collapse
|
44
|
Hybrid planning techniques for hypofractionated whole-breast irradiation using flattening filter-free beams. Strahlenther Onkol 2019; 196:376-385. [PMID: 31863154 DOI: 10.1007/s00066-019-01555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to assess the feasibility of flattening filter-free (FFF) photon beams in hybrid intensity-modulated radiation therapy (H-IMRT) and hybrid volumetric modulated arc therapy (H-VMAT) for left-sided whole-breast radiation therapy with a boost volume (RT) using a hypofractionated dose regimen. PATIENTS AND METHODS RT plans of 25 patients with left-sided early-stage breast cancer were created with H‑IMRT and H‑VMAT techniques under breath-hold conditions using 6‑MV FFF beams. In hybrid techniques, three-dimensional conformal radiotherapy (3DCRT) plans were kept as base-dose plans for the VMAT and IMRT plans. In addition, H‑IMRT in step-and-shoot mode was also calculated to assess its achievability with FFF beams. RESULTS All hybrid plans achieved the expected target coverage. H‑VMAT showed better coverage and homogeneity index results for the boost target (p < 0.002), while H‑IMRT presented better results for the whole-breast target (p < 0.001). Mean doses to normal tissues were comparable between both plans, while H‑IMRT reduced the low-dose levels to heart and ipsilateral lung (p < 0.05). H‑VMAT revealed significantly better results with regard to monitor units (MU) and treatment time (p < 0.001). CONCLUSION The 6‑MV FFF beam technique is feasible for large-field 3DCRT-based hybrid planning in whole-breast and boost planning target volume irradiation. For breath-hold patients, the H‑VMAT plan is superior to H‑IMRT for hypofractionated dose regimens, with reduced MU and treatment delivery time.
Collapse
|
45
|
Comparison of Dosimetric Parameters Between Field in Field and Conformal Radiation Therapy Techniques in Early Stage of Left Breast Cancer Patients. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.84123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Hybrid volumetric modulated arc therapy for whole breast irradiation: a dosimetric comparison of different arc designs. Radiol Med 2019; 124:546-554. [PMID: 30701385 DOI: 10.1007/s11547-019-00994-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To find an optimal arc design for hybrid volumetric modulated arc therapy (H-VMAT), a combination of conventional 3DCRT and VMAT plans for left-sided whole breast radiation therapy. METHODS AND MATERIALS A total of 26 left-sided early-stage breast cancer patients were selected for this study. To find the superior plan, H-VMAT with three different arc designs including, two partial arcs (2A), four partial arcs (4A) and four tangential arcs (TA) were created for each study case by combining 3DCRT and VMAT with 75% 3DCRT/25% VMAT dose proportion of prescription dose. RESULTS All H-VMAT plans achieved the expected target coverage. A higher conformity index and homogeneity index were achieved for 2A and 4A H-VMAT plans and significantly differ from TA H-VMAT (p < 0.003). The heart and ipsilateral lung dose parameters were comparable among all plans except heart V40Gy which was significantly less in 4A H-VMAT plan (p < 0.05). The contralateral lung, contralateral breast, spinal cord, normal tissue doses and MU were significantly less in TA H-VMAT (p < 0.03). The beam-on time was significantly less in 2A H-VMAT (p < 0.0001). CONCLUSION 2A and 4A H-VMAT techniques are effective in improving the PTV dosimetric parameters as well as reducing the OAR doses. Further, 2A H-VMAT delivers less MU and beam-on time compared to 4A H-VMAT.
Collapse
|
47
|
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol 2018; 107:38-52. [PMID: 30529656 DOI: 10.1016/j.biocel.2018.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Breast cancer remains to be a dreadful disease even with several advancements in radiation and chemotherapies, owing to the drug resistance and tumor relapse caused by breast cancer stem cells. Cancer stem cells are a minute population of cells of solid tumors which show self-renewal and differentiation properties as well as tumorigenic potential. Several signaling pathways including Notch, Hippo, Wnt and Hedgehog and tumor-stroma exchanges play a critical role in the self-renewal and differentiation of cancer stem cells in breast cancer. Cancer stem cells can grow anchorage-independent manner so they disseminate to different parts of the body to form secondary tumors. Cancer stem cells promote angiogenesis by dedifferentiating to endothelial cells as well as secreting proangiogenic and angiogenic factors. Moreover, multidrug resistance genes and drug efflux transporters expressed in breast cancer stem cells confer resistance to various conventional chemotherapeutic drugs. Indeed, these therapies are recognised to enhance the percent of cancer stem cell population in tumors leading to cancer relapse with increased aggressiveness. Hence, devising the therapeutic interventions to target cancer stem cells would be useful in increasing patients' survival rates. In addition, targeting the self-renewal pathways and tumor-stromal cross-talk helps in eradicating this population. Reversal of the cancer stem cell-mediated drug resistance would increase the sensitivity to various conventional drugs for the effective management of breast cancer. In this review, we have discussed the cancer stem cell origin and their involvement in angiogenesis, metastasis and therapy-resistance. We have also summarized different therapeutic approaches to eradicate the same for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | | | - Totakura V S Kumar
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Pinaki Banerjee
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Gopal C Kundu
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
48
|
Ratosa I, Jenko A, Oblak I. Breast size impact on adjuvant radiotherapy adverse effects and dose parameters in treatment planning. Radiol Oncol 2018; 52:233-244. [PMID: 30210048 PMCID: PMC6137355 DOI: 10.2478/raon-2018-0026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023] Open
Abstract
Background Breast radiotherapy is an established adjuvant treatment after breast conserving surgery. One of the important individual factors affecting the final cosmetic outcome after radiation is breast size. The purpose of this review is to summarise the clinical toxicity profile of adjuvant radiotherapy in women with breasts of various sizes, and to evaluate the treatment planning studies comparing target coverage and dose to thoracic organs at risk in relation to breast size. Conclusions Inhomogeneity and excessive radiation dose (hot spots) in the planning of target volume as well as large volume of the breast per se, all contribute to a higher rate of acute adverse events and suboptimal final cosmetic outcome in adjuvant breast cancer radiotherapy, regardless of the fractionation schedule. Improved homogeneity leads to a lower rate of ≥ grade 2 toxicity and can be achieved with three-dimensional conformal or modulated radiotherapy techniques. There may be an association between body habitus (higher body mass index, bigger breast size, pendulous breast, and large chest wall separation) and a higher mean dose to the ipsilateral lung and whole heart. A combination of the technical innovations (i.e. the breath-hold technique, prone position with or without holding breath, lateral decubitus position, and thermoplastic bra), dose prescription (i.e. moderate hypofractionation), and irradiated volume (i.e. partial breast irradiation) should be tailored to every single patient in clinical practice to mitigate the risk of radiation adverse effects.
Collapse
Affiliation(s)
- Ivica Ratosa
- Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Aljasa Jenko
- Division of Radiotherapy, Department of Medical Physics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Irena Oblak
- Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
49
|
Balaji K, Yadav P, BalajiSubramanian S, Anu Radha C, Ramasubramanian V. Hybrid volumetric modulated arc therapy for chest wall irradiation: For a good plan, get the right mixture. Phys Med 2018; 52:86-92. [PMID: 30139614 DOI: 10.1016/j.ejmp.2018.06.641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To find the optimal dose weighting for hybrid volumetric modulated arc therapy (H-VMAT), a combination of conventional 3DCRT and VMAT plans for left sided chest wall and supraclavicular radiation therapy. METHODS & MATERIALS 20 left-sided breast cancer patients who received adjuvant radiotherapy were considered for this study. To find the optimal weighting, 5 H-VMAT plans were generated for each study case by combining different dose proportions of 3DCRT and VMAT plans including: 90% 3DCRT/10% VMAT, 80% 3DCRT/20% VMAT, 70% 3DCRT/30% VMAT, 60% 3DCRT/40% VMAT, 50% 3DCRT/50% VMAT. Further field-in-field, optimal H-VMAT and VMAT alone plans were compared. RESULTS All H-VMAT plans achieved the expected target coverage. A higher conformity index was achieved for 50% 3DCRT/50% VMAT plan, while better homogeneity index was achieved for 80% 3DCRT/20% VMAT plan. Mean and low doses were less in 90% 3DCRT/10% VMAT plan. Compared with other proportions, 80% 3DCRT/20% VMAT and 70% 3DCRT/30% VMAT weighted H-VMAT plans achieved balanced results for PTVs and OARs. CONCLUSION The optimal dose mixture for H-VMAT technique is 70% to 80% for 3DCRT and 20% to 30% for VMAT. The optimal H-VMAT achieved balanced results for the PTVs and OARs compared with field-in-field and VMAT alone plans.
Collapse
Affiliation(s)
- Karunakaran Balaji
- Department of Radiation Oncology, Gleneagles Global Hospitals, Chennai, India; School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
| | - Poonam Yadav
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | | | | |
Collapse
|
50
|
Khullar P, Garg C, Sinha SN, Kaur I, Datta NR. An in silico comparative dosimetric study of postmastectomy locoregional irradiation using intensity-modulated vs 3-dimensional conventional radiotherapy. Med Dosim 2018; 43:370-376. [PMID: 29352629 DOI: 10.1016/j.meddos.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 12/07/2017] [Indexed: 11/15/2022]
Abstract
An in silico dosimetric evaluation of intensity-modulated radiation therapy (IMRT) vs 3-dimensional conventional radiation therapy (3D-CRT) treatment plans in postmastectomy radiation therapy (PMRT) to the chest wall and regional lymphatics was conducted. Twenty-five consecutive patients with breast cancer referred for locoregional PMRT, stages T2-4 with N1-3, were planned to receive 50 Gy in 25 fractions with IMRT. Additionally, a 3D-CRT plan was generated using identical contours for the clinical target volumes (CTV), planning target volumes (PTV), and organs at risk (OAR). Treatment plans were assessed using dose-volume histogram (DVH) parameters of D98, D95, D50, D2, and homogeneity index for individual CTVs and PTVs. OARs evaluated were ipsilateral and contralateral lungs, heart, spinal cord, and opposite breast. Most DVH parameters pertaining to CTVs and PTVs significantly favored IMRT. V20 for ipsilateral and contralateral lungs, D33 of heart and maximum dose to spinal cord favored IMRT (all p < 0.001). The mean dose to the opposite breast was significantly lesser with 3D-CRT (5.8 ± 1.8 Gy vs 2.0 ± 1.0 Gy, p < 0.001). Thus, except for the mean dose to the opposite breast, the compliance to DVH constraints applied to PTV and OARs were significantly better with IMRT. At a median follow-up of 76 months (7-91), none had locoregional failure or pulmonary or cardiac morbidity. For PMRT, requiring comprehensive irradiation to both chest wall and regional lymphatics, IMRT offers superior dosimetric advantages over 3D-CRT. This was also corroborated by long-term outcomes in these patients treated with IMRT.
Collapse
Affiliation(s)
- Pooja Khullar
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Charu Garg
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Sujit Nath Sinha
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjit Kaur
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Niloy Ranjan Datta
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| |
Collapse
|