1
|
Qin H, Liang T, Zhang C, Wu J, Sheng X. The bidirectional relationship between cilia and PCP signaling pathway core protein Vangl2. Sci Prog 2025; 108:368504241311964. [PMID: 39819247 PMCID: PMC11748379 DOI: 10.1177/00368504241311964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vangl2, a core component of the PCP signaling pathway, serves as a scaffold protein on the cell membrane, playing a crucial role in organizing protein complexes. Cilia, dynamic structures on the cell surface, carry out a wide range of functions. Research has highlighted a bidirectional regulatory interaction between Vangl2 and cilia, underscoring their interconnected roles in cellular processes. This relationship is demonstrated by the localization of Vangl2 at the base and proximal regions of cilia, where it plays essential roles in ciliary positioning, asymmetric distribution, and ciliogenesis. In contrast, the absence of cilia can disrupt Vangl2-mediated signal transduction processes. This review offers a narrative review of recent research on Vangl2's function in cilia and examines the regulatory effects of cilia on Vangl2-mediated signaling.
Collapse
Affiliation(s)
- Huanyong Qin
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Liang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chuanfen Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Junlin Wu
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Sheng
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Tirado‐Cabrera I, Martin‐Guerrero E, Heredero‐Jimenez S, Ardura JA, Gortázar AR. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion. J Cell Physiol 2022; 237:3927-3943. [PMID: 35933642 PMCID: PMC9804361 DOI: 10.1002/jcp.30849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO-Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH-related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyte-osteoclast communication. MLO-Y4 osteocytes were stimulated by FF or PTHrP (1-37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically- or PTHrP-stimulated MLO-Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO-Y4 osteocytic cells. Preincubation of MLO-Y4 cells with the Gli-1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C-X-C Motif Chemokine Ligand 5 (CXCL5) and interleukin-6 (IL-6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL-6.
Collapse
Affiliation(s)
- Irene Tirado‐Cabrera
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Eduardo Martin‐Guerrero
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Sara Heredero‐Jimenez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Juan A. Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Arancha R. Gortázar
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| |
Collapse
|
4
|
Ardura JA, Martín-Guerrero E, Heredero-Jiménez S, Gortazar AR. Primary cilia and PTH1R interplay in the regulation of osteogenic actions. VITAMINS AND HORMONES 2022; 120:345-370. [PMID: 35953116 DOI: 10.1016/bs.vh.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary cilia are subcellular structures specialized in sensing different stimuli in a diversity of cell types. In bone, the primary cilium is involved in mechanical sensing and transduction of signals that regulate the behavior of mesenchymal osteoprogenitors, osteoblasts and osteocytes. To perform its functions, the primary cilium modulates a plethora of molecules including those stimulated by the parathyroid hormone (PTH) receptor type I (PTH1R), a master regulator of osteogenesis. Binding of the agonists PTH or PTH-related protein (PTHrP) to the PTH1R or direct agonist-independent stimulation of the receptor activate PTH1R signaling pathways. In turn, activation of PTH1R leads to regulation of bone formation and remodeling. Herein, we describe the structure, function and molecular partners of primary cilia in the context of bone, playing special attention to those signaling pathways that are mediated directly or indirectly by PTH1R in association with primary cilia during the process of osteogenesis.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain.
| | - Eduardo Martín-Guerrero
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Sara Heredero-Jiménez
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Arancha R Gortazar
- Bone Physiopathology Laboratory, Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| |
Collapse
|
5
|
Altered mechanotransduction in adolescent idiopathic scoliosis osteoblasts: an exploratory in vitro study. Sci Rep 2022; 12:1846. [PMID: 35115632 PMCID: PMC8813918 DOI: 10.1038/s41598-022-05918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most prevalent pediatric spinal deformity. We previously demonstrated elongated cilia and an altered molecular mechanosensory response in AIS osteoblasts. The purpose of this exploratory study was to characterize the mechanosensory defect occurring in AIS osteoblasts. We found that cilia length dynamics in response to flow significantly differ in AIS osteoblasts compared to control cells. In addition, strain-induced rearrangement of actin filaments was compromised resulting in a failure of AIS osteoblasts to position or elongate in function of the bidirectional-applied flow. Contrary to control osteoblasts, fluid flow had an inhibitory effect on AIS cell migration. Moreover, flow induced an increase in secreted VEGF-A and PGE2 in control but not AIS cells. Collectively our data demonstrated that in addition to the observed primary cilium defects, there are cytoskeletal abnormalities correlated to impaired mechanotransduction in AIS. Thus, we propose that the AIS etiology could be a result of generalized defects in cellular mechanotransduction given that an adolescent growing spine is under constant stimulation for growth and bone remodeling in response to applied mechanical forces. Recognition of an altered mechanotransduction as part of the AIS pathomechanism must be considered in the conception and development of more effective bracing treatments.
Collapse
|
6
|
Primary cilia in hard tissue development and diseases. Front Med 2021; 15:657-678. [PMID: 34515939 DOI: 10.1007/s11684-021-0829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/13/2020] [Indexed: 10/20/2022]
Abstract
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Collapse
|
7
|
Mathieu H, Patten SA, Aragon-Martin JA, Ocaka L, Simpson M, Child A, Moldovan F. Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci Rep 2021; 11:11026. [PMID: 34040021 PMCID: PMC8155187 DOI: 10.1038/s41598-021-90155-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic scoliosis (IS) is a complex 3D deformation of the spine with a strong genetic component, most commonly found in adolescent girls. Adolescent idiopathic scoliosis (AIS) affects around 3% of the general population. In a 5-generation UK family, linkage analysis identified the locus 9q31.2-q34.2 as a candidate region for AIS; however, the causative gene remained unidentified. Here, using exome sequencing we identified a rare insertion c.1569_1570insTT in the tubulin tyrosine ligase like gene, member 11 (TTLL11) within that locus, as the IS causative gene in this British family. Two other TTLL11 mutations were also identified in two additional AIS cases in the same cohort. Analyses of primary cells of individuals carrying the c.1569_1570insTT (NM_194252) mutation reveal a defect at the primary cilia level, which is less present, smaller and less polyglutamylated compared to control. Further, in a zebrafish, the knock down of ttll11, and the mutated ttll11 confirmed its role in spine development and ciliary function in the fish retina. These findings provide evidence that mutations in TTLL11, a ciliary gene, contribute to the pathogenesis of IS.
Collapse
Affiliation(s)
- Hélène Mathieu
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada
| | - Shunmoogum A Patten
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC, H7V1B7, Canada
| | | | - Louise Ocaka
- Centre for Translational Omics-GOSgene, Department of Genetics and Genomic Medicine, UCL GOSH Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael Simpson
- Genetics and Molecular Medicine, King's College London, SE1 1UL, London, UK
| | - Anne Child
- Marfan Trust, NHLI, Imperial College, Guy Scadding Building, London, SW3 6LY, UK.
| | - Florina Moldovan
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada.
- Faculty of Dentistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Black RA, Houston G. 40th Anniversary Issue: Reflections on papers from the archive on "Mechanobiology". Med Eng Phys 2020; 72:76-77. [PMID: 31554582 DOI: 10.1016/j.medengphy.2019.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Richard A Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK.
| | - Gregor Houston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
10
|
LIU MIN, ALHARBI MOHAMMED, GRAVES DANA, YANG SHUYING. IFT80 Is Required for Fracture Healing Through Controlling the Regulation of TGF-β Signaling in Chondrocyte Differentiation and Function. J Bone Miner Res 2020; 35:571-582. [PMID: 31643106 PMCID: PMC7525768 DOI: 10.1002/jbmr.3902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Primary cilia are essential cellular organelles that are anchored at the cell surface membrane to sense and transduce signaling. Intraflagellar transport (IFT) proteins are indispensable for cilia formation and function. Although major advances in understanding the roles of these proteins in bone development have been made, the mechanisms by which IFT proteins regulate bone repair have not been identified. We investigated the role of the IFT80 protein in chondrocytes during fracture healing by creating femoral fractures in mice with conditional deletion of IFT80 in chondrocytes utilizing tamoxifen inducible Col2α1-CreER mice. Col2α1cre IFT80f/f mice had smaller fracture calluses than IFT80f/f (control) mice. The max-width and max-callus area were 31% and 48% smaller than those of the control mice, respectively. Col2α1cre IFT80f/f mice formed low-density/porous woven bony tissue with significantly lower ratio of bone volume, Trabecular (Tb) number and Tb thickness, and greater Tb spacing compared to control mice. IFT80 deletion significantly downregulated the expression of angiogenesis markers-VEGF, PDGF and angiopoietin and inhibited fracture callus vascularization. Mechanistically, loss of IFT80 in chondrocytes resulted in a decrease in cilia formation and chondrocyte proliferation rate in fracture callus compared to the control mice. Meanwhile, IFT80 deletion downregulated the TGF-β signaling pathway by inhibiting the expression of TGF-βI, TGF-βR, and phosphorylation of Smad2/3 in the fracture callus. In primary chondrocyte cultures in vitro, IFT80 deletion dramatically reduced chondrocyte proliferation, cilia assembly, and chondrogenic gene expression and differentiation. Collectively, our findings demonstrate that IFT80 and primary cilia play an essential role in fracture healing, likely through controlling chondrocyte proliferation and differentiation, and the TGF-β signaling pathway. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- MIN LIU
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| | - MOHAMMED ALHARBI
- Dept. of Endodontics, Faculty of Dentistry, King Abdulaziz
University, Saudi Arabia
| | - DANA GRAVES
- Dept. of Periodontics, School of Dental Medicine,
University of Pennsylvania, Philadelphia, PA
| | - SHUYING YANG
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Transcriptome and methylome analysis of periodontitis and peri-implantitis with tobacco use. Gene 2019; 727:144258. [PMID: 31759984 DOI: 10.1016/j.gene.2019.144258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Peri-implantitis is similar to periodontitis in both symptoms and treatment; however, their level of similarity remains controversial. Here, we compared multiple cases of periodontitis and peri-implantitis through transcriptome and methylome profiling, and analyzed the effects of smoking as a typical risk factor. Human gingival tissues were obtained from 20 patients with periodontitis or peri-implantitis via periodontal surgical procedures. Total RNA and genomic DNA were isolated, and transcriptome and methylome datasets were generated. Comprehensive analysis of differential gene expression, DNA methylation, and protein-protein interactions indicated that periodontitis and peri-implantitis share biological similarities; however, hierarchical clustering between the two disease groups revealed distinct molecular characteristics. These differences might be related to structural differences in natural tooth-bone and implant-bone. Additionally, smoking differentially affected periodontitis and peri-implantitis in terms of host-defense mechanism impairment. Within the limitations of this study, the results provide evidence that peri-implantitis is distinct from periodontitis and that smoking potentially affects disease progression. Our study provides a foundation for the rational design of a large-scale study in the future for a more comprehensive analysis that includes microbiome and clinical data.
Collapse
|
12
|
R Ferreira R, Fukui H, Chow R, Vilfan A, Vermot J. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132:132/14/jcs213496. [PMID: 31363000 DOI: 10.1242/jcs.213496] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Department of Living Matter Physics, 37077 Göttingen, Germany .,J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
13
|
Mechanical and Biological Advantages of a Tri-Oval Implant Design. J Clin Med 2019; 8:jcm8040427. [PMID: 30925746 PMCID: PMC6517945 DOI: 10.3390/jcm8040427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
Of all geometric shapes, a tri-oval one may be the strongest because of its capacity to bear large loads with neither rotation nor deformation. Here, we modified the external shape of a dental implant from circular to tri-oval, aiming to create a combination of high strain and low strain peri-implant environment that would ensure both primary implant stability and rapid osseointegration, respectively. Using in vivo mouse models, we tested the effects of this geometric alteration on implant survival and osseointegration over time. The maxima regions of tri-oval implants provided superior primary stability without increasing insertion torque. The minima regions of tri-oval implants presented low compressive strain and significantly less osteocyte apoptosis, which led to minimal bone resorption compared to the round implants. The rate of new bone accrual was also faster around the tri-oval implants. We further subjected both round and tri-oval implants to occlusal loading immediately after placement. In contrast to the round implants that exhibited a significant dip in stability that eventually led to their failure, the tri-oval implants maintained their stability throughout the osseointegration period. Collectively, these multiscale biomechanical analyses demonstrated the superior in vivo performance of the tri-oval implant design.
Collapse
|
14
|
Spasic M, Jacobs CR. Primary cilia: Cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol 2017; 71:42-52. [PMID: 28843978 PMCID: PMC5922257 DOI: 10.1016/j.semcdb.2017.08.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Primary cilia are immotile, microtubule-based organelles extending from the surface of nearly every mammalian cell. Mechanical stimulation causes deflection of the primary cilium, initiating downstream signaling cascades to the rest of the cell. The cilium forms a unique subcellular microdomain, and defects in ciliary protein composition or physical structure have been associated with a myriad of human pathologies. In this review, we discuss the importance of ciliary mechanotransduction at the cell and tissue level, and how furthering our molecular understanding of primary cilia mechanobiology may lead to therapeutic strategies to treat human diseases.
Collapse
Affiliation(s)
- Milos Spasic
- Columbia University, Department of Biomedical Engineering, United States.
| | | |
Collapse
|
15
|
Cascella R, Strafella C, Ragazzo M, Manzo L, Costanza G, Bowes J, Hüffmeier U, Potenza S, Sangiuolo F, Reis A, Barton A, Novelli G, Orlandi A, Giardina E. KIF3A and IL-4 are disease-specific biomarkers for psoriatic arthritis susceptibility. Oncotarget 2017; 8:95401-95411. [PMID: 29221136 PMCID: PMC5707030 DOI: 10.18632/oncotarget.20727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/06/2017] [Indexed: 01/17/2023] Open
Abstract
To date, the genes associated with Psoriatic Arthritis (PsA) are principally involved in inflammation, immune response and epidermal differentiation, without any information about the relationship between disease and bone metabolism genes. Our work was focused on 5q31 locus, which contains several genetic variants significantly associated with PsA. The study involved 1526 subjects (500 PsA, 426 PsV, 600 controls). The region was evaluated by selecting and genotyping the SNPs of interest by Real Time PCR and direct sequencing. The results were subjected to biostatistic and bioinformatic analysis. The case-control study highlighted a significant association between KIF3A/IL-4 and PsA, but not with PsV (Psoriasis Vulgaris) patients. In addition, the haplotype analysis revealed two haplotypes significantly associated with PsA susceptibility. The Linkage Disequilibrium (LD) study showed the presence of a specific block in high LD within 132,692,628-132,737,638 bp of 5q31, giving additional evidence of specific association of the 5q31 region in PsA patients. Moreover, KIF3A expression was assessed by immunohistochemistry assays which showed a marked and significant difference of KIF3A expression between pathological and normal tissues. Our analysis described KIF3A and IL-4 as novel susceptibility genes for PsA, suggesting a clear implication of bone metabolism genes in the disease etiopathogenesis.
Collapse
Affiliation(s)
- Raffaella Cascella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Chemical Pharmaceutical and Biomolecular Technologies, Catholic University "Our Lady of Good Counsel" Laprakë, Rruga Dritan Hoxha, Tirana, Albania
| | - Claudia Strafella
- Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy.,Emotest Laboratory, Pozzuoli, Italy
| | - Michele Ragazzo
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Medical Science, Catholic University "Our Lady of Good Counsel" Laprakë, Rruga Dritan Hoxha, Tirana, Albania
| | - Laura Manzo
- Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy.,Emotest Laboratory, Pozzuoli, Italy
| | - Gaetana Costanza
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - John Bowes
- Arthritis Research UK Centre for Genetics and Genomics, The University of Manchester, Manchester, UK
| | - Ulrike Hüffmeier
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Saverio Potenza
- Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - André Reis
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust and University of Manchester, Manchester Academy of Health Sciences, Manchester, UK
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy, Tor Vergata University Hospital, Rome, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.,Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| |
Collapse
|
16
|
Xiang W, Guo F, Cheng W, Zhang J, Huang J, Wang R, Ma Z, Xu K. HDAC6 inhibition suppresses chondrosarcoma by restoring the expression of primary cilia. Oncol Rep 2017; 38:229-236. [PMID: 28586053 DOI: 10.3892/or.2017.5694] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/26/2017] [Indexed: 11/05/2022] Open
Abstract
Chondrosarcoma is a bone tumor characterized by the secretion of a cartilage-like extracellular matrix. It has been proved to lack extracellular sensor primary cilia. This study aimed to illustrate a feasible therapeutic method for chondrosarcoma by regulating primary cilia assembly through inhibiting histone deacetylases 6 (HDAC6) activation. In order to detect the interaction between primary cilia and HDAC6 in human chondrosarcoma, Tubastatin A and small interfering RNA (siRNA) were used to inhibit the endogenous expression of HDAC6. Cell viability test and Transwell assay were applied to evaluate the effects of malignant biological properties. Primary cilia staining and related proteins were detected. The abnormal expression of HDAC6 and cilia intraflagellar transport protein 88 (IFT88) was found in chondrosarcoma tissues. The inhibition of HDAC6 could downregulate the proliferation of chondrosarcoma cells in a concentration- and time-dependent manner and suppress the invasion capacity of tumor cells. Besides, the downregulation of HDAC6 exhibited a negative effect on the proliferation of relevant proteins but a positive effect on the primary cilia-related expression of IFT88 and acetylated α-tubulin. Primary cilia restoration could be observed after HDAC6 siRNA transfection. The Aurora A-HDAC6 cascade was involved in regulating primary cilia resorption by affecting α-tubulin deacetylation and Tubastatin A could inhibit chondrosarcoma cell growth in vivo. These results indicate that restricting HDAC6 can restore primary cilia assembly accompanied with suppressed chondrosarcoma cell proliferation and invasion capacities. Thus, promoting primary cilia restoration by targeting HDAC6 may be a feasible potential therapeutic method for chondro-sarcoma treatment.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weiting Cheng
- Department of Oncology, Wuhan Integrated Traditional Chinese Medicine and Western Medicine Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhongxi Ma
- Department of Orthopedics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
17
|
Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients. Sci Rep 2017; 7:44260. [PMID: 28290481 PMCID: PMC5349607 DOI: 10.1038/srep44260] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
The primary cilium is an outward projecting antenna-like organelle with an important role in bone mechanotransduction. The capacity to sense mechanical stimuli can affect important cellular and molecular aspects of bone tissue. Idiopathic scoliosis (IS) is a complex pediatric disease of unknown cause, defined by abnormal spinal curvatures. We demonstrate significant elongation of primary cilia in IS patient bone cells. In response to mechanical stimulation, these IS cells differentially express osteogenic factors, mechanosensitive genes, and signaling genes. Considering that numerous ciliary genes are associated with a scoliosis phenotype, among ciliopathies and knockout animal models, we expected IS patients to have an accumulation of rare variants in ciliary genes. Instead, our SKAT-O analysis of whole exomes showed an enrichment among IS patients for rare variants in genes with a role in cellular mechanotransduction. Our data indicates defective cilia in IS bone cells, which may be linked to heterogeneous gene variants pertaining to cellular mechanotransduction.
Collapse
|
18
|
TGFβ1 - induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci Rep 2016; 6:35542. [PMID: 27748449 PMCID: PMC5066273 DOI: 10.1038/srep35542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
The recruitment of mesenchymal stem cells (MSCs) is a crucial process in the development, maintenance and repair of tissues throughout the body. Transforming growth factor-β1 (TGFβ1) is a potent chemokine essential for the recruitment of MSCs in bone, coupling the remodelling cycle. The primary cilium is a sensory organelle with important roles in bone and has been associated with cell migration and more recently TGFβ signalling. Dysregulation of TGFβ signalling or cilia has been linked to a number of skeletal pathologies. Therefore, this study aimed to determine the role of the primary cilium in TGFβ1 signalling and associated migration in human MSCs. In this study we demonstrate that low levels of TGFβ1 induce the recruitment of MSCs, which relies on proper formation of the cilium. Furthermore, we demonstrate that receptors and downstream signalling components in canonical TGFβ signalling localize to the cilium and that TGFβ1 signalling is associated with activation of SMAD3 at the ciliary base. These findings demonstrate a novel role for the primary cilium in the regulation of TGFβ signalling and subsequent migration of MSCs, and highlight the cilium as a target to manipulate this key pathway and enhance MSC recruitment for the treatment of skeletal diseases.
Collapse
|
19
|
Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, Tian W. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep 2016; 14:1891-900. [PMID: 27432616 PMCID: PMC4991727 DOI: 10.3892/mmr.2016.5508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/22/2016] [Indexed: 02/05/2023] Open
Abstract
The anterograde intraflagellar transport motor protein, kif3a, regulates the integrity of primary cilia and various cellular functions, however, the role of kif3a in dental mesenchymal stem/precursor cell differentiation remains to be fully elucidated. In the present study, the expression of kif3a was knocked down in human dental follicle cells (hDFCs) and human dental pulp cells (hDPCs) using short hairpin RNA. The results of subsequent immunofluorescence revealed that knocking down kif3a resulted in the loss of primary cilia, which led to impairment of substantial mineralization and expression of the differentiation-associated markers, including alkaline phosphatase, Runt-related transcription factor 2, dentin matrix protein 1 and dentin sialophosphoprotein in the hDFCs and hDPCs. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses showed that the expression levels of Wnt3a-mediated active β-catenin and lymphoid enhancer-binding factor 1 were attenuated, whereas the expression of phosphorylated glycogen synthase kinase 3β was enhanced, in the kif3a-knockdown cells. In addition, exogenous Wnt3a partially rescued osteoblastic differentiation in the hDFCs and hDPCs. These results demonstrated that inhibition of kif3a in the hDFCs and hDPCs disrupted primary cilia formation and/or function, and indicated that kif3a is important in the differentiation of hDFCs and hDPCs through the Wnt pathway. These findings not only enhance current understanding of tooth development and diseases of tooth mineralization, but also indicate possible strategies to regulate mineralization during tooth repair and regeneration.
Collapse
Affiliation(s)
- Sicong Jiang
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Morgan EF, Lei J. Toward Clinical Application and Molecular Understanding of the Mechanobiology of Bone Healing. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9197-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Khayyeri H, Barreto S, Lacroix D. Primary cilia mechanics affects cell mechanosensation: A computational study. J Theor Biol 2015; 379:38-46. [DOI: 10.1016/j.jtbi.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
22
|
Abstract
Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as "physical environment" sensors in cells of the osteoblasts lineage. Indeed, polycystin-1 (Pkd1, or PC1) and polycystin-2 (Pkd2, or PC2' or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
- Coleman College of Medicine Building, Suite B216, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| |
Collapse
|
23
|
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335:78-99. [PMID: 24961486 PMCID: PMC4334369 DOI: 10.1111/nyas.12463] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rosa A. Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
24
|
Liu B, Chen S, Johnson C, Helms JA. A ciliopathy with hydrocephalus, isolated craniosynostosis, hypertelorism, and clefting caused by deletion of Kif3a. Reprod Toxicol 2014; 48:88-97. [PMID: 24887031 DOI: 10.1016/j.reprotox.2014.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 01/15/2023]
Abstract
Malformations of the facial midline are a consistent feature among individuals with defects in primary cilia. Here, we provide a framework in which to consider how these primary cilia-dependent facial anomalies occur. We generated mice in which the intraflagellar transport protein Kif3a was deleted in cranial neural crest cells. The Kif3a phenotypes included isolated metopic craniosynostosis, delayed closure of the anterior fontanelles, and hydrocephalus, as well as midline facial anomalies including hypertelorism, cleft palate, and bifid nasal septum. Although all cranial neural crest cells had truncated primary cilia as a result of the conditional deletion, only those in the midline showed evidence of hyper-proliferation and ectopic Wnt responsiveness. Thus, cranial neural crest cells do not rely on primary cilia for their migration but once established in the facial prominences, midline cranial neural crest cells require Kif3a function in order to integrate and respond to Wnt signals from the surrounding epithelia.
Collapse
Affiliation(s)
- B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States
| | - S Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States
| | - C Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States; College of Medicine, University of Arizona, Tucson, AZ 85721, United States
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
25
|
Mouraret S, Hunter D, Bardet C, Brunski J, Bouchard P, Helms J. A pre-clinical murine model of oral implant osseointegration. Bone 2014; 58:177-84. [PMID: 23886841 PMCID: PMC4962868 DOI: 10.1016/j.bone.2013.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/31/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Many of our assumptions concerning oral implant osseointegration are extrapolated from experimental models studying skeletal tissue repair in long bones. This disconnect between clinical practice and experimental research hampers our understanding of bone formation around oral implants and how this process can be improved. We postulated that oral implant osseointegration would be fundamentally equivalent to implant osseointegration elsewhere in the body. Mice underwent implant placement in the edentulous ridge anterior to the first molar and peri-implant tissues were evaluated at various timepoints after surgery. Our hypothesis was disproven; oral implant osseointegration is substantially different from osseointegration in long bones. For example, in the maxilla peri-implant pre-osteoblasts are derived from cranial neural crest whereas in the tibia peri-implant osteoblasts are derived from mesoderm. In the maxilla, new osteoid arises from periostea of the maxillary bone but in the tibia the new osteoid arises from the marrow space. Cellular and molecular analyses indicate that osteoblast activity and mineralization proceeds from the surfaces of the native bone and osteoclastic activity is responsible for extensive remodeling of the new peri-implant bone. In addition to histologic features of implant osseointegration, molecular and cellular assays conducted in a murine model provide new insights into the sequelae of implant placement and the process by which bone is generated around implants.
Collapse
Affiliation(s)
- S. Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - D.J. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C. Bardet
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496 Montrouge, France
| | - J.B. Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
| | - P. Bouchard
- Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - J.A. Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA 94305, USA
- Corresponding author. Fax: +1 650 736 4374. (J.A. Helms)
| |
Collapse
|
26
|
Mouraret S, Hunter DJ, Bardet C, Popelut A, Brunski JB, Chaussain C, Bouchard P, Helms JA. Improving oral implant osseointegration in a murine model via Wnt signal amplification. J Clin Periodontol 2013; 41:172-80. [PMID: 24164629 DOI: 10.1111/jcpe.12187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Abstract
AIM To determine the key biological events occurring during implant failure and then we use this knowledge to develop new biology-based strategies that improve osseointegration. MATERIALS AND METHODS Wild-type and Axin2(LacZ/LacZ) adult male mice underwent oral implant placement, with and without primary stability. Peri-implant tissues were evaluated using histology, alkaline phosphatase (ALP) activity, tartrate resistant acid phosphatase (TRAP) activity and TUNEL staining. In addition, mineralization sites, collagenous matrix organization and the expression of bone markers in the peri-implant tissues were assessed. RESULTS Maxillary implants lacking primary stability show histological evidence of persistent fibrous encapsulation and mobility, which recapitulates the clinical problems of implant failure. Despite histological and molecular evidence of fibrous encapsulation, osteoblasts in the gap interface exhibit robust ALP activity. This mineralization activity is counteracted by osteoclast activity that resorbs any new bony matrix and consequently, the fibrous encapsulation remains. Using a genetic mouse model, we show that implants lacking primary stability undergo osseointegration, provided that Wnt signalling is amplified. CONCLUSIONS In a mouse model of oral implant failure caused by a lack of primary stability, we find evidence of active mineralization. This mineralization, however, is outpaced by robust bone resorption, which culminates in persistent fibrous encapsulation of the implant. Fibrous encapsulation can be prevented and osseointegration assured if Wnt signalling is elevated at the time of implant placement.
Collapse
Affiliation(s)
- Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA; Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 2013; 28:430-9. [PMID: 24097311 PMCID: PMC4012163 DOI: 10.1096/fj.13-231894] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.—Delaine-Smith, R. M., Sittichokechaiwut, A., Reilly, G. C. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts.
Collapse
Affiliation(s)
- Robin M Delaine-Smith
- 1School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK.
| | | | | |
Collapse
|
28
|
Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone 2013; 54:196-204. [PMID: 23201223 PMCID: PMC3624072 DOI: 10.1016/j.bone.2012.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/06/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023]
Abstract
The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell. This organelle has established mechanosensory roles in several contexts including kidney, liver, and the embryonic node. Mechanical load deflects the cilium, triggering biochemical responses. Defects in cilium function have been associated with numerous human diseases. Recent research has implicated the primary cilium as a mechanosensor in bone. In this review, we discuss the cilium, the growing evidence for its mechanosensory role in bone, and areas of future study.
Collapse
Affiliation(s)
- An M Nguyen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|