1
|
Paul D, Arwood Z, Mulon PY, Penumadu D, Truster T. Method for computer tomography voxel-based finite element analysis and validation with digital image correlation system. MethodsX 2024; 13:102879. [PMID: 39206058 PMCID: PMC11350451 DOI: 10.1016/j.mex.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding the mechanical behavior of heterogeneous materials is becoming increasingly crucial across various fields, including aerospace engineering, composite materials development, geology, and biomechanics. While substantial literature exists on this topic, conventional methods often rely on commercial software packages. This study presents a framework for computed tomography (CT) scan-based finite element (FE) analysis of such materials using open-source software in most of the workflow. Our work focuses on three key aspects:1.Mesh generation that incorporates spatially varying mechanical properties and well-defined boundary conditions.2.Validation of the FE results through comparison with digital image correlation (DIC) system measurements.3.Open-source software utilization throughout the entire process, making it more accessible and cost-effective.This work aims to demonstrate the effectiveness of this framework for analyzing heterogeneous materials in various fields, offering a more accessible and affordable approach.
Collapse
Affiliation(s)
- Debangshu Paul
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zachariah Arwood
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Pierre-Yves Mulon
- University of Tennessee College of Veterinary Medicine, 2407 River Dr, Knoxville, TN 37996, USA
| | - Dayakar Penumadu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Timothy Truster
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Kalan Farmanfarma K, Yarmohammadi S, Fakharian E, Gobbens RJ, Mahdian M, Batooli Z, Lotfi MS, Abedzadeh-Kalahroudi M, Vatan RF, Khosravi GR, Fazel MR, Sehat M. Prognostic Factors of Hip Fracture in Elderly: A Systematic Review. Int J Prev Med 2024; 15:42. [PMID: 39381356 PMCID: PMC11460988 DOI: 10.4103/ijpvm.ijpvm_169_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/20/2024] [Indexed: 10/10/2024] Open
Abstract
The hip fracture causes significant disabilities in many elderly people. Many studies around the world have identified various risk factors for the hip fracture. The aim of this study was to systematically investigate the risk factors of hip fractures. This study is a systematic review of risk factors for hip fractures. All published papers in English and Persian languages on patients in Iran and other countries between 2002 - 2022 were examined. The search strategy used keywords matching the mesh, including : predictors, hip fracture, and disability. Articles were selected from international databases (PubMed, Proquest ,Web of Sience, Scopus, Google scholar and Persian(Sid,Magiran), and the Newcastle Ottawa Scale was used to assess the risk of bias. The study has identified several factors that were significantly correlated with the risk of hip fracture, including age, cigarette and alcohol consumption, visual and hearing problems, low BMI levels, history of falling, weakness, and diseases such as stroke, cardiovascular disease, high blood pressure, arthritis, diabetes, dementia, Alzheimer's, Parkinson's, liver and kidney diseases, bone density, osteoporosis, vertebral fracture, and hyperthyroidism. However, the study did not find any significant correlations between the consumption of calcium and vitamin D, history of fractures, cognitive disorders, schizophrenia, and household income, and the risk of hip fracture. The results of this study reveal the determining role of some risk factors in hip fracture in older persons. Therefore, it is recommended that health policy makers provide the possibility of early intervention for some changeable factors.
Collapse
Affiliation(s)
| | | | - Esmaeil Fakharian
- Trauma Research Center, Department of Neurosurgery, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Robbert J. Gobbens
- Faculty of Health, Sports and Social Work, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Mehrdad Mahdian
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Batooli
- Social Determinants of Health (SDH)Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Sajjad Lotfi
- Trauma Nursing Research Center, Faculty of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Fadaei Vatan
- Iranian Research Center on Ageing, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Mojtaba Sehat
- MD, PhD in Epidemiology, Trauma Research Center, Department of Community Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Carlsson J, Braesch-Andersen A, Ferguson SJ, Isaksson P. Fracture in porous bone analysed with a numerical phase-field dynamical model. J Mech Behav Biomed Mater 2023; 139:105659. [PMID: 36638634 DOI: 10.1016/j.jmbbm.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
A dynamic phase-field fracture finite element model is applied to discretized high-resolution three-dimensional computed tomography images of human trabecular bone to analyse rapid bone fracture. The model is contrasted to quasi-static experimental results and a quasi-static phase-field finite element model. The experiment revealed complex stepwise crack evolution with multiple crack fronts, and crack arrests, as the global tensile displacement load was incrementally increased. The quasi-static phase-field fracture model captures the fractures in the experiment reasonably well, and the dynamic model converges towards the quasi-static model when mechanically loaded at low rates. At higher load rates, i.e., at larger impulses, inertia effects significantly contribute to an increased initial global stiffness, higher peak forces and a larger number of cracks spread over a larger volume. Since the fracture process clearly is different at large impulses compared to small impulses, it is concluded that dynamic fracture models are necessary when simulating rapid bone fracture.
Collapse
Affiliation(s)
- Jenny Carlsson
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden; Now at Cambridge University Engineering Department, Trumpington St., Cambridge, UK
| | - Anna Braesch-Andersen
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden
| | | | - Per Isaksson
- Solid Mechanics, Department of Materials Science and Engineering, Uppsala University, Sweden.
| |
Collapse
|
4
|
The influence of foramina on femoral neck fractures and strains predicted with finite element analysis. J Mech Behav Biomed Mater 2022; 134:105364. [DOI: 10.1016/j.jmbbm.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022]
|
5
|
Sas A, Sermon A, van Lenthe GH. Experimental validation of a voxel-based finite element model simulating femoroplasty of lytic lesions in the proximal femur. Sci Rep 2022; 12:7602. [PMID: 35534595 PMCID: PMC9085891 DOI: 10.1038/s41598-022-11667-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Femoroplasty is a procedure where bone cement is injected percutaneously into a weakened proximal femur. Uncertainty exists whether femoroplasty provides sufficient mechanical strengthening to prevent fractures in patients with femoral bone metastases. Finite element models are promising tools to evaluate the mechanical effectiveness of femoroplasty, but a thorough validation is required. This study validated a voxel-based finite element model against experimental data from eight pairs of human cadaver femurs with artificial metastatic lesions. One femur from each pair was left untreated, while the contralateral femur was augmented with bone cement. Finite element models accurately predicted the femoral strength in the defect (R2 = 0.96) and augmented (R2 = 0.93) femurs. The modelled surface strain distributions showed a good qualitative match with results from digital image correlation; yet, quantitatively, only moderate correlation coefficients were found for the defect (mean R2 = 0.78) and augmented (mean R2 = 0.76) femurs. This was attributed to the presence of vessel holes in the femurs and the jagged surface representation of our voxel-based models. Despite some inaccuracies in the surface measurements, the FE models accurately predicted the global bone strength and qualitative deformation behavior, both before and after femoroplasty. Hence, they can offer a useful biomechanical tool to assist clinicians in assessing the need for prophylactic augmentation in patients with metastatic bone disease, as well as in identifying suitable patients for femoroplasty.
Collapse
Affiliation(s)
- Amelie Sas
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium
| | - An Sermon
- Department of Traumatology, University Hospitals Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium.
| |
Collapse
|
6
|
Abe S, Kouhia R, Nikander R, Narra N, Hyttinen J, Sievänen H. Effect of fall direction on the lower hip fracture risk in athletes with different loading histories: A finite element modeling study in multiple sideways fall configurations. Bone 2022; 158:116351. [PMID: 35131487 DOI: 10.1016/j.bone.2022.116351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Physical loading makes bones stronger through structural adaptation. Finding effective modes of exercise to improve proximal femur strength has the potential to decrease hip fracture risk. Previous proximal femur finite element (FE) modeling studies have indicated that the loading history comprising impact exercises is associated with substantially higher fracture load. However, those results were limited only to one specified fall direction. It remains thus unclear whether exercise-induced higher fracture load depends on the fall direction. To address this, using magnetic resonance images of proximal femora from 91 female athletes (mean age 24.7 years with >8 years competitive career) and their 20 non-athletic but physically active controls (mean age 23.7 years), proximal femur FE models were created in 12 different sideways fall configurations. The athletes were divided into five groups by typical loading patterns of their sports: high-impact (H-I: 9 triple- and 10 high-jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 powerlifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the FE models showed that the H-I and R-I groups had significantly (p < 0.05) higher fracture loads, 11-17% and 22-28% respectively, in all fall directions while the O-I group had significantly 10-11% higher fracture loads in four fall directions. The H-M and R-NI groups did not show significant benefit in any direction. Also, the analyses of the minimum fall strength (MFS) among these multiple fall configurations confirmed significantly 15%, 11%, and 14% higher MFSs in these impact groups, respectively, compared to the controls. These results suggest that the lower hip fracture risk indicated by higher fracture loads in athletes engaged in high impact or repetitive impact sports is independent of fall direction whereas the lower fracture risk attributed to odd-impact exercise is more modest and specific to the fall direction. Moreover, in concordance with the literature, the present study also confirmed that the fracture risk increases if the impact is imposed on the more posterolateral aspect of the hip. The present results highlight the importance of engaging in the impact exercises to prevent hip fractures and call for retrospective studies to investigate whether specific impact exercise history in adolescence and young adulthood is also associated with lower incidence of hip fractures in later life.
Collapse
Affiliation(s)
- Shinya Abe
- Structural Mechanics, Faculty of Built Environment, Tampere University, Tampere, Finland.
| | - Reijo Kouhia
- Structural Mechanics, Faculty of Built Environment, Tampere University, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland
| | - Nathaniel Narra
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jari Hyttinen
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| |
Collapse
|
7
|
Amini M, Reisinger A, Hirtler L, Pahr D. Which experimental procedures influence the apparent proximal femoral stiffness? A parametric study. BMC Musculoskelet Disord 2021; 22:815. [PMID: 34556078 PMCID: PMC8461859 DOI: 10.1186/s12891-021-04656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Experimental validation is the gold standard for the development of FE predictive models of bone. Employing multiple loading directions could improve this process. To capture the correct directional response of a sample, the effect of all influential parameters should be systematically considered. This study aims to determine the impact of common experimental parameters on the proximal femur’s apparent stiffness. Methods To that end, a parametric approach was taken to study the effects of: repetition, pre-loading, re-adjustment, re-fixation, storage, and μCT scanning as random sources of uncertainties, and loading direction as the controlled source of variation in both stand and side-fall configurations. Ten fresh-frozen proximal femoral specimens were prepared and tested with a novel setup in three consecutive sets of experiments. The neutral state and 15-degree abduction and adduction angles in both stance and fall configurations were tested for all samples and parameters. The apparent stiffness of the samples was measured using load-displacement data from the testing machine and validated against marker displacement data tracked by DIC cameras. Results Among the sources of uncertainties, only the storage cycle affected the proximal femoral apparent stiffness significantly. The random effects of setup manipulation and intermittent μCT scanning were negligible. The 15∘ deviation in loading direction had a significant effect comparable in size to that of switching the loading configuration from neutral stance to neutral side-fall. Conclusion According to these results, comparisons between the stiffness of the samples under various loading scenarios can be made if there are no storage intervals between the different load cases on the same samples. These outcomes could be used as guidance in defining a highly repeatable and multi-directional experimental validation study protocol.
Collapse
Affiliation(s)
- Morteza Amini
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria
| | - Andreas Reisinger
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria.,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria
| | - Lena Hirtler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, Vienna, 1090, Austria
| | - Dieter Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria. .,Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau, 3500, Austria.
| |
Collapse
|
8
|
Mechanism and microstructure based concept to predict skull fracture using a hybrid-experimental-modeling-computational approach. J Mech Behav Biomed Mater 2021; 121:104599. [PMID: 34116432 DOI: 10.1016/j.jmbbm.2021.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022]
Abstract
Cellular and tissue-scale indent/impact thresholds for different mechanisms of functional impairments to the brain would be the preferred method to predict head injuries, but a comprehensive understanding of the dominant possible injury mechanisms under multiaxial stress-states and rates is currently not available. Until then, skull fracture could serve as an indication of head injury. Therefore the ability to predict the initiation of skull fracture through finite element simulation can serve as an in silico tool for assessing the effectiveness of various head protection scenarios. For this objective, skull fracture initiation was represented with a microstructurally-inspired, mechanism-based (MIMB) failure surface assuming three different dominant mechanisms of skull failure: each element, with deformation and failure properties selected based on its microstructure, was allowed to fail either in tension, compression, or shear, corresponding to clinical linear, depressed or penetrating shear-plug failure (fracture), respectively. Microstructure-inspired a priori values for the initiation threshold of each mechanism, obtained previously from uniaxial and simple-shear experiments, were iterated and optimized for the predicted load-displacement to represent that of the corresponding indentation experiment. Element-level failure enabled the visualization of the evolution of fracture by different mechanisms. The final crack pattern at the time of macroscopic (clinically-identifiable) injury was compared between the simulation and experiment obtained through 3D tomography. Even though the timing was slightly different, the simulated prediction represented remarkably well the experimental crack pattern before the appearance of the catastrophic unstable fast crack in the experiment, thus validating the implemented hybrid-experimental-modeling-computational (HEMC) concept as a tool to predict skull fracture initiation.
Collapse
|
9
|
Kok J, Grassi L, Gustafsson A, Isaksson H. Femoral strength and strains in sideways fall: Validation of finite element models against bilateral strain measurements. J Biomech 2021; 122:110445. [PMID: 33933857 DOI: 10.1016/j.jbiomech.2021.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Low impact falls to the side are the main cause of hip fractures in elderly. Finite element (FE) models of the proximal femur may help in the assessment of patients at high risk for a hip fracture. However, extensive validation is essential before these models can be used in a clinical setting. This study aims to use strain measurements from bilateral digital image correlation to validate an FE model against ex vivo experimental data of proximal femora under a sideways fall loading condition. For twelve subjects, full-field strain measurements were available on the medial and lateral side of the femoral neck. In this study, subject-specific FE models were generated based on a consolidated procedure previously validated for stance loading. The material description included strain rate dependency and separate yield and fracture strain limits in tension and compression. FE predicted fracture force and experimentally measured peak forces showed a strong correlation (R2 = 0.92). The FE simulations predicted the fracture initiation within 3 mm distance of the experimental fracture line for 8/12 subjects. The predicted and measured strains correlated well on both the medial side (R2 = 0.87) and the lateral side (R2 = 0.74). The lower correlation on the lateral side is attributed to the irregularity of the cortex and presence of vessel holes in this region. The combined validation against bilateral full-field strain measurements and peak forces has opened the door for a more elaborate qualitative and quantitative validation of FE models of femora under sideways fall loading.
Collapse
Affiliation(s)
- Joeri Kok
- Department of Biomedical Engineering, Lund University, Sweden.
| | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Sweden
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Sweden
| |
Collapse
|
10
|
Yoon S, Jung HJ, Knowles JC, Lee HH. Digital image correlation in dental materials and related research: A review. Dent Mater 2021; 37:758-771. [PMID: 33715864 DOI: 10.1016/j.dental.2021.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Digital image correlation (DIC) is a non-contact image processing technique for full-field strain measurement. Although DIC has been widely used in engineering and biomechanical fields, it is in the spotlight only recently in dental materials. Therefore, the purpose of this review paper is introducing the working principle of the DIC technique with some modifications and providing further potential applications in various dental materials and related fields. METHODS The accuracy of the algorithm depending on the environmental characteristics of the DIC technique, as well as the advantages and disadvantages of strain measurement using optical measurements, have been elaborated in dental materials and related fields. Applications to those researches have been classified into the following categories: shrinkage behavior of light-cured resin composite, resin-tooth interface, mechanical properties of tooth structure, crack extension and elastic properties of dental materials, and deformation of dental restoration and prosthesis. This classification and discussion were performed using literature survey and review based on numerous papers in the international journals published over the past 20 years. The future directions for predicting the precise deformation of dental materials under various environments, as well as limitations of the DIC technique, was presented in this review. RESULTS The DIC technique was demonstrated as a more effective tool to measure full-field polymerization shrinkage of composite resin, even in a simulated clinical condition over the existing methods. Moreover, the DIC combined with other technologies can be useful to evaluate the mechanical behavior of material-tooth interface, dentine structure and restorative and prosthetic materials with high accuracy. Three-dimensional DIC using two cameras extended the measurement range in-plane to out-of-plane, enabling measure of the strain directly on the surface of dental restorations or prosthesis. SIGNIFICANCE DIC technique is a potential tool for measuring and predicting the full-field deformation/strain of dental materials and actual prostheses in diverse clinical conditions. The versatility of DIC can replace the existing complex sensor devices in those studies.
Collapse
Affiliation(s)
- Sungsik Yoon
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyung-Jo Jung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - J C Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, 119 Dandaero, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
11
|
Martelli S, Giorgi M, Dall' Ara E, Perilli E. Damage tolerance and toughness of elderly human femora. Acta Biomater 2021; 123:167-177. [PMID: 33454384 DOI: 10.1016/j.actbio.2021.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Observations of elastic instability of trabecular bone cores supported the analysis of cortical thickness for predicting bone fragility of the hip in people over 60 years of age. Here, we falsified the hypothesis that elastic instability causes minimal energy fracture by analyzing, with a micrometric resolution, the deformation and fracture behavior of entire femora. Femur specimens were obtained from elderly women aged between 66 - 80 years. Microstructural images of the proximal femur were obtained under 3 - 5 progressively increased loading steps and after fracture. Bone displacements, strain, load bearing and energy absorption capacity were analyzed. Elastic instability of the cortex appeared at early loading stages in regions of peak compression. No elastic instability of trabecular bone was observed. The subchondral bone displayed local crushing in compression at early loading steps and progressed to 8 - 16% compression before fracture. The energy absorption capacity was proportional to the displacement. Stiffness decreased to near-zero values before fracture. Three-fourth of the fracture energy (10.2 - 20.2 J) was dissipated in the final 25% force increment. Fracture occurred in regions of peak tension and shear, adjacent to the location of peak compression, appearing immediately before fracture. Minimal permanent deformation was visible along the fracture surface. Elastic instability modulates the interaction between cortical and trabecular bone promoting an elastically stable fracture behavior of the femur organ, load bearing capacity, toughness, and damage tolerance. These findings will advance current methods for predicting hip fragility.
Collapse
Affiliation(s)
- Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide SA, Australia.
| | - Mario Giorgi
- Department of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK; Certara QSP, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Enrico Dall' Ara
- Department of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide SA, Australia
| |
Collapse
|
12
|
Bird G, Glyde M, Hosgood G, Hayes A, Day R. Biomechanical Comparison of a Notched Head Locking T-Plate and a Straight Locking Compression Plate in a Juxta-Articular Fracture Model. Vet Comp Orthop Traumatol 2020; 34:161-170. [PMID: 33249549 DOI: 10.1055/s-0040-1719166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This investigation compared the biomechanical properties of a 2.0 mm locking compression notched head T-plate (NHTP) and 2.0 mm straight locking compression plate (LCP), in a simple transverse juxta-articular fracture model. STUDY DESIGN Two different screw configurations were compared for the NHTP and LCP, modelling short (configuration 1) and long working length (configuration 2). Constructs were tested in compression, perpendicular and tension non-destructive four point bending and torsion. Plate surface strain was measured at 12 regions of interest (ROI) using three-dimensional digital image correlation. Stiffness and strain were compared between screw configurations within and between each plate. RESULTS The LCP was stiffer than the NHTP in all three planes of bending and torsion (p < 0.05). The NHTP had greater strain than the LCP during compression bending and torsion at all ROI (p < 0.0005). The short working length was stiffer in all three planes of bending and in torsion (p < 0.05) than the longer working length for both plates. The long working length showed greater strain than the short working length at most ROI. CONCLUSION In this experimental model, a 2.0 mm LCP with two screws in the short fragment was significantly stiffer and had lower plate strain than a 2.0 mm NHTP with three screws in the short fragment. Extending the working length significantly reduced construct stiffness and increased plate strain. These findings may guide construct selection.
Collapse
Affiliation(s)
- Guy Bird
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Mark Glyde
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Giselle Hosgood
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Alex Hayes
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| | - Robert Day
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
13
|
Palanca M, Perilli E, Martelli S. Body Anthropometry and Bone Strength Conjointly Determine the Risk of Hip Fracture in a Sideways Fall. Ann Biomed Eng 2020; 49:1380-1390. [PMID: 33184710 PMCID: PMC8058010 DOI: 10.1007/s10439-020-02682-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/26/2020] [Indexed: 01/03/2023]
Abstract
We hypothesize that variations of body anthropometry, conjointly with the bone strength, determine the risk of hip fracture. To test the hypothesis, we compared, in a simulated sideways fall, the hip impact energy to the energy needed to fracture the femur. Ten femurs from elderly donors were tested using a novel drop-tower protocol for replicating the hip fracture dynamics during a fall on the side. The impact energy was varied for each femur according to the donor’s body weight, height and soft-tissue thickness, by adjusting the drop height and mass. The fracture pattern, force, energy, strain in the superior femoral neck, bone morphology and microarchitecture were evaluated. Fracture patterns were consistent with clinically relevant hip fractures, and the superior neck strains and timings were comparable with the literature. The hip impact energy (11 – 95 J) and the fracture energy (11 – 39 J) ranges overlapped and showed comparable variance (CV = 69 and 61%, respectively). The aBMD-based definition of osteoporosis correctly classified 7 (70%) fracture/non-fracture cases. The incorrectly classified cases presented large impact energy variations, morphology variations and large subcortical voids as seen in microcomputed tomography. In conclusion, the risk of osteoporotic hip fracture in a sideways fall depends on both body anthropometry and bone strength.
Collapse
Affiliation(s)
- Marco Palanca
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
- Department of Oncology and Metabolism, and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
14
|
Levadnyi I, Awrejcewicz J, Zhang Y, Gu Y. Comparison of femur strain under different loading scenarios: Experimental testing. Proc Inst Mech Eng H 2020; 235:17-27. [PMID: 32811293 DOI: 10.1177/0954411920951033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone fracture, formation and adaptation are related to mechanical strains in bone. Assessing bone stiffness and strain distribution under different loading conditions may help predict diseases and improve surgical results by determining the best conditions for long-term functioning of bone-implant systems. In this study, an experimentally wide range of loading conditions (56) was used to cover the directional range spanned by the hip joint force. Loads for different stance configurations were applied to composite femurs and assessed in a material testing machine. The experimental analysis provides a better understanding of the influence of the bone inclination angle in the frontal and sagittal planes on strain distribution and stiffness. The results show that the surface strain magnitude and stiffness vary significantly under different loading conditions. For the axial compression, maximal bending is observed at the mid-shaft, and bone stiffness is also maximal. The increased inclination leads to decreased stiffness and increased magnitude of maximum strain at the distal end of the femur. For comparative analysis of results, a three-dimensional, finite element model of the femur was used. To validate the finite element model, strain gauges and digital image correlation system were employed. During validation of the model, regression analysis indicated robust agreement between the measured and predicted strains, with high correlation coefficient and low root-mean-square error of the estimate. The results of stiffnesses obtained from multi-loading conditions experiments were qualitatively compared with results obtained from a finite element analysis of the validated model of femur with the same multi-loading conditions. When the obtained numerical results are qualitatively compared with experimental ones, similarities can be noted. The developed finite element model of femur may be used as a promising tool to estimate proximal femur strength and identify the best conditions for long-term functioning of the bone-implant system in future study.
Collapse
Affiliation(s)
- Ievgen Levadnyi
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Research Academy of Grand Health Interdisciplinary, Ningbo University, Ningbo, China.,Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
| | - Jan Awrejcewicz
- Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland.,Institute of Vehicles, Warsaw University of Technology, Warsaw, Poland
| | - Yan Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Research Academy of Grand Health Interdisciplinary, Ningbo University, Ningbo, China.,Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, Lodz, Poland
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Research Academy of Grand Health Interdisciplinary, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin 2020; 23:1201-1214. [PMID: 32687412 DOI: 10.1080/10255842.2020.1793331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fall-related hip fractures are a major public health issue. While individual-level risk assessment tools exist, population-level predictive models could catalyze innovation in large-scale interventions. This study presents a hierarchical probabilistic model that predicts population-level hip fracture risk based on Factor of Risk (FOR) principles. Model validation demonstrated that FOR output aligned with a published dataset categorized by sex and hip fracture status. The model predicted normalized FOR for 100000 individuals simulating the Canadian older-adult population. Predicted hip fracture risk was higher for females (by an average of 38%), and increased with age (by15% per decade). Potential applications are discussed.
Collapse
Affiliation(s)
- Daniel R Martel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew C Laing
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Grassi L, Kok J, Gustafsson A, Zheng Y, Väänänen SP, Jurvelin JS, Isaksson H. Elucidating failure mechanisms in human femurs during a fall to the side using bilateral digital image correlation. J Biomech 2020; 106:109826. [DOI: 10.1016/j.jbiomech.2020.109826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
|
17
|
Katz Y, Yosibash Z. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech 2020; 101:109599. [DOI: 10.1016/j.jbiomech.2020.109599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
18
|
Widmer J, Fasser MR, Croci E, Spirig J, Snedeker JG, Farshad M. Individualized prediction of pedicle screw fixation strength with a finite element model. Comput Methods Biomech Biomed Engin 2020; 23:155-167. [PMID: 31910656 DOI: 10.1080/10255842.2019.1709173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pedicle screws are used for the treatment of a wide variety of spinal pathologies. A good screw holding power in bone is required for treatment success, but has so far not been predictable computationally. The goal of this study was to develop an automated tool able to predict patient-specific screw fixation strength through finite element simulation. We compared the simulation results with results from biomechanical pull-out tests performed on animal lumbar specimens. Experimental and simulation pull-out strengths were highly correlated [Formula: see text] and the mean error was 20.25%. The fixation strength was also associated to great extent with pull-out stiffness and strain energy, as well as the screw size and mean vertebral density.
Collapse
Affiliation(s)
- Jonas Widmer
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Marie-Rosa Fasser
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Eleonora Croci
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - José Spirig
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
19
|
QU AILI, WANG DONGMEI, WANG FANG, WANG QIU. EFFECT OF MATERIAL MODEL SELECTION ON LATERAL IMPACT SIMULATIONS OF PELVIC COMPLEX. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Material mechanical behavior plays an important role in pelvic complex simulation under lateral impact. Aiming to investigate effects of material model selection on the responses of lateral impact simulations, a seating pelvic complex model was constructed. The model was subjected to a series of impacts at velocity of 3–10[Formula: see text]m/s, and two material models were, respectively, assigned to the pelvic bone to evaluate the accuracy of the simulation. The results showed that the pelvic response and fracture pattern with plastic–elastic material model agreed well with the literature, while linear elastic material model was dissatisfied factory, especially the pelvic response at low velocity deviated from most cadaveric test data. In addition, drastic change of arterial pressure was responsible for hemorrhages associated with pelvic fracture. Ligament loading sequence verified that the posterior pelvic ring bore the greatest amount of load during the impact. Based on the above findings, we concluded that a plastic–elastic with strain rate effect material model can improve the simulation accuracy of pelvic complex under lateral impact, and pelvic fracture pattern may help to estimate the parameters’ selection in impact simulation.
Collapse
Affiliation(s)
- AILI QU
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxi 750021, P. R. China
| | - DONGMEI WANG
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - FANG WANG
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| | - QIU’GEN WANG
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Marco M, Giner E, Caeiro-Rey JR, Miguélez MH, Larraínzar-Garijo R. Numerical modelling of hip fracture patterns in human femur. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:67-75. [PMID: 31046997 DOI: 10.1016/j.cmpb.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Hip fracture morphology is an important factor determining the ulterior surgical repair and treatment, because of the dependence of the treatment on fracture morphology. Although numerical modelling can be a valuable tool for fracture prediction, the simulation of femur fracture is not simple due to the complexity of bone architecture and the numerical techniques required for simulation of crack propagation. Numerical models assuming homogeneous fracture mechanical properties commonly fail in the prediction of fracture patterns. This paper focuses on the prediction of femur fracture based on the development of a finite element model able to simulate the generation of long crack paths. METHODS The finite element model developed in this work demonstrates the capability of predicting fracture patterns under stance loading configuration, allowing the distinction between the main fracture paths: intracapsular and extracapsular fractures. It is worth noting the prediction of different fracture patterns for the same loading conditions, as observed during experimental tests. RESULTS AND CONCLUSIONS The internal distribution of bone mineral density and femur geometry strongly influences the femur fracture morphology and fracture load. Experimental fracture paths have been analysed by means of micro-computed tomography allowing the comparison of predicted and experimental crack surfaces, confirming the good accuracy of the numerical model.
Collapse
Affiliation(s)
- Miguel Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain.
| | - Eugenio Giner
- CIIM-Department of Mechanical and Materials Engineering, Universitat Politècnica de València Camino de Vera, 46022 Valencia, Spain
| | - José Ramón Caeiro-Rey
- Orthopedic Surgery and Traumatology Service, Complejo Hospitalario Universitario de Santiago de Compostela, Rúa de Ramón Baltar, s/n, 15706 Santiago de Compostela, A Coruña, Spain
| | - M Henar Miguélez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Ricardo Larraínzar-Garijo
- Orthopaedics and Trauma Department, Surgery Department, Hospital Universitario Infanta Leonor, Complutense University, Madrid, Spain
| |
Collapse
|
21
|
Katz Y, Dahan G, Sosna J, Shelef I, Cherniavsky E, Yosibash Z. Scanner influence on the mechanical response of QCT-based finite element analysis of long bones. J Biomech 2019; 86:149-159. [DOI: 10.1016/j.jbiomech.2019.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023]
|
22
|
Enns-Bray WS, Bahaloo H, Fleps I, Pauchard Y, Taghizadeh E, Sigurdsson S, Aspelund T, Büchler P, Harris T, Gudnason V, Ferguson SJ, Pálsson H, Helgason B. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone 2019; 120:25-37. [PMID: 30240961 DOI: 10.1016/j.bone.2018.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022]
Abstract
Clinical retrospective studies have only reported limited improvements in hip fracture classification accuracy using finite element (FE) models compared to conventional areal bone mineral density (aBMD) measurements. A possible explanation is that state-of-the-art quasi-static models do not estimate patient-specific loads. A novel FE modeling technique was developed to improve the biofidelity of simulated impact loading from sideways falling. This included surrogate models of the pelvis, lower extremities, and soft tissue that were morphed based on subject anthropometrics. Hip fracture prediction models based on aBMD and FE measurements were compared in a retrospective study of 254 elderly female subjects from the AGES-Reykjavik study. Subject fragility ratio (FR) was defined as the ratio between the ultimate forces of paired biofidelic models, one with linear elastic and the other with non-linear stress-strain relationships in the proximal femur. The expected end-point value (EEV) was defined as the FR weighted by the probability of one sideways fall over five years, based on self-reported fall frequency at baseline. The change in maximum volumetric strain (ΔMVS) on the surface of the femoral neck was calculated between time of ultimate femur force and 90% post-ultimate force in order to assess the extent of tensile tissue damage present in non-linear models. After age-adjusted logistic regression, the area under the receiver-operator curve (AUC) was highest for ΔMVS (0.72), followed by FR (0.71), aBMD (0.70), and EEV (0.67), however the differences between FEA and aBMD based prediction models were not deemed statistically significant. When subjects with no history of falling were excluded from the analysis, thus artificially assuming that falls were known a priori with no uncertainty, a statistically significant difference in AUC was detected between ΔMVS (0.85), and aBMD (0.74). Multivariable linear regression suggested that the variance in maximum elastic femur force was best explained by femoral head radius, pelvis width, and soft tissue thickness (R2 = 0.79; RMSE = 0.46 kN; p < 0.005). Weighting the hip fracture prediction models based on self-reported fall frequency did not improve the models' sensitivity, however excluding non-fallers lead to significant differences between aBMD and FE based models. These findings suggest that an accurate assessment of fall probability is necessary for accurately identifying individuals predisposed to hip fracture.
Collapse
Affiliation(s)
- W S Enns-Bray
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - H Bahaloo
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - I Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Y Pauchard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - E Taghizadeh
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - S Sigurdsson
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - T Aspelund
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - P Büchler
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - T Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - V Gudnason
- The Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - S J Ferguson
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - H Pálsson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - B Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| |
Collapse
|
23
|
Qu A, Wang D, Zeng X, Wang Q. Dynamic response and material sensitivity analysis of pelvic complex numerical model under side impact. Biomed Mater Eng 2018; 29:499-512. [PMID: 30282346 DOI: 10.3233/bme-181005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The surrogate design and clinical diagnostic suggest that the pelvic dynamic response should be the basis of bone fracture mechanism study under side impact. Pelvic response indicators are the impact force, compression (C), viscous criterion (VC), bone stress, and bone strain. However, no evaluation of these indicators has been conducted. OBJECTIVE To evaluate pelvic response indicators under side impact. METHODS A sitting pelvic finite element (FE) complex model comprising bone, artery, ligaments, and soft tissue was constructed. The dynamic response of the model under side impact with initial velocity of 3 m/s was investigated and material sensitivity analysis was complemented by changing bone elastic modulus. RESULTS The pelvic FE model could predict response under side impact. Specifically, the indicators such as artery pressure and strain, together with the ligaments axial force and strain were provided. The sensitivity analysis showed the impact force, bone stress, and axial force were sensitive to the elastic modulus, whereas, C, VC, bone strain, and artery pressure were not. CONCLUSIONS The sitting FE model in this study can predict pelvic dynamic response, and C, VC, bone strain and artery pressure are proposed for pelvic tolerance instead of impact force under side impact.
Collapse
Affiliation(s)
- Aili Qu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Dongmei Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangsen Zeng
- First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qiu'gen Wang
- First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Dynamic Simulation of Biomechanical Behaviour of the Pelvis in the Lateral Impact Loads. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3083278. [PMID: 30319741 PMCID: PMC6167559 DOI: 10.1155/2018/3083278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022]
Abstract
The objective of this study was to develop and validate a novel 3D dynamic model of a pelvic side-impactor system. The biomechanical responses of a pelvic flexible model (having .mnf file suffix) under the lateral impact load for predicting the bone fracture mechanism are investigated as well. The 3D solid model of the side-impactor system was imported into MSC/ADAMS software for analyzing the dynamic model, and the pelvic flexible model was extracted from the CT images of a Chinese female volunteer. The flexible model of the pelvis system was developed considering a wide range of mechanical properties in the bone complex and soft tissue to achieve a realistic biomechanical response during a lateral impact. Good agreements were achieved between the dynamic simulations and the experimental results of pelvic side impacts, in terms of the biomechanical criteria. The dynamic model of impactor system could be employed to investigate the hip protector effectiveness, improving the vehicle safety, and biomechanical response of the other human organs.
Collapse
|
25
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. J Biomech 2018; 76:136-143. [PMID: 29921524 DOI: 10.1016/j.jbiomech.2018.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11-26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7-10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
26
|
Enns-Bray WS, Ferguson SJ, Helgason B. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity. J Biomech 2018; 75:46-52. [DOI: 10.1016/j.jbiomech.2018.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
|
27
|
Tang T, Cripton PA, Guy P, McKay HA, Wang R. Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the femoral neck. Bone 2018; 108:121-131. [PMID: 29277713 DOI: 10.1016/j.bone.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Hip fractures pose a major health problem throughout the world due to their devastating impact. Current theories for why these injuries are so prevalent in the elderly point to an increased propensity to fall and decreases in bone mass with ageing. However, the fracture mechanisms, particularly the stress and strain conditions leading to bone failure at the hip remain unclear. Here, we directly examined the cortical bone from clinical intra-capsular hip fractures at a microscopic level, and found strong evidence of compression induced failure in the superior cortex. A total of 143 sections obtained from 24 femoral neck samples that were retrieved from 24 fracturing patients at surgery were examined using laser scanning confocal microscopy (LSCM) after fluorescein staining. The stained microcracks showed significantly higher density in the superior cortex than in the inferior cortex, indicating a greater magnitude of strain in the superior femoral neck during the failure-associated deformation and fracture process. The predominant stress state for each section was reconstructed based on the unique correlation between the microcrack pattern and the stress state. Specifically, we found clear evidence of longitudinal compression and buckling as the primary failure mechanisms in the superior cortex. These findings demonstrate the importance of microcrack analysis in studying clinical hip fractures, and point to the central role of the superior cortex failure as an important aspect of the failure initiation in clinical intra-capsular hip fractures.
Collapse
Affiliation(s)
- Tengteng Tang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Peter A Cripton
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada
| | - Pierre Guy
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Heather A McKay
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Enns-Bray W, Bahaloo H, Fleps I, Ariza O, Gilchrist S, Widmer R, Guy P, Pálsson H, Ferguson S, Cripton P, Helgason B. Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact. J Mech Behav Biomed Mater 2018; 78:196-205. [DOI: 10.1016/j.jmbbm.2017.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
|
29
|
On the Failure Initiation in the Proximal Human Femur Under Simulated Sideways Fall. Ann Biomed Eng 2017; 46:270-283. [DOI: 10.1007/s10439-017-1952-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
|
30
|
QU AILI, WANG DONGMEI, ZENG XIANGSEN, WANG QIU. DYNAMIC RESPONSE OF PELVIC COMPLEX FINITE ELEMENT STUDY AND VALIDATION UNDER SIDE IMPACT. J MECH MED BIOL 2017. [DOI: 10.1142/s021951941740036x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective: To investigate and validate dynamic response of the pelvis, a finite element model of seated pelvic complex comprising of bone, ligaments, abdominal artery and soft tissue was developed and concurrently, a cadaver experiment was set up. Materials and Methods: Based on supine scanned CT images, we first developed an FE pelvic complex model and modified it to construct a seated pelvic model by anteriorly rotating the proximal femur to 90[Formula: see text]. For the cadaver experiment, a customized pelvic impact apparatus was designed and optical devices, strain gauges and pressure detectors were used to measure the pelvic response. Results: The results of the FE analysis and the cadaver tests were congruent in terms of impact force and fracture sites. Dynamic arterial response to the lateral impact showed hemodynamic instability that was displayed in pressure variation. The response of ligaments indicated that the posterior ligaments of pelvic ring experienced a larger amount of load. Conclusion: FE results provided the impact of ligaments and arteries besides impact force, compression (C) and viscous criterion (VC). Accordingly, the cadaver experiment measured arterial pressure, impact force, bone strain and compression. The compatibility between the FE and cadaver analyses demonstrates the high bio-fidelity of our pelvic complex model.
Collapse
Affiliation(s)
- AILI QU
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - DONGMEI WANG
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - XIANGSEN ZENG
- First People’s Hospital Affiliated with Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| | - QIU’GEN WANG
- First People’s Hospital Affiliated with Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| |
Collapse
|
31
|
Yu A, Carballido-Gamio J, Wang L, Lang TF, Su Y, Wu X, Wang M, Wei J, Yi C, Cheng X. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures. J Bone Miner Res 2017; 32:1672-1680. [PMID: 28407298 PMCID: PMC5550343 DOI: 10.1002/jbmr.3150] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
Abstract
There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for trochanteric fractures in Chinese women. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Aihong Yu
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Yongbin Su
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Xinbao Wu
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Manyi Wang
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Jie Wei
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Chen Yi
- Department of Traumatology and Orthopedic Surgery, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| |
Collapse
|
32
|
Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Med Eng Phys 2016; 38:1339-1347. [DOI: 10.1016/j.medengphy.2016.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022]
|
33
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study. Bone 2016; 92:9-17. [PMID: 27477004 DOI: 10.1016/j.bone.2016.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Over 90% of hip fractures are caused by falls. Due to a fall-induced impact on the greater trochanter, the posterior part of the thin superolateral cortex of the femoral neck is known to experience the highest stress, making it a fracture-prone region. Cortical geometry of the proximal femur, in turn, reflects a mechanically appropriate form with respect to habitual exercise loading. In this finite element (FE) modeling study, we investigated whether specific exercise loading history is associated with femoral neck structural strength and estimated fall-induced stresses along the femoral neck. One hundred and eleven three-dimensional (3D) proximal femur FE models for a sideways falling situation were constructed from magnetic resonance (MR) images of 91 female athletes (aged 24.7±6.1years, >8years competitive career) and 20 non-competitive habitually active women (aged 23.7±3.8years) that served as a control group. The athletes were divided into five distinct groups based on the typical loading pattern of their sports: high-impact (H-I: triple-jumpers and high-jumpers), odd-impact (O-I: soccer and squash players), high-magnitude (H-M: power-lifters), repetitive-impact (R-I: endurance runners), and repetitive non-impact (R-NI: swimmers). The von Mises stresses obtained from the FE models were used to estimate mean fall-induced stresses in eight anatomical octants of the cortical bone cross-sections at the proximal, middle, and distal sites along the femoral neck axis. Significantly (p<0.05) lower stresses compared to the control group were observed: the H-I group - in the superoposterior (10%) and posterior (19%) octants at the middle site, and in the superoposterior (13%) and posterior (22%) octants at the distal site; the O-I group - in the superior (16%), superoposterior (16%), and posterior (12%) octants at the middle site, and in the superoposterior (14%) octant at the distal site; the H-M group - in the superior (13%) and superoposterior (15%) octants at the middle site, and a trend (p=0.07, 9%) in the superoposterior octant at the distal site; the R-I group - in the superior (14%), superoposterior (23%) and posterior (22%) octants at the middle site, and in the superoposterior (19%) and posterior (20%) octants at the distal site. The R-NI group did not differ significantly from the control group. These results suggest that exercise loading history comprising various impacts in particular is associated with a stronger femoral neck in a falling situation and may have potential to reduce hip fragility.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
34
|
Koh I, Marini G, Widmer RP, Brandolini N, Helgason B, Ferguson SJ. In silico investigation of vertebroplasty as a stand-alone treatment for vertebral burst fractures. Clin Biomech (Bristol, Avon) 2016; 34:53-61. [PMID: 27070845 DOI: 10.1016/j.clinbiomech.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The use of percutaneous vertebroplasty as a stand-alone treatment for stable vertebral burst fractures has been investigated in vitro and in clinical studies. These studies present inconsistent results on the mechanical response of vertebroplasty-treated burst fractures. In addition, observations of the loss of sagittal alignment after vertebroplasty raise questions on the applicability of vertebroplasty for burst fractures. Therefore, the aim of this study was to investigate the mechanical stability of burst fractures after stand-alone treatment by vertebroplasty. METHODS Finite element simulations were performed with models generated from two laboratory-induced burst fractures in human thoracolumbar specimens. The burst fracture models were virtually injected with various cement volumes using a unipedicular or bipedicular approach. The models were subjected to four individual loads (compression, lateral bending, extension and torsion) and a multi-axial load case in the physiological range. FINDINGS All treated burst fractures showed improvements in stiffness and a reduction in inter-fragmentary displacements, thus potentially providing a suitable mechanical environment for fracture healing. However, large volumes of the trabecular bone (<43%), cement (<53%) and bone-cement composite (<58%) were predicted to experience strain levels exceeding the yield point. While damage was not specifically modeled, this implies a potential collapse of the treated vertebra due to local failure. INTERPRETATION To improve the primary stability and to prevent the collapse of treated burst fractures, the use of posterior instrumentation is suggested as an adjunct to vertebroplasty.
Collapse
Affiliation(s)
- Ilsoo Koh
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland.
| | - Giacomo Marini
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
| | - René P Widmer
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. J Mech Behav Biomed Mater 2016; 57:116-27. [DOI: 10.1016/j.jmbbm.2015.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 11/20/2022]
|
36
|
Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J Biomech 2016; 49:802-806. [DOI: 10.1016/j.jbiomech.2016.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 11/25/2022]
|
37
|
Palanca M, Tozzi G, Cristofolini L. The use of digital image correlation in the biomechanical area: a review. Int Biomech 2015. [DOI: 10.1080/23335432.2015.1117395] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Marco Palanca
- School of Engineering and Architecture, University of Bologna, Bologna, Italy
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Luca Cristofolini
- School of Engineering and Architecture, Department of Industrial Engineering, University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Extracting accurate strain measurements in bone mechanics: A critical review of current methods. J Mech Behav Biomed Mater 2015; 50:43-54. [DOI: 10.1016/j.jmbbm.2015.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
|
39
|
Chanda S, Dickinson A, Gupta S, Browne M. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty. Proc Inst Mech Eng H 2015; 229:549-59. [DOI: 10.1177/0954411915591617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Alterations in bone strain as a result of implantation may contribute towards periprosthetic bone density changes after total hip arthroplasty. Computational models provide full-field strain predictions in implant–bone constructs; however, these predictions should be verified using experimental models wherever it is possible. In this work, finite element predictions of surface strains in intact and implanted composite femurs were verified using digital image correlation. Relationships were sought between post-implantation strain states across seven defined Gruen zones and clinically observed longer-term bone density changes. Computational predictions of strain distributions in intact and implanted femurs were compared to digital image correlation measurements in two regions of interest. Regression analyses indicated a strong linear correlation between measurements and predictions (R = 0.927 intact, 0.926 implanted) with low standard error (standard error = 38 µε intact, 26 µε implanted). Pre- to post-operative changes in measured and predicted surface strains were found to relate qualitatively to clinically observed volumetric bone density changes across seven Gruen zones: marked proximal bone density loss corresponded with a 50%−64% drop in surface strain, and slight distal density changes corresponded with 4%−14% strain increase. These results support the use of digital image correlation as a pre-clinical tool for predicting post-implantation strain shielding, indicative of long-term bone adaptations.
Collapse
Affiliation(s)
- Souptick Chanda
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alexander Dickinson
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Martin Browne
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
40
|
Strain distribution in the proximal Human femur during in vitro simulated sideways fall. J Biomech 2015; 48:2130-43. [PMID: 25843261 DOI: 10.1016/j.jbiomech.2015.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
Abstract
This study assessed: (i) how the magnitude and direction of principal strains vary for different sideways fall loading directions; (ii) how the principal strains for a sideways fall differ from physiological loading directions; (iii) the fracture mechanism during a sideways fall. Eleven human femurs were instrumented with 16 triaxial strain gauges each. The femurs were non-destructively subjected to: (a) six loading configurations covering the range of physiological loading directions; (b) 12 configurations simulating sideways falls. The femurs were eventually fractured in a sideways fall configuration while high-speed cameras recorded the event. When the same force magnitude was applied, strains were significantly larger in a sideways fall than for physiological loading directions (principal compressive strain was 70% larger in a sideways fall). Also the compressive-to-tensile strain ratio was different: for physiological loading the largest compressive strain was only 30% larger than the largest tensile strain; but for the sideways fall, compressive strains were twice as large as the tensile strains. Principal strains during a sideways fall were nearly perpendicular to the direction of principal strains for physiological loading. In the most critical regions (medial part of the head-neck) the direction of principal strain varied by less than 9° between the different physiological loading conditions, whereas it varied by up to 17° between the sideways fall loading conditions. This was associated with a specific fracture mechanism during sideways fall, where failure initiated on the superior-lateral side (compression) followed by later failure of the medially (tension), often exhibiting a two-peak force-displacement curve.
Collapse
|
41
|
Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing. J Biomech 2015; 48:224-32. [DOI: 10.1016/j.jbiomech.2014.11.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
|