1
|
Paakkari P, Inkinen SI, Jäntti J, Tuppurainen J, Fugazzola MC, Joenathan A, Ylisiurua S, Nieminen MT, Kröger H, Mikkonen S, van Weeren R, Snyder BD, Töyräs J, Honkanen MKM, Matikka H, Grinstaff MW, Honkanen JTJ, Mäkelä JTA. Dual-Contrast Agent with Nanoparticle and Molecular Components in Photon-Counting Computed Tomography: Assessing Articular Cartilage Health. Ann Biomed Eng 2025; 53:1423-1438. [PMID: 40155520 PMCID: PMC12075350 DOI: 10.1007/s10439-025-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Photon-counting detectors (PCDs) are cutting-edge technology that enable spectral computed tomography (CT) imaging with a single scan. Spectral imaging is particularly effective in contrast-enhanced CT (CECT) imaging, especially when multiple contrast agents are utilized, as materials are distinguishable based on their unique X-ray absorption. One application of CECT is joint imaging, where it assesses the structure and composition of articular cartilage soft tissue. This evaluates articular cartilage and reveals compositional changes associated with early-stage osteoarthritis (OA) using a photon-counting detector CT (PCD-CT) technique combined with a dual-contrast agent method. METHODS A dual-contrast agent combination was used, consisting of proteoglycan-binding cationic tantalum oxide nanoparticles, developed in our lab, and a commercial non-ionic iodinated iodixanol agent. Ex vivo equine stifle joint cartilage samples (N = 30) were immersed in the contrast agent bath for 96 hours and imaged at multiple timepoints for analysis of proteoglycan, collagen, and water contents as well as collagen orientation, histological scoring, and biomechanical parameters. RESULTS By analyzing contrast agent concentrations, the technique provided a simultaneous assessment of the solid constituents and function of cartilage. Contrast agent diffusion depended on contrast agent composition and was significantly different between healthy and early-stage OA groups within 12 hours. CONCLUSION The present study shows the promising utility of the dual-contrast PCD-CT technique for articular cartilage assessment and early-stage OA detection.
Collapse
Affiliation(s)
- Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Satu I Inkinen
- Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Sampo Ylisiurua
- Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
- Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Juuso T J Honkanen
- Radiotherapy Department, Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
A Cationic Contrast Agent in X-ray Imaging of Articular Cartilage: Pre-Clinical Evaluation of Diffusion and Attenuation Properties. Diagnostics (Basel) 2022; 12:diagnostics12092111. [PMID: 36140512 PMCID: PMC9497730 DOI: 10.3390/diagnostics12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was the preliminary assessment of a new cationic contrast agent, the CA4+, via the analysis of spatial distribution in cartilage of ex vivo bovine samples, at micrometer and millimeter scale. Osteochondral plugs (n = 18) extracted from bovine stifle joints (n = 2) were immersed in CA4+ solution up to 26 h. Planar images were acquired at different time points, using a microCT apparatus. The CA4+ distribution in cartilage and saturation time were evaluated. Tibial plates from bovine stifle joints (n = 3) were imaged with CT, before and after 24 h-CA4+ bath immersion, at different concentrations. Afterward, potential CA4+ washout from cartilage was investigated. From microCT acquisitions, the CA4+ distribution differentiated into three distinct layers inside the cartilage, reflecting the spatial distribution of proteoglycans. After 24 h of diffusion, the iodine concentration reached in cartilage was approximately seven times that of the CA4+ bath. The resulting saturation time was 1.9 ± 0.9 h and 2.6 ± 2.9 h for femoral and tibial samples, respectively. Analysis of clinical CT acquisitions confirmed overall contrast enhancement of cartilage after 24 h immersion, observed for each CA4+ concentration. Distinct contrast enhancement was reached in different cartilage regions, depending on tissue’s local features. Incomplete but remarkable washout of cartilage was observed. CA4+ significantly improved cartilage visualization and its qualitative analysis.
Collapse
|
4
|
Hall ME, Wang AS, Gold GE, Levenston ME. Contrast solution properties and scan parameters influence the apparent diffusivity of computed tomography contrast agents in articular cartilage. J R Soc Interface 2022; 19:20220403. [PMID: 35919981 PMCID: PMC9346352 DOI: 10.1098/rsif.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The inability to detect early degenerative changes to the articular cartilage surface that commonly precede bulk osteoarthritic degradation is an obstacle to early disease detection for research or clinical diagnosis. Leveraging a known artefact that blurs tissue boundaries in clinical arthrograms, contrast agent (CA) diffusivity can be derived from computed tomography arthrography (CTa) scans. We combined experimental and computational approaches to study protocol variations that may alter the CTa-derived apparent diffusivity. In experimental studies on bovine cartilage explants, we examined how CA dilution and transport direction (absorption versus desorption) influence the apparent diffusivity of untreated and enzymatically digested cartilage. Using multiphysics simulations, we examined mechanisms underlying experimental observations and the effects of image resolution, scan interval and early scan termination. The apparent diffusivity during absorption decreased with increasing CA concentration by an amount similar to the increase induced by tissue digestion. Models indicated that osmotically-induced fluid efflux strongly contributed to the concentration effect. Simulated changes to spatial resolution, scan spacing and total scan time all influenced the apparent diffusivity, indicating the importance of consistent protocols. With careful control of imaging protocols and interpretations guided by transport models, CTa-derived diffusivity offers promise as a biomarker for early degenerative changes.
Collapse
Affiliation(s)
- Mary E. Hall
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Adam S. Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Kazemi M, Williams JL. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate. Cartilage 2021; 13:16S-33S. [PMID: 32458695 PMCID: PMC8804776 DOI: 10.1177/1947603520924776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The purpose of this narrative review is to summarize what is currently known about the structural, chemical, and mechanical properties of cartilage-bone interfaces, which provide tissue integrity across a bimaterial interface of 2 very different structural materials. Maintaining these mechanical interfaces is a key factor for normal bone growth and articular cartilage function and maintenance. MATERIALS AND METHODS A comprehensive search was conducted using Google Scholar and PubMed/Medline with a specific focus on the growth plate cartilage-subchondral bone interface. All original articles, reviews in journals, and book chapters were considered. Following a review of the overall structural and functional characteristics of the physis, the literature on histological studies of both articular and growth plate chondro-osseous junctions is briefly reviewed. Next the literature on biochemical properties of these interfaces is reviewed, specifically the literature on elemental analyses across the cartilage-subchondral bone junctions. The literature on biomechanical studies of these junctions at the articular and physeal interfaces is also reviewed and compared. RESULTS Unlike the interface between articular cartilage and bone, growth plate cartilage has 2 chondro-osseous junctions. The reserve zone of the mature growth plate is intimately connected to a plate of subchondral bone on the epiphyseal side. This interface resembles that between the subchondral bone and articular cartilage, although much less is known about its makeup and formation. CONCLUSION There is a notably paucity of information available on the structural and mechanical properties of reserve zone-subchondral epiphyseal bone interface. This review reveals that further studies are needed on the microstructural and mechanical properties of chondro-osseous junction with the reserve zone.
Collapse
Affiliation(s)
- Masumeh Kazemi
- Biomedical Engineering Department,
University of Memphis, Memphis, TN, USA,Masumeh Kazemi, Biomedical Engineering
Department, University of Memphis, 3796 Norriswood Avenue, Memphis, TN 38152,
USA.
| | | |
Collapse
|
6
|
Topographic features of nano-pores within the osteochondral interface and their effects on transport properties -a 3D imaging and modeling study. J Biomech 2021; 123:110504. [PMID: 34052773 DOI: 10.1016/j.jbiomech.2021.110504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022]
Abstract
Recent insights suggest that the osteochondral interface plays a central role in maintaining healthy articulating joints. Uncovering the underlying transport mechanisms is key to the understanding of the cross-talk between articular cartilage and subchondral bone. Here, we describe the mechanisms that facilitate transport at the osteochondral interface. Using scanning electron microscopy (SEM), we found a continuous transition of mineralization architecture from the non-calcified cartilage towards the calcified cartilage. This refurbishes the classical picture of the so-called tidemark; a well-defined discontinuity at the osteochondral interface. Using focused-ion-beam SEM (FIB-SEM) on one osteochondral plug derived from a human cadaveric knee, we elucidated that the pore structure gradually varies from the calcified cartilage towards the subchondral bone plate. We identified nano-pores with radius of 10.71 ± 6.45 nm in calcified cartilage to 39.1 ± 26.17 nm in the subchondral bone plate. The extracted pore sizes were used to construct 3D pore-scale numerical models to explore the effect of pore sizes and connectivity among different pores. Results indicated that connectivity of nano-pores in calcified cartilage is highly compromised compared to the subchondral bone plate. Flow simulations showed a permeability decrease by about 2000-fold and solute transport simulations using a tracer (iodixanol, 1.5 kDa with a free diffusivity of 2.5 × 10-10 m2/s) showed diffusivity decrease by a factor of 1.5. Taken together, architecture of the nano-pores and the complex mineralization pattern in the osteochondral interface considerably impacts the cross-talk between cartilage and bone.
Collapse
|
7
|
Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Acta Biomater 2019; 100:202-212. [PMID: 31580960 DOI: 10.1016/j.actbio.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged regenerative strategy, however tools are needed for longitudinal and quantitative monitoring of cartilage matrix components. In this study, we introduce a contrast-enhanced computed tomography (CECT)-based method using a cationic iodinated contrast agent (CA4+) for longitudinal quantification of glycosaminoglycans (GAG) in cartilage-engineered constructs. CA4+ concentration and scanning protocols were first optimized to ensure no cytotoxicity and a facile procedure with minimal radiation dose. Chondrocyte and mesenchymal stem cell pellets, containing different GAG content were generated and exposed to CA4+. The CA4+ content in the pellets, as determined by micro computed tomography, was plotted against GAG content, as measured by 1,9-dimethylmethylene blue analysis, and showed a high linear correlation. The established equation was used for longitudinal measurements of GAG content over 28 days of pellet culture. Importantly, this method did not adversely affect cell viability or chondrogenesis. Additionally, the CA4+ distribution accurately matched safranin-O staining on histological sections. Hence, we show proof-of-concept for the application of CECT, utilizing a positively charged contrast agent, for longitudinal and quantitative imaging of GAG distribution in cartilage tissue-engineered constructs. STATEMENT OF SIGNIFICANCE: Tissue engineering and regenerative medicine are promising therapeutic strategies for different joint pathologies such as cartilage defects or osteoarthritis. Currently, in vitro assessment on the quality and composition of the engineered cartilage mainly relies on destructive methods. Therefore, there is a need for the development of techniques that allow for longitudinal and quantitative imaging and monitoring of cartilage-engineered constructs. This work harnesses the electrostatic interactions between the negatively-charged glycosaminoglycans (GAGs) and a positively-charged contrast agent for longitudinal and non-destructive quantification of GAGs, providing valuable insight on GAG development and distribution in cartilage engineered constructs. Such technique can advance the development of regenerative strategies, not only by allowing continuous monitoring but also by serving as a pre-implantation screening tool.
Collapse
|
8
|
YANG XIUPING, SUN FENGJU, WANG LONGTAO, ZHANG CHUNQIU, ZHANG XIZHENG. SOLUTE TRANSPORT IN ARTICULAR CARTILAGE UNDER ROLLING-COMPRESSION LOAD. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Solute transport is one of the important aspects involved in maintaining the physiological activity of tissues. The mechanical environment drives nutrition in and waste out in articular cartilage due to its avascularity, which plays a key role in the biological activity of articular cartilage. The human knee joint motion is a complex interaction between different bones including relative rolling and/or sliding movements. Rolling-compression process is a typical physiological load in knee joint motion. To investigate solute transport behavior in articular cartilage under rolling-compression load, fluorescence tracers with molecular weights of 40kDa and 0.43kDa were used respectively to mark the transport in fresh articular cartilage of mature pigs. Solute fluorescence intensity changing with time and depth of cartilage layer was measured under rolling-compression load and static state, respectively, and the distribution of corresponding relative concentration was calculated by the fluorescence microscope imaging method. The experiment results show that the solute relative concentration in articular cartilage under rolling-compression load increases significantly, even up to 62.4%, comparing with that under static state, and the changes of concentration vary in different layers and that small molecular weight solute is easier to transport than relatively large molecular weight solute in articular cartilage. Therefore, rolling-compression load can promote the solute transport in cartilage, and the mechanical loading may have application in functional cartilage tissue engineering.
Collapse
Affiliation(s)
- XIUPING YANG
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin Binshuixi Road No 391, Tianjin 300384, P. R. China
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - FENGJU SUN
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - LONGTAO WANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - CHUNQIU ZHANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - XIZHENG ZHANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
9
|
Diffusion of charged and uncharged contrast agents in equine mandibular condylar cartilage is not affected by an increased level of sugar-induced collagen crosslinking. J Mech Behav Biomed Mater 2018; 90:133-139. [PMID: 30366303 DOI: 10.1016/j.jmbbm.2018.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
Nutrition of articular cartilage relies mainly on diffusion and convection of solutes through the interstitial fluid due to the lack of blood vessels. The diffusion is controlled by two factors: steric hindrance and electrostatic interactions between the solutes and the matrix components. Aging comes with changes in the cartilage structure and composition, which can influence the diffusion. In this study, we treated fibrocartilage of mandibular condyle with ribose to induce an aging-like effect by accumulating collagen crosslinks. The effect of steric hindrance or electrostatic forces on the diffusion was analyzed using either charged (Hexabrix) or uncharged (Visipaque) contrast agents. Osteochondral plugs from young equine mandibular condyles were treated with 500 mM ribose for 7 days. The effect of crosslinking on mechanical properties was then evaluated via dynamic indentation. Thereafter, the samples were exposed to contrast agents and imaged using contrast-enhanced computed tomography (CECT) at 18 different time points up to 48 h to measure their diffusion. Normalized concentration of contrast agents in the cartilage and contrast agent diffusion flux, as well as the content of crosslink level (pentosidine), water, collagen, and glycosaminoglycan (GAG) were determined. Ribose treatment significantly increased the pentosidine level (from 0.01 to 7.6 mmol/mol collagen), which resulted in an increase in tissue stiffness (~1.5 fold). Interestingly, the normalized concentration and diffusion flux did not change after the induction of an increased level of pentosidine either for Hexabrix or Visipaque. The results of this study strongly suggest that sugar-induced collagen crosslinking in TMJ condylar cartilage does not affect the diffusion properties.
Collapse
|
10
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
11
|
Pouran B, Moshtagh PR, Arbabi V, Snabel J, Stoop R, Ruberti J, Malda J, Zadpoor AA, Weinans H. Non-enzymatic cross-linking of collagen type II fibrils is tuned via osmolality switch. J Orthop Res 2018; 36:1929-1936. [PMID: 29334127 PMCID: PMC6099510 DOI: 10.1002/jor.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
An important aspect in cartilage ageing is accumulation of advanced glycation end products (AGEs) after exposure to sugars. Advanced glycation results in cross-links formation between the collagen fibrils in articular cartilage, hampering their flexibility and making cartilage more brittle. In the current study, we investigate whether collagen cross-linking after exposure to sugars depends on the stretching condition of the collagen fibrils. Healthy equine cartilage specimens were exposed to l-threose sugar and placed in hypo-, iso-, or hyper-osmolal conditions that expanded or shrank the tissue and changed the 3D conformation of collagen fibrils. We applied micro-indentation tests, contrast enhanced micro-computed tomography, biochemical measurement of pentosidine cross-links, and cartilage surface color analysis to assess the effects of advanced glycation cross-linking under these different conditions. Swelling of extracellular matrix due to hypo-osmolality made cartilage less susceptible to advanced glycation, namely, the increase in effective Young's modulus was approximately 80% lower in hypo-osmolality compared to hyper-osmolality and pentosidine content per collagen was 47% lower. These results indicate that healthy levels of glycosaminoglycans not only keep cartilage stiffness at appropriate levels by swelling and pre-stressed collagen fibrils, but also protect collagen fibrils from adverse effects of advanced glycation. These findings highlight the fact that collagen fibrils and therefore cartilage can be protected from further advanced glycation ("ageing") by maintaining the joint environment at sufficiently low osmolality. Understanding of mechanochemistry of collagen fibrils provided here might evoke potential ageing prohibiting strategies against cartilage deterioration. © 2018 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:1929-1936, 2018.
Collapse
Affiliation(s)
- Behdad Pouran
- Department of OrthopedicsUMC UtrechtHeidelberglaan100, 3584CX UtrechtThe Netherlands,Faculty of Mechanical, Maritime, and Materials Engineering, Department of Biomechanical EngineeringDelft University of Technology (TU Delft)Mekelweg 2, 2628CDDelftThe Netherlands
| | - Parisa R. Moshtagh
- Department of OrthopedicsUMC UtrechtHeidelberglaan100, 3584CX UtrechtThe Netherlands,Faculty of Mechanical, Maritime, and Materials Engineering, Department of Biomechanical EngineeringDelft University of Technology (TU Delft)Mekelweg 2, 2628CDDelftThe Netherlands
| | - Vahid Arbabi
- Department of OrthopedicsUMC UtrechtHeidelberglaan100, 3584CX UtrechtThe Netherlands,Faculty of Mechanical, Maritime, and Materials Engineering, Department of Biomechanical EngineeringDelft University of Technology (TU Delft)Mekelweg 2, 2628CDDelftThe Netherlands,Faculty of Engineering, Department of Mechanical EngineeringUniversity of Birjand615/97175BirjandIran
| | - Jessica Snabel
- Department of Metabolic Health ResearchTNOP.O. Box 22152301 CE LeidenThe Netherlands
| | - Reinout Stoop
- Department of Metabolic Health ResearchTNOP.O. Box 22152301 CE LeidenThe Netherlands
| | - Jeffrey Ruberti
- Department of BioengineeringNortheastern, University360 Huntington AvenueBostonMassachusetts02115
| | - Jos Malda
- Department of OrthopedicsUMC UtrechtHeidelberglaan100, 3584CX UtrechtThe Netherlands,Faculty of Veterinary Sciences, Department of Equine SciencesUtrecht UniversityYalelaan 1123584 CM UtrechtThe Netherlands
| | - Amir A. Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Department of Biomechanical EngineeringDelft University of Technology (TU Delft)Mekelweg 2, 2628CDDelftThe Netherlands
| | - Harrie Weinans
- Department of OrthopedicsUMC UtrechtHeidelberglaan100, 3584CX UtrechtThe Netherlands,Faculty of Mechanical, Maritime, and Materials Engineering, Department of Biomechanical EngineeringDelft University of Technology (TU Delft)Mekelweg 2, 2628CDDelftThe Netherlands,Department of RheumatologyUMC UtrechtHeidelberglaan1003584CX UtrechtThe Netherlands
| |
Collapse
|
12
|
Bhattarai A, Honkanen JTJ, Myller KAH, Prakash M, Korhonen M, Saukko AEA, Virén T, Joukainen A, Patwa AN, Kröger H, Grinstaff MW, Jurvelin JS, Töyräs J. Quantitative Dual Contrast CT Technique for Evaluation of Articular Cartilage Properties. Ann Biomed Eng 2018; 46:1038-1046. [DOI: 10.1007/s10439-018-2013-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
|
13
|
Arbabi V, Pouran B, Zadpoor AA, Weinans H. An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage. J Vis Exp 2017. [PMID: 28518064 DOI: 10.3791/54984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.
Collapse
Affiliation(s)
- Vahid Arbabi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft); Department of Orthopedics, UMC Utrecht;
| | - Behdad Pouran
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft); Department of Orthopedics, UMC Utrecht;
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft)
| | - Harrie Weinans
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft); Department of Orthopedics, UMC Utrecht; Department of Rheumatology, UMC Utrecht
| |
Collapse
|
14
|
Abstract
Evaluate parylene scaffold feasibility in cartilage lesion treatment, introducing a novel paradigm combining a reparative and superficial reconstructive procedure. Fifteen rabbits were used. All animals had both knees operated and the same osteochondral lesion model was created bilaterally. The parylene scaffold was implanted in the right knee, and the left knee of the same animal was used as control. The animals were euthanized at different time points after surgery: four animals at three weeks, three animals at six weeks, four animals at nine weeks, and four animals at 12 weeks. Specimens were analyzed by International Cartilage Repair Society (ICRS) macroscopic evaluation, modified Pineda histologic evaluation of cartilage repair, and collagen II immunostaining. Parylene knees were compared to its matched contra-lateral control knees of the same animal using the Wilcoxon matched-pairs signed rank. ICRS mean ± SD values for parylene versus control, three, six, nine and twelve weeks, respectively: 7.83 ± 1.85 versus 4.42 ± 1.08, p = 0.0005; 10.17 ± 1.17 versus 6.83 ± 1.17, p = 0.03; 10.89 ± 0.60 versus 7.33 ± 2.18, p = 0.007; 10.67 ± 0.78 versus 7.83 ± 3.40, p = 0.03. Modified Pineda mean ± SD values for parylene versus control, six, nine and twelve weeks, respectively: 3.37 ± 0.87 versus 6.94 ± 1.7, p < 0.0001; 5.73 ± 2.05 versus 6.41 ± 1.7, p = 0.007; 3.06 ± 1.61 versus 6.52 ± 1.51, p < 0.0001. No inflammation was seen. Parylene implanted knees demonstrated higher collagen II expression via immunostaining in comparison to the control knees. Parylene scaffolds are a feasible option for cartilage lesion treatment and the combination of a reparative to a superficial reconstructive procedure using parylene scaffolds led to better results than the reparative procedure alone.
Collapse
|
15
|
Pouran B, Arbabi V, Bleys RL, René van Weeren P, Zadpoor AA, Weinans H. Solute transport at the interface of cartilage and subchondral bone plate: Effect of micro-architecture. J Biomech 2016; 52:148-154. [PMID: 28063646 DOI: 10.1016/j.jbiomech.2016.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Cross-talk of subchondral bone and articular cartilage could be an important aspect in the etiology of osteoarthritis. Previous research has provided some evidence of transport of small molecules (~370Da) through the calcified cartilage and subchondral bone plate in murine osteoarthritis models. The current study, for the first time, uses a neutral diffusing computed tomography (CT) contrast agent (iodixanol, ~1550Da) to study the permeability of the osteochondral interface in equine and human samples. Sequential CT monitoring of diffusion after injecting a finite amount of contrast agent solution onto the cartilage surface using a micro-CT showed penetration of the contrast molecules across the cartilage-bone interface. Moreover, diffusion through the cartilage-bone interface was affected by thickness and porosity of the subchondral bone as well as the cartilage thickness in both human and equine samples. Our results revealed that porosity of the subchondral plate contributed more strongly to the diffusion across osteochondral interface compared to other morphological parameters in healthy equine samples. However, thickness of the subchondral plate contributed more strongly to the diffusion in slightly osteoarthritic human samples.
Collapse
Affiliation(s)
- Behdad Pouran
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Vahid Arbabi
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
16
|
Arbabi V, Pouran B, Weinans H, Zadpoor AA. Neutral solute transport across osteochondral interface: A finite element approach. J Biomech 2016; 49:3833-3839. [DOI: 10.1016/j.jbiomech.2016.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
17
|
Pouran B, Arbabi V, Weinans H, Zadpoor AA. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage. Comput Biol Med 2016; 78:91-96. [PMID: 27673491 DOI: 10.1016/j.compbiomed.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/23/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022]
Abstract
Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage.
Collapse
Affiliation(s)
- Behdad Pouran
- Department of Orthopedics, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands.
| | - Vahid Arbabi
- Department of Orthopedics, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands; Department of Mechanical Engineering, University of Birjand, 61597175 Birjand, Iran
| | - Harrie Weinans
- Department of Orthopedics, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands; Department of Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD Delft, The Netherlands
| |
Collapse
|
18
|
Arbabi V, Pouran B, Weinans H, Zadpoor AA. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models. J Biomech 2016; 49:2799-2805. [DOI: 10.1016/j.jbiomech.2016.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/11/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
19
|
Arbabi V, Pouran B, Weinans H, Zadpoor AA. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model. J Biomech 2016; 49:1510-1517. [DOI: 10.1016/j.jbiomech.2016.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023]
|