1
|
Wilzman AR, Wong DT, Troy KL. Biomechanics of a Drop Landing: Osteogenic Stimulus Measures May Vary. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2025; 25:1-17. [PMID: 40024223 PMCID: PMC11880855 DOI: 10.22540/jmni-25-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Impact exercises are known to increase bone mineral density (BMD) through the biological process of bone remodeling, increasing strength and resistance to fracture. The purpose of this study was to compare several measures that have been used as surrogates for bone impact as a magnitude of its potential to induce bone remodeling. METHODS Twenty healthy adults (10 male, 10 female) participated in a biomechanical investigation of how drop height and landing style (bilateral vs. unilateral) affect various estimates of bone remodeling stimuli. These stimuli surrogates include accelerations measured by Inertial Measurement Units (IMUs), ground reaction forces, joint contact forces estimated by musculoskeletal modeling, and tibia strains estimated by finite element modeling. RESULTS Drop height was directly related to stimulus magnitudes, but there was little benefit to drop heights greater than 0.4 m. In contrast, switching from a bilateral to a unilateral landing had a large positive effect. A post-hoc analysis revealed that a linear regression of kinematics and reaction force explained up to 79% of the variance in computationally expensive bone remodeling stimulus measures. CONCLUSIONS subject-specific bone strain analysis may not be necessary to understand the magnitude of a bone remodeling stimulus of an exercise.
Collapse
Affiliation(s)
- Andrew R. Wilzman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Karen L. Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
2
|
ANGGORO D, PURBA MS, JIANG F, NISHIDA N, ITOH H, ITAMOTO K, NEMOTO Y, NAKAICHI M, SUNAHARA H, TANI K. Elucidation of the radius and ulna fracture mechanisms in toy poodle dogs using finite element analysis. J Vet Med Sci 2024; 86:575-583. [PMID: 38556325 PMCID: PMC11144531 DOI: 10.1292/jvms.23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Fractures occurring in the distal radius and ulna of toy breed dogs pose distinctive challenges for veterinary practitioners, requiring specialized treatment approaches primarily based on anatomical features. Finite Element Analysis (FEA) was applied to conduct numerical experiments to determine stress distribution across the bone. This methodology offers an alternative substitute for directly investigating these phenomena in living dog experiments, which could present ethical obstacles. A three-dimensional bone model of the metacarpal, carpal, radius, ulna, and humerus was reconstructed from Computed Tomography (CT) images of the toy poodle and dachshund forelimb. The model was designed to simulate the jumping and landing conditions from a vertical distance of 40 cm to the ground within a limited timeframe. The investigation revealed considerable variations in stress distribution patterns between the radius and ulna of toy poodles and dachshunds, indicating notably elevated stress levels in toy poodles compared to dachshunds. In static and dynamic stress analysis, toy poodles exhibit peak stress levels at the distal radius and ulna. The Von Mises stresses for toy poodles reach 90.07 MPa (static) and 1,090.75 MPa (dynamic) at the radius and 1,677.97 MPa (static) and 1,047.98 MPa (dynamic) at the ulna. Conversely, dachshunds demonstrate lower stress levels for 5.39 MPa (static) and 231.79 MPa (dynamic) at the radius and 390.56 MPa (static) and 513.28 MPa (dynamic) at the ulna. The findings offer valuable insights for modified treatment approaches in managing fractures in toy breed dogs, optimizing care and outcomes.
Collapse
Affiliation(s)
- Dito ANGGORO
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Melpa Susanti PURBA
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Fei JIANG
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Norihiro NISHIDA
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Harumichi ITOH
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuhito ITAMOTO
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki NEMOTO
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Munekazu NAKAICHI
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi SUNAHARA
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji TANI
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Anggoro D, Purba MS, Jiang F, Nishida N, Itoh H, Itamoto K, Nemoto Y, Nakaichi M, Sunahara H, Tani K. Finite element study on post-screw removal stress in toy poodle radius with different plate designs and screw arrangements. Open Vet J 2024; 14:885-894. [PMID: 38682140 PMCID: PMC11052620 DOI: 10.5455/ovj.2024.v14.i3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/01/2024] Open
Abstract
Background The study employs finite element analysis to investigate stress distribution in the radius of toy poodles after screw removal. The examination focuses on the biomechanical implications of varied screw hole configurations using 1.5 and 2.0-mm locking compression plates (LCPs) with notched head T-Plates. Aim To provide a noninvasive approach to analyzing the immediate consequences of screw removal from the radius bone in toy poodles. Specifically, it explores the impact of varied plate designs and screw arrangements on stress distribution within the forelimb bones. Methods The study constructs a three-dimensional bone model of the toy poodle's forelimb based on computed tomography (CT) images. Simulations were designed to replicate jumping and landing from a 40 cm height, comparing stress distribution in the radius post-screw removal. Results The analysis reveals significant variations in stress distribution patterns between the two LCPs. The radius implanted with the 2.0-mm LCP displays a uniform stress distribution, contrasting with the 1.5-mm plates. Localized stress concentration is observed around the screw holes, while trabecular bone regions near the screw holes exhibit lower stress levels. Conclusion The study highlights the plate designs and screw configurations that affect bone stress in toy poodle forelimbs post-screw removal. The findings provide valuable insights for veterinarians, aiding informed decisions in veterinary orthopedic practices.
Collapse
Affiliation(s)
- Dito Anggoro
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Gadjah Mada University, Indonesia
| | - Melpa Susanti Purba
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Fei Jiang
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Harumichi Itoh
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Kazuhito Itamoto
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Yuki Nemoto
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Munekazu Nakaichi
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Hiroshi Sunahara
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | - Kenji Tani
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| |
Collapse
|
4
|
Gong T, Luo Y, Lu M, Wang J, Zhang Y, Wang Y, Tang F, Li Z, Zhou Y, Min L, Tu C. The optimal strategy for 3D-printed uncemented endoprosthesis for the bone defect reconstruction of the distal radius, based on biomechanical analysis and retrospective cohort study. J Surg Oncol 2023; 127:1043-1053. [PMID: 36825890 DOI: 10.1002/jso.27215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Prosthetic reconstruction after resecting giant cell tumor of bone (GCTB) of the distal radius has been proposed. However, this is generally associated with various complications. To improve the functional outcomes, we designed a three-dimensional (3D)-printed uncemented endoprosthesis. Meanwhile, using finite-element analysis and clinical observation, an optimization strategy was explored. MATERIALS AND METHODS We retrospectively analyzed patients with Campanacci III or recurrent GCTB of the distal radius who underwent 3D-printed uncemented endoprosthesis reconstruction. Clinically, according to the different palmar tilts of the endoprosthesis, patients were divided into the biological angle (BA) group and the zero-degree (ZD) group. We recorded and evaluated the differences in functional outcomes and complications between the two groups. Biomechanically, four 3D finite-element models (normal and customized endoprostheses with three different implemented palmar tilts) were developed. RESULTS We analyzed 22 patients (12 males and 10 females). The median follow-up period was 60 (range, 19-82) months. Of the 22 patients, 11 patients were included in the BA group and the remaining 11 patients were in the ZD group. Both groups showed no significant differences in the range of motion, Mayo score, and disabilities of the arm, shoulder, and hand scores postoperatively. The subluxation rate was significantly lower in the ZD group than in the BA group. The biomechanical results showed similar stress and displacement distribution patterns in the normal and prosthetic reconstruction models. Additionally, the endoprosthesis with 0° palmar tilt showed better biomechanical performance. CONCLUSION 3D-printed uncemented endoprosthesis provides acceptable midterm outcomes in patients undergoing distal radius reconstruction. Optimizing the design by decreasing the palmar tilt may be beneficial for decreasing the risk of wrist joint subluxation.
Collapse
Affiliation(s)
- Taojun Gong
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Jie Wang
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Yuqi Zhang
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Yitian Wang
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Fan Tang
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Zhuangzhuang Li
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Li Min
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Orthopaedic Research Institute , Sichuan University, Chengdu, People's Republic of China.,Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Collins CJ, Atkins PR, Ohs N, Blauth M, Lippuner K, Müller R. Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation. Sci Rep 2022; 12:17960. [PMID: 36289391 PMCID: PMC9606273 DOI: 10.1038/s41598-022-22678-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures.
Collapse
Affiliation(s)
- Caitlyn J. Collins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.438526.e0000 0001 0694 4940Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA USA
| | - Penny R. Atkins
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland ,grid.223827.e0000 0001 2193 0096Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Nicholas Ohs
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Michael Blauth
- grid.5361.10000 0000 8853 2677Department of Orthopedics and Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria ,Clinical Medical Department DePuy Synthes, Zuchwil, Switzerland
| | - Kurt Lippuner
- grid.5734.50000 0001 0726 5157Department of Osteoporosis, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph Müller
- grid.5801.c0000 0001 2156 2780Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Pramudita JA, Hiroki W, Yoda T, Tanabe Y. Variations in Strain Distribution at Distal Radius under Different Loading Conditions. Life (Basel) 2022; 12:life12050740. [PMID: 35629407 PMCID: PMC9144860 DOI: 10.3390/life12050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Distal radial fractures exhibit various fracture patterns. By assuming that the strain distribution at the distal radius affects the diversification of the fracture pattern, a parameter study using the finite element model of a wrist developed from computed tomography (CT) images was performed under different loading conditions. The finite element model of the wrist consisted of the radius, ulna, scaphoid, lunate, triquetrum, and major carpal ligaments. The material properties of the bone models were assigned on the basis of the Hounsfield Unit (HU) values of the CT images. An impact load was applied to the scaphoid, lunate, and triquetrum to simulate boundary conditions during fall accidents. This study considered nine different loading conditions that combine three different loading directions and three different load distribution ratios. According to the analysis results, the strain distribution at the distal radius changed with respect to the change in the loading condition. High strain concentration occurred in regions where distal radius fractures are commonly developed. The direction and distribution of the load acting on the radius were considered to be factors that may cause variations in the fracture pattern of distal radius fractures.
Collapse
Affiliation(s)
- Jonas A. Pramudita
- College of Engineering, Nihon University, Koriyama 963-8642, Japan
- Correspondence:
| | - Wataru Hiroki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takuya Yoda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan;
| | - Yuji Tanabe
- Management Strategy Section, President Office, Niigata University, Niigata 950-2181, Japan;
| |
Collapse
|
7
|
Cen H, Gong H, Liu H, Jia S, Wu X, Fan Y. A Comparative Study on the Multiscale Mechanical Responses of Human Femoral Neck Between the Young and the Elderly Using Finite Element Method. Front Bioeng Biotechnol 2022; 10:893337. [PMID: 35600894 PMCID: PMC9117745 DOI: 10.3389/fbioe.2022.893337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Femoral neck fracture (FNF) is the most serious bone disease in the elderly population. The multiscale mechanical response is a key to predicting the strength of the femoral neck, assessing the risk of FNF, and exploring the role of mechanosensation and mechanotransmission in bone remodeling, especially in the context of aging bone.Methods: Multiscale finite element (FE) models of the proximal femur for both young and elderly people were developed. The models included organ scale (proximal femur), tissue scale (cortical bone), tissue element scale (osteon), and cell scale [osteocyte lacuna-canalicular network (LCN) and extracellular matrix (ECM), OLCEM]. The mechanical responses of cortical bone and osteocytes in the mid-femoral neck and the differences in mechanical responses between these two scales were investigated.Results: The mechanical responses of cortical bone and osteocyte showed significant differences between the elderly and the young. The minimum principal strains and mean SEDs of cortical bone in the elderly were 2.067–4.708 times and 3.093–14.385 times of the values in the young, respectively; the minimum principal strains and mean SEDs of osteocyte in the elderly were 1.497–3.246 times and 3.044–12 times of the values in the young, respectively; the amplification factors of minimum principal strain in the inferior (Inf), anterior (Ant), and posterior (Post) quadrants in the young were 1.241–1.804 times of the values in the elderly, but the amplification factor of minimum principal strain in the superior (Sup) quadrant was 87.4% of the value in the elderly; the amplification factors of mean SED in the young were 1.124–9.637 times of the values in the elderly.Conclusion: The mass and bone mineral density (BMD) of cortical bone in the femoral neck is closely related to the mechanical response of osteocytes, which provides a new idea for improving cortical bone quality. Perhaps cortical bone quality could be improved by stimulating osteocytes. Quadrantal differences of bone quality in the mid-femoral neck should be considered to improve fracture risk prediction in the future.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: He Gong,
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
8
|
Revel M, Bermond F, Duboeuf F, Mitton D, Follet H. Influence of loading conditions in finite element analysis assessed by HR-pQCT on ex vivo fracture prediction. Bone 2022; 154:116206. [PMID: 34547523 DOI: 10.1016/j.bone.2021.116206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Many fractures occur in individuals with normal areal Bone Mineral Density (aBMD) measured by Dual X-ray Absorptiometry (DXA). High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) allows for non-invasive evaluation of bone stiffness and strength through micro finite element (μFE) analysis at the tibia and radius. These μFE outcomes are strongly associated with fragility fractures but do not provide clear enhancement compared with DXA measurements. The objective of this study was to establish whether a change in loading conditions in standard μFE analysis assessed by HR-pQCT enhance the discrimination of low-trauma fractured radii (n = 11) from non-fractured radii (n = 16) obtained experimentally throughout a mechanical test reproducing a forward fall. Micro finite element models were created using HR-pQCT images, and linear analyses were performed using four different types of loading conditions (axial, non-axial with two orientations and torsion). No significant differences were found between the failure load assessed with the axial and non-axial models. The different loading conditions tested presented the same area under the receiver operating characteristic (ROC) curves of 0.79 when classifying radius fractures with an accuracy of 81.5%. In comparison, the area under the curve (AUC) is 0.77 from DXA-derived ultra-distal aBMD of the forearm with an accuracy of 85.2%. These results suggest that the restricted HR-pQCT scanned region seems not sensitive to loading conditions for the prediction of radius fracture risk based on ex vivo experiments (n = 27).
Collapse
Affiliation(s)
- M Revel
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France; Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Bermond
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Duboeuf
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - D Mitton
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - H Follet
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| |
Collapse
|
9
|
Cen H, Yao Y, Liu H, Jia S, Gong H. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation. Bone 2021; 153:116125. [PMID: 34280582 DOI: 10.1016/j.bone.2021.116125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bone remodeling in the elderly is no longer balanced. As a result, the morphologies and mechanical properties of bone at different scales will change. These changes would affect the mechanical responses of bone, which might exacerbate the imbalance of bone remodeling and even cause age-related bone diseases. METHODS Considering those changes, multiscale finite element (FE) models of bone in the young and the elderly were developed that included macroscale (proximal femur), mesoscale (cortical bone), microscale (Haversian system) and sub-microscale (osteocyte-lacuna-canaliculus-extracellular matrix system, OLCES). The stress and strain distributions at different scales and transmissions among different scales were investigated. RESULTS The stresses of the elderly at macroscale, mesoscale and microscale were higher than those in the young by 23.7%, 62.5% and 8.0%, respectively, and the stresses of the elderly and the young at sub-microscale were almost the same. The strain of the elderly at macroscale, mesoscale, microscale and sub-microscale were higher than those in the young by 48.6%, 56.8%, 11.9% and 25.1%, respectively. The stress and strain transmission rates (ησand ηε) from mesoscale to microscale were decreased by 1.8%, and 2.5% than those from macroscale to mesoscale in the elderly, respectively; but increased by 13.8%, and 4.7% in the young, respectively. ηε from microscale to sub-microscale in the elderly was higher than that in the young by 21.3%. CONCLUSIONS Degeneration of cortical bone mechanical property in the elderly causes increases in stress and strain at macroscale and mesoscale. The reduction of lacunar number in the elderly is not conducive to the mechanical transmission from mesoscale to microscale. The differences in stress and strain at microscale between the young and the elderly are smaller than those at macroscale or mesoscale. The strain stimulus sensed by osteocyte in the elderly is not weakened compared with that in the young.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yan Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
10
|
Hirashima T, Matsuura Y, Suzuki T, Akasaka T, Kanazuka A, Ohtori S. Long-term Evaluation Using Finite Element Analysis of Bone Atrophy Changes after Locking Plate Fixation of Forearm Diaphyseal Fracture. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2021; 3:240-244. [PMID: 35415570 PMCID: PMC8991775 DOI: 10.1016/j.jhsg.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the optimal timing of plate removal in patients with forearm diaphyseal fractures fixed with a locking plate via the analysis of bone atrophy over time. Methods The study subject was a 56-year-old man. Computed tomography was performed at 0.5, 1, 1.5, 2, 3, 4, and 5 years after plate fixation. Finite element analysis was performed to measure the fracture load of the radius and ulna. The fracture loads of the affected and healthy sides were compared, and their ratio was calculated by dividing the value of the affected side by that of the healthy side at each time point. Results The strength of the radius and ulna was 40.9% and 29.3%, respectively, on the healthy side at 1 year after surgery. The fracture load increased from the second to the third postoperative year; the strength of the radius and ulna was 62.2% and 37.3%, respectively, on the healthy side after the third year. However, after the third year, the fracture load declined and reached 38.8% and 18.9% for the radius and ulna, respectively, on the healthy side by the fifth postoperative year. Conclusions The long-term fixation of forearm diaphyseal fractures using a locking plate leads to progressive bone atrophy. Future bone atrophy during long-term locking plate fixation without removal should be monitored. Type of study/level of evidence Therapeutic IV.
Collapse
|
11
|
Yamazaki T, Matsuura Y, Suzuki T, Ohtori S. Evaluation of fixation after plating of distal radius fractures - a validation study. Comput Methods Biomech Biomed Engin 2021; 24:1687-1692. [PMID: 33877011 DOI: 10.1080/10255842.2021.1909576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We used five fresh-frozen cadavers with 10 upper limbs to evaluate by finite element analysis (FEA) the plate fixation of distal radius fractures. The distal radius of the cadavers was fractured using a comminution fracture model. Plate fixation was performed using Synthes VATCP. Compression tests were performed on these specimens and force displacement curves were obtained. FEA was performed using Mechanical Finder. The Keyak, Keller vertebra, Carter, and Matsuyama conversion equations without contact analysis, and the Matsuyama equations with contact analysis, were used for the boundary conditions. We found strong positive correlations with the Matsuyama conversion equations either with or without contact analysis. The validated FEA model will be used for preoperative simulation of actual fractures.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Orthopaedic Surgery, Graduated School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduated School of Medicine, Chiba University, Chiba, Japan
| | - Takane Suzuki
- Department of Orthopaedic Surgery, Graduated School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduated School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Subject-specific multiscale modeling of aortic valve biomechanics. Biomech Model Mechanobiol 2021; 20:1031-1046. [PMID: 33792805 PMCID: PMC8154826 DOI: 10.1007/s10237-021-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022]
Abstract
A Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.36-0.87$$\end{document}0.36-0.87) with a strong correlation with the organ length-scale radial strain (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^{2}= 0.95$$\end{document}R2=0.95); conversely, circumferential cell strains spanned a very narrow range (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.75-0.88$$\end{document}0.75-0.88) showing no correlation with the circumferential strain at the organ level (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^{2}= 0.02$$\end{document}R2=0.02). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.
Collapse
|
13
|
Hosseinitabatabaei S, Kawalilak CE, McDonald MP, Kontulainen SA, Johnston JD. Distal radius sections offer accurate and precise estimates of forearm fracture load. Clin Biomech (Bristol, Avon) 2020; 80:105144. [PMID: 32829235 DOI: 10.1016/j.clinbiomech.2020.105144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Forearm fracture risk can be estimated via factor-of-risk: the ratio of applied impact force to forearm fracture load. Simple techniques are available for estimating impact force associated with a fall; estimating forearm fracture load is more challenging. Our aim was to assess whether failure load estimates of sections of the distal radius (acquired using High-Resolution peripheral Quantitative Computed Tomography and finite element modeling) offer accurate and precise estimates of forearm fracture load. METHODS We scanned a section of the distal radius of 19 cadaveric forearms (female, mean age 83.7, SD 8.3), and 34 women (75.0, 7.7). Sections were converted to finite element models and failure loads were acquired for different failure criteria. We assessed forearm fracture load using experimental testing simulating a fall on the outstretched hand. We used linear regression to derive relationships between ex vivo forearm fracture load and finite element derived distal radius failure load. We used derived regression coefficients to estimate forearm fracture load, and assessed explained variance and prediction error. We used root-mean-squared coefficients of variation to assess in vivo precision errors of estimated forearm fracture load. FINDINGS Failure load estimates of sections of the distal radius, used in conjunction with derived regression coefficients, explained 89-90% of the variance in experimentally-measured forearm fracture load with prediction errors <6.8% and precision errors <5.0%. INTERPRETATION Failure load estimates of distal radius sections can reliably estimate forearm fracture load experienced during a fall. Forearm fracture load estimates can be used to improve factor-of-risk predictions for forearm fracture.
Collapse
Affiliation(s)
- Seyedmahdi Hosseinitabatabaei
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Chantal E Kawalilak
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Matthew P McDonald
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Saija A Kontulainen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK S7N 5B2, Canada
| | - James D Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
14
|
Mancuso ME, Troy KL. Relating Bone Strain to Local Changes in Radius Microstructure Following 12 Months of Axial Forearm Loading in Women. J Biomech Eng 2020; 142:111014. [PMID: 32844217 PMCID: PMC7580663 DOI: 10.1115/1.4048232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Work in animal models suggests that bone structure adapts to local bone strain, but this relationship has not been comprehensively studied in humans. Here, we quantified the influence of strain magnitude and gradient on bone adaptation in the forearm of premenopausal women performing compressive forearm loading (n = 11) and nonloading controls (n = 10). High resolution peripheral quantitative computed tomography (HRpQCT) scans of the distal radius acquired at baseline and 12 months of a randomized controlled experiment were used to identify local sites of bone formation and resorption. Bone strain was estimated using validated finite element (FE) models. Trabecular strain magnitude and gradient were higher near (within 200 μm) formation versus resorption (p < 0.05). Trabecular formation and resorption occurred preferentially near very high (>95th percentile) versus low (<5th percentile) strain magnitude and gradient elements, and very low strain elements were more likely to be near resorption than formation (p < 0.05). In the cortical compartment, strain gradient was higher near formation versus resorption (p < 0.05), and both formation and resorption occurred preferentially near very high versus low strain gradient elements (p < 0.05). At most, 54% of very high and low strain elements were near formation or resorption only, and similar trends were observed in the control and load groups. These findings suggest that strain, likely in combination with other physiological factors, influences adaptation under normal loads and in response to a novel loading intervention, and represents an important step toward defining exercise interventions to maximize bone strength.
Collapse
Affiliation(s)
- Megan E. Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
| | - Karen L. Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
| |
Collapse
|
15
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
16
|
Mustafy T, Londono I, Villemure I. Experimental and finite element analyses of bone strains in the growing rat tibia induced by in vivo axial compression. J Mech Behav Biomed Mater 2019; 94:176-185. [DOI: 10.1016/j.jmbbm.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
|
17
|
Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study. Comput Biol Med 2019; 109:43-52. [DOI: 10.1016/j.compbiomed.2019.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
|
18
|
Singh D, Rana A, Jhajhria SK, Garg B, Pandey PM, Kalyanasundaram D. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads. J Appl Biomater Funct Mater 2018; 17:2280800018793816. [DOI: 10.1177/2280800018793816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dilpreet Singh
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Abhishek Rana
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Saroj Kaler Jhajhria
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Bhavuk Garg
- Department of Orthopaedics, AIIMS, New Delhi, India
| | | | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
- Department of Biomedical Engineering, AIIMS, New Delhi, India
| |
Collapse
|
19
|
Moderate-to-heavy smoking in women is potentially associated with compromised cortical porosity and stiffness at the distal radius. Arch Osteoporos 2018; 13:89. [PMID: 30140970 DOI: 10.1007/s11657-018-0504-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/12/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED Though smokers have poor clinical outcomes after treatment for fractures, the skeletal effects of smoking are still debated. Our results showed that female smokers had 33% higher cortical bone porosity. Smoking targets cortical compartment microstructure and mechanics, and micron-scale variables are essential to better understand the specific effects of smoking. PURPOSE Smokers have poor outcomes in the clinic after treatment for fractures. However, skeletal effects of smoking are still debated. Inconsistencies in published data are likely due to macro-scale variables used to characterize bone differences due to smoking. Therefore, our goal was to characterize distal radius microstructure and macrostructure differences between smokers and non-smokers, and determine the degree to which smoking is associated with compartment-specific mechanical differences resulting from compromised cortical-trabecular microstructure. METHODS Data were acquired from 46 female smokers (35 to 64 years old), and 45 age- and body mass-matched female non-smokers. Distal radius microstructure and mechanical variables were determined from high-resolution peripheral quantitative computed tomography (HR-pQCT) images and multiscale finite element analysis. Distal radius macro-scale variables (bone volume, bone mineral content, volumetric bone mineral density [vBMD]) were determined from low-resolution images. RESULTS Age- and body mass index-adjusted results showed that cortical porosity was 33% higher (p < 0.01), and that cortical vBMD and stiffness were 3% and 8% lower, respectively (p < 0.05), among smokers. We also observed unloading of the cortical compartment in smokers. There were no differences in the macro-scale variables. Average HR-pQCT-derived vBMD was 8% lower (p < 0.05) in smokers corresponding to 5 years of postmenopausal loss. CONCLUSION Skeletal effects of smoking become evident at the micron level through a structurally and mechanically compromised cortical compartment, which partially explains the inconsistent results observed at the macro-level, and the poor clinical outcomes. Smoking may also compound postmenopausal effects on bone potentially placing women having undergone menopause at a greater risk for fracture.
Collapse
|
20
|
Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise Early and Often: Effects of Physical Activity and Exercise on Women's Bone Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E878. [PMID: 29710770 PMCID: PMC5981917 DOI: 10.3390/ijerph15050878] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In 2011 over 1.7 million people were hospitalized because of a fragility fracture, and direct costs associated with osteoporosis treatment exceeded 70 billion dollars in the United States. Failure to reach and maintain optimal peak bone mass during adulthood is a critical factor in determining fragility fracture risk later in life. Physical activity is a widely accessible, low cost, and highly modifiable contributor to bone health. Exercise is especially effective during adolescence, a time period when nearly 50% of peak adult bone mass is gained. Here, we review the evidence linking exercise and physical activity to bone health in women. Bone structure and quality will be discussed, especially in the context of clinical diagnosis of osteoporosis. We review the mechanisms governing bone metabolism in the context of physical activity and exercise. Questions such as, when during life is exercise most effective, and what specific types of exercises improve bone health, are addressed. Finally, we discuss some emerging areas of research on this topic, and summarize areas of need and opportunity.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Megan E Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Tiffiny A Butler
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| | - Joshua E Johnson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01545 USA.
| |
Collapse
|
21
|
Mancuso ME, Johnson JE, Ahmed SS, Butler TA, Troy KL. Distal radius microstructure and finite element bone strain are related to site-specific mechanical loading and areal bone mineral density in premenopausal women. Bone Rep 2018; 8:187-194. [PMID: 29963602 PMCID: PMC6021193 DOI: 10.1016/j.bonr.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
While weight-bearing and resistive exercise modestly increases aBMD, the precise relationship between physical activity and bone microstructure, and strain in humans is not known. Previously, we established a voluntary upper-extremity loading model that assigns a person's target force based on their subject-specific, continuum FE-estimated radius bone strain. Here, our purpose was to quantify the inter-individual variability in radius microstructure and FE-estimated strain explained by site-specific mechanical loading history, and to determine whether variability in strain is captured by aBMD, a clinically relevant measure of bone density and fracture risk. Seventy-two women aged 21–40 were included in this cross-sectional analysis. High resolution peripheral quantitative computed tomography (HRpQCT) was used to measure macro- and micro-structure in the distal radius. Mean energy equivalent strain in the distal radius was calculated from continuum finite element models generated from clinical resolution CT images of the forearm. Areal BMD was used in a nonlinear regression model to predict FE strain. Hierarchical linear regression models were used to assess the predictive capability of intrinsic (age, height) and modifiable (body mass, grip strength, physical activity) predictors. Fifty-one percent of the variability in FE bone strain was explained by its relationship with aBMD, with higher density predicting lower strains. Age and height explained up to 31.6% of the variance in microstructural parameters. Body mass explained 9.1% and 10.0% of the variance in aBMD and bone strain, respectively, with higher body mass indicative of greater density. Overall, results suggest that meaningful differences in bone structure and strain can be predicted by subject characteristics. Areal bone mineral density (aBMD) explains 51% of the variability in bone strain. Adult bone loading predicts greater cortical porosity and trabecular density. Greater body mass predicts greater aBMD and lower bone strain.
Collapse
Affiliation(s)
- Megan E Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Joshua E Johnson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Sabahat S Ahmed
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Tiffiny A Butler
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|
22
|
Johnson JE, Troy KL. Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis. J Biomech 2017; 66:180-185. [PMID: 29137724 DOI: 10.1016/j.jbiomech.2017.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) derived micro-finite element (FE) modeling is used to evaluate mechanical behavior at the distal radius microstructure. However, these analyses typically simulate non-physiologic simplified platen-compression boundary conditions on a small section of the distal radius. Cortical and trabecular regions contribute uniquely to distal radius mechanical behavior, and various factors affect these regions distinctly. Generalized strength predictions from standardized platen-compression analyses may not adequately capture region specific responses in bone. Our goal was to compare load sharing within the cortical-trabecular compartments between the standardized platen-compression BC simulations, and physiologic BC simulations using a validated multiscale approach. Clinical- and high-resolution images were acquired from nine cadaveric forearm specimens using an HR-pQCT scanner. Multiscale FE models simulating physiologic BCs, and micro-FE only models simulating platen-compression BCs were created for each specimen. Cortical and trabecular loads (N) along the length of the distal radius micro-FE section were compared between BCs using correlations. Principal strain distributions were also compared quantitatively. Cortical and trabecular loads from the platen-compression BC simulations were strongly correlated to the physiologic BC simulations. However, a 30% difference in cortical loads distally, and a 53% difference in trabecular loads proximally was observed under platen BC simulations. Also, distribution of principal strains was clearly different. Our data indicated that platen-compression BC simulations alter cortical-trabecular load sharing. Therefore, results from these analyses should be interpreted in the appropriate mechanical context for clinical evaluations of normal and pathologic mechanical behavior at the distal radius.
Collapse
Affiliation(s)
- Joshua E Johnson
- Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Road, Worcester, MA 01609, United States.
| | - Karen L Troy
- Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|