1
|
Ducharme M, Hall L, Eckenroad W, Cingoranelli SJ, Houson HA, Jaskowski L, Hunter C, Larimer BM, Lapi SE. Evaluation of [ 89Zr]Zr-DFO-2Rs15d Nanobody for Imaging of HER2-Positive Breast Cancer. Mol Pharm 2023; 20:4629-4639. [PMID: 37552575 PMCID: PMC11606513 DOI: 10.1021/acs.molpharmaceut.3c00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
One of the most aggressive forms of breast cancer involves the overexpression of human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in ∼25% of all breast cancers and is associated with increased proliferation, increased rates of metastasis, and poor prognosis. Treatment for HER2-positive breast cancer has vastly improved since the development of the monoclonal antibody trastuzumab (Herceptin) as well as other biological constructs. However, patients still commonly develop resistance, illustrating the need for newer therapies. Nanobodies have become an important focus for potential development as HER2-targeting imaging agents and therapeutics. Nanobodies have many favorable characteristics, including high stability in heat and nonphysiological pH, while maintaining their low-nanomolar affinity for their designed targets. Specifically, the 2Rs15d nanobody has been developed for targeting HER2 and has been evaluated as a diagnostic imaging agent for single-photon emission computed tomography (SPECT) and positron emission tomography (PET). While a construct of 2Rs15d with the positron emitter 68Ga is currently in phase I clinical trials, the only PET images acquired in preclinical or clinical research have been within 3 h postinjection. We evaluated our in-house produced 2Rs15d nanobody, conjugated with the chelator deferoxamine (DFO), and radiolabeled with 89Zr for PET imaging up to 72 h postinjection. [89Zr]Zr-DFO-2Rs15d demonstrated high stability in both phosphate-buffered saline (PBS) and human serum. Cell binding studies showed high binding and specificity for HER2, as well as prominent internalization. Our in vivo PET imaging confirmed high-quality visualization of HER2-positive tumors up to 72 h postinjection, whereas HER2-negative tumors were not visualized. Subsequent biodistribution studies quantitatively supported the significant HER2-positive tumor uptake compared to the negative control. Our studies fill an important gap in understanding the imaging and binding properties of the 2Rs15d nanobody at extended time points. As many therapeutic radioisotopes have single or multiday half-lives, this information will directly benefit the potential of the radiotherapy development of 2Rs15d for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Lucinda Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Whitney Eckenroad
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Luke Jaskowski
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Chanelle Hunter
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| |
Collapse
|
2
|
Luna-Gutiérrez M, Cruz-Nova P, Jiménez-Mancilla N, Oros-Pantoja R, Lara-Almazán N, Santos-Cuevas C, Azorín-Vega E, Ocampo-García B, Ferro-Flores G. Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy. Int J Mol Sci 2023; 24:12382. [PMID: 37569758 PMCID: PMC10418980 DOI: 10.3390/ijms241512382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Current cancer therapies focus on reducing immunosuppression and remodeling the tumor microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides (PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i) and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I, which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed. 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3% and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined with immunotherapy to enhance the therapeutic effect in various types of cancer.
Collapse
Affiliation(s)
- Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Pedro Cruz-Nova
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | | | | | - Nancy Lara-Almazán
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Erika Azorín-Vega
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| |
Collapse
|
3
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
4
|
225Ac-rHDL Nanoparticles: A Potential Agent for Targeted Alpha-Particle Therapy of Tumors Overexpressing SR-BI Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072156. [PMID: 35408554 PMCID: PMC9000893 DOI: 10.3390/molecules27072156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.
Collapse
|
5
|
Yıldırım AK, Kökkülünk HT. Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study. Anticancer Agents Med Chem 2021; 22:1348-1353. [PMID: 34431467 DOI: 10.2174/1871520621666210824111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is estimated that more than 1 million people are diagnosed with liver malignancy each year and one of the treatments is radioembolization with Y-90 and Ho-166. <P> Objective: The aim of this study is to calculate the absorbed doses caused by Y-90 and Ho-166 in tumor and liver parenchyma using a phantom via Monte Carlo method. <P> Methods: A liver model phantom including a tumor imitation of sphere (r =1.5cm) was defined in GATE. The total activity of 40 mCi Y-90 and Ho-166 was prescribed into tumor imitation as source and 2x2x2 mm3 voxel-sized DoseActors were identified at 30 locations. The simulation, performed to calculate the absorbed doses left by particles during 1 second for Y-90 and Ho-166, was run for a total of 10 days and 11 days, respectively. Total doses were calculated by taking the doses occurring in 1 second as a reference. <P> Results: The maximum absorbed doses were found to be 2.334E+03±1.576E+01 Gy for Y-90 and 7.006E+02±6.013E-01 Gy for Ho-166 at the center of tumor imitation. The minimum absorbed doses were found to be 2.133E-03±1.883E-01 Gy for Y-90 and 1.152E-02±1.036E-03 Gy for Ho-166 at the farthest location from source. The mean absorbed doses in tumor imitation were found to be 1.50E+03±1.36E+00 Gy and 4.58E+02±4.75E-01 Gy for Y-90 and Ho-166, respectively. And, the mean absorbed doses in normal parenchymal tissue were found to be2.07E+01±9.58E-02 Gy and 3.79E+00±2.63E-02 Gy for Y-90 and Ho-166, respectively. <P> Conclusion: Based on the results, Ho-166 is a good alternative to Y-90 according to dosimetric evaluation.
Collapse
|
6
|
Ahenkorah S, Cassells I, Deroose CM, Cardinaels T, Burgoyne AR, Bormans G, Ooms M, Cleeren F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021; 13:599. [PMID: 33919391 PMCID: PMC8143329 DOI: 10.3390/pharmaceutics13050599] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.
Collapse
Affiliation(s)
- Stephen Ahenkorah
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Irwin Cassells
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Christophe M. Deroose
- Nuclear Medicine Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Thomas Cardinaels
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
- Department of Chemistry, University of Leuven, 3001 Leuven, Belgium
| | - Andrew R. Burgoyne
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| | - Maarten Ooms
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium; (S.A.); (I.C.); (T.C.); (A.R.B.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
7
|
Woen DH, Eiroa-Lledo C, Akin AC, Anderson NH, Bennett KT, Birnbaum ER, Blake AV, Brugh M, Dalodière E, Dorman EF, Ferrier MG, Hamlin DK, Kozimor SA, Li Y, Lilley LM, Mocko V, Thiemann SL, Wilbur DS, White FD. A Solid-State Support for Separating Astatine-211 from Bismuth. Inorg Chem 2020; 59:6137-6146. [PMID: 32302134 DOI: 10.1021/acs.inorgchem.0c00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing access to the short-lived α-emitting radionuclide astatine-211 (211At) has the potential to advance targeted α-therapeutic treatment of disease and to solve challenges facing the medical community. For example, there are numerous technical needs associated with advancing the use of 211At in targeted α-therapy, e.g., improving 211At chelates, developing more effective 211At targeting, and characterizing in vivo 211At behavior. There is an insufficient understanding of astatine chemistry to support these efforts. The chemistry of astatine is one of the least developed of all elements on the periodic table, owing to its limited supply and short half-life. Increasing access to 211At could help address these issues and advance understanding of 211At chemistry in general. We contribute here an extraction chromatographic processing method that simplifies 211At production in terms of purification. It utilizes the commercially available Pre-Filter resin to rapidly (<1.5 h) isolate 211At from irradiated bismuth targets (Bi decontamination factors ≥876 000), in reasonable yield (68-55%) and in a form that is compatible for subsequent in vivo study. We are excited about the potential of this procedure to address 211At supply and processing/purification problems.
Collapse
Affiliation(s)
- David H Woen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Andrew C Akin
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Kevin T Bennett
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eva R Birnbaum
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anastasia V Blake
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark Brugh
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elodie Dalodière
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eric F Dorman
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, United States
| | - Maryline G Ferrier
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, United States
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, United States
| | - Stosh A Kozimor
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, United States
| | - Laura M Lilley
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Veronika Mocko
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sara L Thiemann
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, United States
| | - Frankie D White
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Poret B, Desrues L, Bonin MA, Pedard M, Dubois M, Leduc R, Modzelewski R, Decazes P, Morin F, Vera P, Castel H, Bohn P, Gandolfo P. Development of Novel 111-In-Labelled DOTA Urotensin II Analogues for Targeting the UT Receptor Overexpressed in Solid Tumours. Biomolecules 2020; 10:E471. [PMID: 32204509 PMCID: PMC7175314 DOI: 10.3390/biom10030471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Overexpression of G protein-coupled receptors (GPCRs) in tumours is widely used to develop GPCR-targeting radioligands for solid tumour imaging in the context of diagnosis and even treatment. The human vasoactive neuropeptide urotensin II (hUII), which shares structural analogies with somatostatin, interacts with a single high affinity GPCR named UT. High expression of UT has been reported in several types of human solid tumours from lung, gut, prostate, or breast, suggesting that UT is a valuable novel target to design radiolabelled hUII analogues for cancer diagnosis. In this study, two original urotensinergic analogues were first conjugated to a DOTA chelator via an aminohexanoic acid (Ahx) hydrocarbon linker and then -hUII and DOTA-urantide, complexed to the radioactive metal indium isotope to successfully lead to radiolabelled DOTA-Ahx-hUII and DOTA-Ahx-urantide. The 111In-DOTA-hUII in human plasma revealed that only 30% of the radioligand was degraded after a 3-h period. DOTA-hUII and DOTA-urantide exhibited similar binding affinities as native peptides and relayed calcium mobilization in HEK293 cells expressing recombinant human UT. DOTA-hUII, not DOTA-urantide, was able to promote UT internalization in UT-expressing HEK293 cells, thus indicating that radiolabelled 111In-DOTA-hUII would allow sufficient retention of radioactivity within tumour cells or radiolabelled DOTA-urantide may lead to a persistent binding on UT at the plasma membrane. The potential of these radioligands as candidates to target UT was investigated in adenocarcinoma. We showed that hUII stimulated the migration and proliferation of both human lung A549 and colorectal DLD-1 adenocarcinoma cell lines endogenously expressing UT. In vivo intravenous injection of 111In-DOTA-hUII in C57BL/6 mice revealed modest organ signals, with important retention in kidney. 111In-DOTA-hUII or 111In-DOTA-urantide were also injected in nude mice bearing heterotopic xenografts of lung A549 cells or colorectal DLD-1 cells both expressing UT. The observed significant renal uptake and low tumour/muscle ratio (around 2.5) suggest fast tracer clearance from the organism. Together, DOTA-hUII and DOTA-urantide were successfully radiolabelled with 111Indium, the first one functioning as a UT agonist and the second one as a UT-biased ligand/antagonist. To allow tumour-specific targeting and prolong body distribution in preclinical models bearing some solid tumours, these radiolabelled urotensinergic analogues should be optimized for being used as potential molecular tools for diagnosis imaging or even treatment tools.
Collapse
Affiliation(s)
- Benjamin Poret
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Department of Physiology & Pharmacology, Institute of Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, QC J1H 5N4, Canada; (M.-A.B.); (R.L.)
| | - Laurence Desrues
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Marc-André Bonin
- Department of Physiology & Pharmacology, Institute of Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, QC J1H 5N4, Canada; (M.-A.B.); (R.L.)
| | - Martin Pedard
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Martine Dubois
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Richard Leduc
- Department of Physiology & Pharmacology, Institute of Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, QC J1H 5N4, Canada; (M.-A.B.); (R.L.)
| | - Romain Modzelewski
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Pierre Decazes
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Fabrice Morin
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Pierre Vera
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Hélène Castel
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Pierre Bohn
- EA 4108, Laboratory of Computer Science, Information Processing and Systems (LITIS), team “QuantIF”, Centre Henri Becquerel, 76000 Rouen, France; (R.M.); (P.D.); (P.V.); (P.B.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Pierrick Gandolfo
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, INSERM U1239, DC2N, 76000 Rouen, France; (B.P.); (L.D.); (M.P.); (M.D.); (F.M.); (P.G.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| |
Collapse
|
9
|
Cross section measurements of 151Eu( 3He,5n) reaction: new opportunities for medical alpha emitter 149Tb production. Sci Rep 2020; 10:508. [PMID: 31949230 PMCID: PMC6965643 DOI: 10.1038/s41598-020-57436-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Method for production of alpha emitter 149Tb by irradiation of 151Eu with 70 MeV 3He nuclei is proposed. For the first time, the cross sections for the formation of isotopes 149,150,151,152Tb were measured experimentally using a stack foil technique in the 3He particles energy range 70 → 12 MeV. The thick target yield of 149Tb is 39 MBq/μAh, or 230 MBq/μA 149Tb at saturation. The optimal energy range from the point of view of radioisotopic purity is 70 → 40 MeV. At these conditions about 150 MBq/μA 149Tb can be produced in 8 hours irradiation, which is sufficient for therapeutic applications. The main impurities are 150Tb (~100% in activity) and 151Tb (~30% in activity). The proposed method surpasses its counterparts by the high content of the target isotope in the natural mixture and the simplicity of the radiochemical separation of 149Tb from the bulk target material.
Collapse
|
10
|
Ferrier MG, Radchenko V. An Appendix of Radionuclides Used in Targeted Alpha Therapy. J Med Imaging Radiat Sci 2019; 50:S58-S65. [PMID: 31427258 DOI: 10.1016/j.jmir.2019.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Maryline G Ferrier
- Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, California, USA.
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University HospitalAngers, France
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
| | - François Hindré
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- ICO (Institut de Cancérologie de l'Ouest)Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
- ENSCR (Ecole Nationale Supérieure de Chimie de Rennes)Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - F. F. Russ Knapp
- EmeritusMedical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
12
|
Ferrier MG, Radchenko V, Wilbur DS. Radiochemical aspects of alpha emitting radionuclides for medical application. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The use of α-emitting radionuclides in targeted alpha therapy (TAT) holds great potential for treatment of human diseases, such as cancer, due to the short pathlength and high potency of the α particle, which can localize damage to targeted cells while minimizing effects to healthy surrounding tissues. In this review several potential α-emitting radionuclides having emission properties applicable to TAT are discussed from a radiochemical point of view. Overviews of production, radiochemical separation and chelation aspects relative to developing TAT radiopharmaceuticals are provided for the α-emitting radionuclides (and their generator systems) 211At, 224Ra/212Pb/212Bi, 225Ac/213Bi, 227Th/223Ra, 230U/226Th, 149Tb and 255Fm.
Collapse
Affiliation(s)
- Maryline G. Ferrier
- Department of Radiation Oncology, Radiochemistry Division , University of Washington , Seattle, WA , USA
| | - Valery Radchenko
- Life Sciences Division, TRIUMF , Vancouver, BC , Canada
- Department of Chemistry , University of British Columbia , Vancouver, BC , Canada
| | - D. Scott Wilbur
- Department of Radiation Oncology, Radiochemistry Division , University of Washington , Seattle, WA , USA
| |
Collapse
|
13
|
Effect of 177Lu-iPSMA on viability and DNA damage of human glioma cells subjected to hypoxia-mimetic conditions. Appl Radiat Isot 2019; 146:24-28. [PMID: 30743222 DOI: 10.1016/j.apradiso.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/22/2023]
Abstract
The therapeutic potential of 177Lu-iPSMA on hypoxic cancer cells has not been yet demonstrated. The aim of this work was to evaluate the radiation dose effect of 177Lu-iPSMA on viability and DNA damage in U87MG human glioma cells subjected to hypoxia-mimetic conditions. U87MG cells treated with 177Lu-iPSMA were incubated with CoCl2 in order to induce hypoxia-mimetic conditions. The cytotoxic and genotoxic effect was evaluated with an in vitro viability test and a neutral comet assay. 177Lu-iPSMA decreased the cell viability and induced DNA double strand breaks in U87MG human glioma cells under hypoxia-mimetic conditions. 177Lu-iPSMA produced the maximum effect at 48 h, suggesting that this radiopharmaceutical could be used as a strategy for the treatment of human glioma hypoxic cells.
Collapse
|