1
|
Pittenger LG, Englen MD, Parker CT, Frye JG, Quiñones B, Horn ST, Son I, Fedorka-Cray PJ, Harrison MA. GenotypingCampylobacter jejuniby Comparative Genome Indexing: An Evaluation with Pulsed-Field Gel Electrophoresis andflaASVR Sequencing. Foodborne Pathog Dis 2009; 6:337-49. [DOI: 10.1089/fpd.2008.0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lauren G. Pittenger
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| | - Mark D. Englen
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Sharon T. Horn
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Insook Son
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| | - Paula J. Fedorka-Cray
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia
| | - Mark A. Harrison
- Department of Food Science and Technology, University of Georgia, Athens, Georgia
| |
Collapse
|
2
|
Shneyer VS. On the species-specificity of DNA: Fifty years later. BIOCHEMISTRY (MOSCOW) 2007; 72:1377-84. [DOI: 10.1134/s0006297907120127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007; 8:229. [PMID: 17623098 PMCID: PMC1934918 DOI: 10.1186/1471-2164-8-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.
Collapse
Affiliation(s)
- Karthik P Jayapal
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| | - Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
- Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Frank Glod
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
- Fonds National de la Recherche, 6 rue Antoine de Saint-Exupéry, L-1017 Kirchberg, Luxembourg
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Reduced expression of TAC1, PENK and SOCS2 in Hcrtr-2 mutated narcoleptic dog brain. BMC Neurosci 2007; 8:34. [PMID: 17521418 PMCID: PMC1885801 DOI: 10.1186/1471-2202-8-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/23/2007] [Indexed: 11/18/2022] Open
Abstract
Background Narcolepsy causes dramatic behavioral alterations in both humans and dogs, with excessive sleepiness and cataplexy triggered by emotional stimuli. Deficiencies in the hypocretin system are well established as the origin of the condition; both from studies in humans who lack the hypocretin ligand (HCRT) and in dogs with a mutation in hypocretin receptor 2 (HCRTR2). However, little is known about molecular alterations downstream of the hypocretin signals. Results By using microarray technology we have screened the expression of 29760 genes in the brains of Doberman dogs with a heritable form of narcolepsy (homozygous for the canarc-1 [HCRTR-2-2] mutation), and their unaffected heterozygous siblings. We identified two neuropeptide precursor molecules, Tachykinin precursor 1 (TAC1) and Proenkephalin (PENK), that together with Suppressor of cytokine signaling 2 (SOCS2), showed reduced expression in narcoleptic brains. The difference was particularly pronounced in the amygdala, where mRNA levels of PENK were 6.2 fold lower in narcoleptic dogs than in heterozygous siblings, and TAC1 and SOCS2 showed 4.4 fold and 2.8 fold decrease in expression, respectively. The results obtained from microarray experiments were confirmed by real-time RT-PCR. Interestingly, it was previously shown that a single dose of amphetamine-like stimulants able to increase wakefulness in the dogs, also produce an increase in the expression of both TAC1 and PENK in mice. Conclusion These results suggest that TAC1, PENK and SOCS2 might be intimately connected with the excessive daytime sleepiness not only in dogs, but also in other species, possibly including humans.
Collapse
|
5
|
Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF. Genome dynamics in a natural archaeal population. Proc Natl Acad Sci U S A 2007; 104:1883-8. [PMID: 17267615 PMCID: PMC1794283 DOI: 10.1073/pnas.0604851104] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Indexed: 12/27/2022] Open
Abstract
Evolutionary processes that give rise to, and limit, diversification within strain populations can be deduced from the form and distribution of genomic heterogeneity. The extent of genomic change that distinguishes the acidophilic archaeon Ferroplasma acidarmanus fer1 from an environmental population of the same species from the same site, fer1(env), was determined by comparing the 1.94-megabase (Mb) genome sequence of the isolate with that reconstructed from 8 Mb of environmental sequence data. The fer1(env) composite sequence sampled approximately 92% of the isolate genome. Environmental sequence data were also analyzed to reveal genomic heterogeneity within the coexisting, coevolving fer1(env) population. Analyses revealed that transposase movement and the insertion and loss of blocks of novel genes of probable phage origin occur rapidly enough to give rise to heterogeneity in gene content within the local population. Because the environmental DNA was derived from many closely related individuals, it was possible to quantify gene sequence variability within the population. All but a few gene variants show evidence of strong purifying selection. Based on the small number of distinct sequence types and their distribution, we infer that the population is undergoing frequent genetic recombination, resulting in a mosaic genome pool that is shaped by selection. The larger genetic potential of the population relative to individuals within it and the combinatorial process that results in many closely related genome types may provide the basis for adaptation to environmental fluctuations.
Collapse
Affiliation(s)
| | | | | | | | | | - Jillian F. Banfield
- Departments of *Environmental Science, Policy, and Management and
- Earth and Planetary Science, University of California, Berkeley, CA 94720; and
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598
| |
Collapse
|
6
|
Ramette A, Tiedje JM. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. MICROBIAL ECOLOGY 2007; 53:197-207. [PMID: 17106806 DOI: 10.1007/s00248-005-5010-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 05/25/2005] [Indexed: 05/07/2023]
Abstract
New questions about microbial ecology and diversity combined with significant improvement in the resolving power of molecular tools have helped the reemergence of the field of prokaryotic biogeography. Here, we show that biogeography may constitute a cornerstone approach to study diversity patterns at different taxonomic levels in the prokaryotic world. Fundamental processes leading to the formation of biogeographic patterns are examined in an evolutionary and ecological context. Based on different evolutionary scenarios, biogeographic patterns are thus posited to consist of dramatic range expansion or regression events that would be the results of evolutionary and ecological forces at play at the genotype level. The deterministic or random nature of those underlying processes is, however, questioned in light of recent surveys. Such scenarios led us to predict the existence of particular genes whose presence or polymorphism would be associated with cosmopolitan taxa. Furthermore, several conceptual and methodological pitfalls that could hamper future developments of the field are identified, and future approaches and new lines of investigation are suggested.
Collapse
Affiliation(s)
- Alban Ramette
- Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Sciences Building, East Lansing, MI 48824-1325, USA.
| | | |
Collapse
|
7
|
Porwollik S, McClelland M. Determination of the gene content of Salmonella genomes by microarray analysis. Methods Mol Biol 2007; 394:89-103. [PMID: 18363233 DOI: 10.1007/978-1-59745-512-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microarray technology provides a convenient and relatively inexpensive way of investigating the genetic content of bacterial genomes by comparative genomic hybridization. In this method, genomic DNA of an unknown bacterial strain of interest and that of a closely related sequenced isolate are hybridized to the same array. Hybridization signals are subsequently translated into gene absence and presence predictions for the experimental strain. Our nonredundant microarray of PCR products representing almost all genes from a number of the sequenced Salmonella enterica serovars (including Typhimurium, Typhi, Paratyphi A, and Enteritidis) allows accurate predictions of gene presence and absence in hundreds of Salmonella isolates on whole genome scale, for a fraction of the cost of complete genome sequencing, or resequencing using tiled oligo-arrays.
Collapse
|
8
|
Guidot A, Prior P, Schoenfeld J, Carrère S, Genin S, Boucher C. Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J Bacteriol 2006; 189:377-87. [PMID: 17085551 PMCID: PMC1797399 DOI: 10.1128/jb.00999-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we investigated the gene distribution among strains of the highly polymorphic plant pathogenic beta-proteobacterium Ralstonia solanacearum, paying particular attention to the status of known or candidate pathogenicity genes. Based on the use of comparative genomic hybridization on a pangenomic microarray for the GMI1000 reference strain, we have defined the conditions that allowed comparison of the repertoires of genes among a collection of 18 strains that are representative of the biodiversity of the R. solanacearum species. This identified a list of 2,690 core genes present in all tested strains. As a corollary, a list of 2,338 variable genes within the R. solanacearum species has been defined. The hierarchical clustering based on the distribution of variable genes is fully consistent with the phylotype classification that was previously defined from the nucleotide sequence analysis of four genes. The presence of numerous pathogenicity-related genes in the core genome indicates that R. solanacearum is an ancestral pathogen. The results establish the long coevolution of the two replicons that constitute the bacterial genome. We also demonstrate the clustering of variable genes in genomic islands. Most genomic islands are included in regions with an alternative codon usage, suggesting that they originate from acquisition of foreign genes through lateral gene transfers. Other genomic islands correspond to genes that have the same base composition as core genes, suggesting that they either might be ancestral genes lost by deletion in certain strains or might originate from horizontal gene transfers.
Collapse
Affiliation(s)
- Alice Guidot
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France.
| | | | | | | | | | | |
Collapse
|
9
|
Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J. Microarray applications in microbial ecology research. MICROBIAL ECOLOGY 2006; 52:159-75. [PMID: 16897303 DOI: 10.1007/s00248-006-9072-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/07/2006] [Indexed: 05/11/2023]
Abstract
Microarray technology has the unparalleled potential to simultaneously determine the dynamics and/or activities of most, if not all, of the microbial populations in complex environments such as soils and sediments. Researchers have developed several types of arrays that characterize the microbial populations in these samples based on their phylogenetic relatedness or functional genomic content. Several recent studies have used these microarrays to investigate ecological issues; however, most have only analyzed a limited number of samples with relatively few experiments utilizing the full high-throughput potential of microarray analysis. This is due in part to the unique analytical challenges that these samples present with regard to sensitivity, specificity, quantitation, and data analysis. This review discusses specific applications of microarrays to microbial ecology research along with some of the latest studies addressing the difficulties encountered during analysis of complex microbial communities within environmental samples. With continued development, microarray technology may ultimately achieve its potential for comprehensive, high-throughput characterization of microbial populations in near real time.
Collapse
Affiliation(s)
- T J Gentry
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
10
|
Lindberg J, Björnerfeldt S, Saetre P, Svartberg K, Seehuus B, Bakken M, Vilà C, Jazin E. Selection for tameness has changed brain gene expression in silver foxes. Curr Biol 2005; 15:R915-6. [PMID: 16303546 DOI: 10.1016/j.cub.2005.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Hanage WP, Kaijalainen T, Herva E, Saukkoriipi A, Syrjänen R, Spratt BG. Using multilocus sequence data to define the pneumococcus. J Bacteriol 2005; 187:6223-30. [PMID: 16109964 PMCID: PMC1196147 DOI: 10.1128/jb.187.17.6223-6230.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022] Open
Abstract
We investigated the genetic relationships between serotypeable pneumococci and nonserotypeable presumptive pneumococci using multilocus sequence typing (MLST) and partial sequencing of the pneumolysin gene (ply). Among 121 nonserotypeable presumptive pneumococci from Finland, we identified isolates of three classes: those with sequence types (STs) identical to those of serotypeable pneumococci, suggesting authentic pneumococci in which capsular expression had been downregulated or lost; isolates that clustered among serotypeable pneumococci on a tree based on the concatenated sequences of the MLST loci but which had STs that differed from those of serotypeable pneumococci in the MLST database; and a more diverse collection of isolates that did not cluster with serotypeable pneumococci. The latter isolates typically had sequences at all seven MLST loci that were 5 to 10% divergent from those of authentic pneumococci and also had distinct and divergent ply alleles. These isolates are proposed to be distinct from pneumococci but cannot be resolved from them by optochin susceptibility, bile solubility, or the presence of the ply gene. Complete resolution of pneumococci from the related but distinct population is problematic, as recombination between them was evident, and a few isolates of each population possessed alleles at one or occasionally more MLST loci from the other population. However, a tree based on the concatenated sequences of the MLST loci in most cases unambiguously distinguished whether a nonserotypeable isolate was or was not a pneumococcus, and the sequence of the ply gene fragment was found to be useful to resolve difficult cases.
Collapse
Affiliation(s)
- William P Hanage
- Department of Infectious Disease Epidemiology, St. Mary's Hospital, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Tibayrenc M. A hard lesson for Europeans: the ASEAN CDC. Trends Microbiol 2005; 13:266-8. [PMID: 15936658 DOI: 10.1016/j.tim.2005.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 04/07/2005] [Indexed: 11/21/2022]
Abstract
Despite the growing threat of major pandemics, the European Union is planning no more than a meager surveillance agency staffed with 70 people on the 2007 horizon: the new European Centre for Disease Control. I argue that an effective structure should be much larger and include a strong research activity. Asian countries, inspired by the US CDC, are now taking this concept in hand and creating an ASEAN Center For Disease Control, with sophisticated laboratory facilities to be included. This is a tough lesson for us Europeans, and our avarice in this domain could have tragic consequences in the future.
Collapse
Affiliation(s)
- Michel Tibayrenc
- UMR IRD/CNRS 2724, Génétique et Evolution des Maladies Infectieuses, IRD, BP 64501, 34394 Montpellier Cedex 05, France.
| |
Collapse
|