1
|
Narang G, Hawadak J, Jakhan J, Yadav K, Singh V. Longitudinal population analysis of Plasmodium falciparum apical membrane antigen-1 in Indian field isolates. Acta Trop 2025; 266:107630. [PMID: 40286894 DOI: 10.1016/j.actatropica.2025.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
High genetic diversity is a major impediment to developing a universal malaria vaccine based on Plasmodium falciparum apical membrane antigen-1 (Pfama-1). Vaccine effectiveness against heterologous forms of the antigen requires information about existing genetic diversity of gene in circulation. Genotyping of Pfama-1 was performed on 147 archival samples from 14 different Indian states collected from 1993 to 2021. Genetic diversity and natural selection were assessed to explore the longitudinal variation in Pfama-1 in Indian P. falciparum field isolates. A total of 52 polymorphic sites were observed giving rise to 70 different haplotypes. Two novel amino acid substitutions S498C/G and F505Y, were observed in our samples. Highest genetic polymorphism was observed in Domain I (π = 0.025), while Domain II (π = 0.006) appeared to be most conserved across all states over the time. Non-significant positive Tajima D value (Taj D = 0.945, p > 0.10) was observed indicating that Indian Pfama-1 is under balancing natural selection. Although haplotype network was complex, structure analysis has shown no evidence of distinct genetic pattern state wise or change in Pfama-1 structure in time. Genetic structure of Pfama-1 in Indian field isolates is complex, exhibiting a high degree of genetic polymorphism. Since allele specific immunity is observed in the gene, Domain II which shows relative conservation across all states and between old and recent field isolates could have implications in vaccine design.
Collapse
Affiliation(s)
- Geetika Narang
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joseph Hawadak
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Jahnvi Jakhan
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karmveer Yadav
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Perrotti E, L'Episcopia M, Menegon M, Soares IS, Rosas-Aguirre A, Speybroeck N, LLanos-Cuentas A, Menard D, Ferreira MU, Severini C. Reduced polymorphism of Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2. Parasit Vectors 2023; 16:238. [PMID: 37461081 DOI: 10.1186/s13071-023-05851-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND ETRAMP11.2 (PVX_003565) is a well-characterized protein with antigenic potential. It is considered to be a serological marker for diagnostic tools, and it has been suggested as a potential vaccine candidate. Despite its immunological relevance, the polymorphism of the P. vivax ETRAMP11.2 gene (pvetramp11.2) remains undefined. The genetic variability of an antigen may limit the effectiveness of its application as a serological surveillance tool and in vaccine development and, therefore, the aim of this study was to investigate the genetic diversity of pvetramp11.2 in parasite populations from Amazonian regions and worldwide. We also evaluated amino acid polymorphism on predicted B-cell epitopes. The low variability of the sequence encoding PvETRAMP11.2 protein suggests that it would be a suitable marker in prospective serodiagnostic assays for surveillance strategies or in vaccine design against P. vivax malaria. METHODS The pvetramp11.2 of P. vivax isolates collected from Brazil (n = 68) and Peru (n = 36) were sequenced and analyzed to assess nucleotide polymorphisms, allele distributions, population differentiation, genetic diversity and signature of selection. In addition, sequences (n = 104) of seven populations from different geographical regions were retrieved from the PlasmoDB database and included in the analysis to study the worldwide allele distribution. Potential linear B-cell epitopes and their polymorphisms were also explored. RESULTS The multiple alignments of 208 pvetramp11.2 sequences revealed a low polymorphism and a marked geographical variation in allele diversity. Seven polymorphic sites and 11 alleles were identified. All of the alleles were detected in isolates from the Latin American region and five alleles were detected in isolates from the Southeast Asia/Papua New Guinea (SEA/PNG) region. Three alleles were shared by all Latin American populations (H1, H6 and H7). The H1 allele (reference allele from Salvador-1 strain), which was absent in the SEA/PNG populations, was the most represented allele in populations from Brazil (54%) and was also detected at high frequencies in populations from all other Latin America countries (range: 13.0% to 33.3%). The H2 allele was the major allele in SEA/PNG populations, but was poorly represented in Latin America populations (only in Brazil: 7.3%). Plasmodium vivax populations from Latin America showed a marked inter-population genetic differentiation (fixation index [Fst]) in contrast to SEA/PNG populations. Codon bias measures (effective number of codons [ENC] and Codon bias index [CBI]) indicated preferential use of synonymous codons, suggesting selective pressure at the translation level. Only three amino acid substitutions, located in the C-terminus, were detected. Linear B-cell epitope mapping predicted two epitopes in the Sal-1 PvETRAMP11.2 protein, one of which was fully conserved in all of the parasite populations analyzed. CONCLUSIONS We provide an overview of the allele distribution and genetic differentiation of ETRAMP11.2 antigen in P. vivax populations from different endemic areas of the world. The reduced polymorphism and the high degree of protein conservation supports the application of PvETRAMP11.2 protein as a reliable antigen for application in serological assays or vaccine design. Our findings provide useful information that can be used to inform future study designs.
Collapse
Affiliation(s)
- Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| | | | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro LLanos-Cuentas
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Didier Menard
- Laboratoire de Parasitologie Et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Parasitologie Et Pathologie Tropicale, Université de Strasbourg, Strasbourg, France
- Malaria Genetics and Resistance Unit-INSERM U1201, Institut Pasteur, Paris, France
| | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Azlan UW, Lau YL, Fong MY. Genetic Diversity and Clustering of the Rhoptry Associated Protein-1 of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:393-400. [PMID: 36588415 PMCID: PMC9806503 DOI: 10.3347/kjp.2022.60.6.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Human infection with simian malaria Plasmodium knowlesi is a cause for concern in Southeast Asian countries, especially in Malaysia. A previous study on Peninsular Malaysia P. knowlesi rhoptry associated protein-1 (PkRAP1) gene has discovered the existence of dimorphism. In this study, genetic analysis of PkRAP1 in a larger number of P. knowlesi samples from Malaysian Borneo was conducted. The PkRAP1 of these P. knowlesi isolates was PCR-amplified and sequenced. The newly obtained PkRAP1 gene sequences (n = 34) were combined with those from the previous study (n = 26) and analysed for polymorphism and natural selection. Sequence analysis revealed a higher genetic diversity of PkRAP1 compared to the previous study. Exon II of the gene had higher diversity (π = 0.0172) than exon I (π = 0.0128). The diversity of the total coding region (π = 0.0167) was much higher than those of RAP1 orthologues such as PfRAP-1 (π = 0.0041) and PvRAP1 (π = 0.00088). Z-test results indicated that the gene was under purifying selection. Phylogenetic tree and haplotype network showed distinct clustering of Peninsular Malaysia and Malaysian Borneo PkRAP1 haplotypes. This geographical-based clustering of PkRAP1 haplotypes provides further evidence of the dimorphism of the gene and possible existence of 2 distinct P. knowlesi lineages in Malaysia.
Collapse
|
4
|
Lee WC, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, Shahari S, Lau YL. Plasmodium knowlesi: the game changer for malaria eradication. Malar J 2022; 21:140. [PMID: 35505339 PMCID: PMC9066973 DOI: 10.1186/s12936-022-04131-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite that has gained increasing medical interest over the past two decades. This zoonotic parasitic infection is prevalent in Southeast Asia and causes many cases with fulminant pathology. Despite several biogeographical restrictions that limit its distribution, knowlesi malaria cases have been reported in different parts of the world due to travelling and tourism activities. Here, breakthroughs and key information generated from recent (over the past five years, but not limited to) studies conducted on P. knowlesi were reviewed, and the knowledge gap in various research aspects that need to be filled was discussed. Besides, challenges and strategies required to control and eradicate human malaria with this emerging and potentially fatal zoonosis were described.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amirah Amir
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jia Hui Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Awad H, Gadalla AAH, Postigo M, Al-Hamidhi S, Tageldin MH, Skariah S, Sultan AA, Johnson EH, Shiels B, Pain A, Thompson J, Babiker HA. Dynamics and within-host interaction of Theileria lestoquardi and T. ovis among naive sheep in Oman. Sci Rep 2020; 10:19802. [PMID: 33188233 PMCID: PMC7666211 DOI: 10.1038/s41598-020-76844-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mixed species infections of Theileria spp. are common in nature. Experimental and epidemiological data suggest that mixed species infections elicit cross-immunity that can modulate pathogenicity and disease burden at the population level. The present study examined within-host interactions, over a period of 13 months during natural infections with two Theileria spp., pathogenic (T. lestoquardi) and non-pathogenic (T. ovis), amongst a cohort of naive sheep in Oman. In the first two months after exposure to infection, a high rate of mortality was seen among sheep infected with T. lestoquardi alone. However, subsequently mixed-infections of T. lestoquardi and T. ovis prevailed, and no further death occurred. The overall densities of both parasite species were significantly higher as single infection vs mixed infection and the higher relative density of pathogenic T. lestoquardi indicated a competitive advantage over T. ovis in mixed infection. The density of both species fluctuated significantly over time, with no difference in density between the very hot (May to August) and warm season (September to April). A high degree of genotype multiplicity was seen among T. lestoquardi infections, which increased with rising parasite density. Our results illustrate a potential competitive interaction between the two ovine Theileria spp., and a substantial reduction in the risk of mortality in mixed parasite infections, indicating that T. ovis confers heterologous protection against lethal T. lestoquardi infection.
Collapse
Affiliation(s)
- Hoyam Awad
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, AlKhoud 123, Muscat, Oman
| | - Amal A H Gadalla
- Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Milagros Postigo
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, AlKhoud 123, Muscat, Oman
| | - Salama Al-Hamidhi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mohammed H Tageldin
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation, Doha, Qatar
| | - Eugene H Johnson
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Brian Shiels
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Arnab Pain
- Biological and Environmental Science and Engineering Diversion, King Abdullah, University for Science and Technology, Thuwal, Saudi Arabia.,GI-CoRE, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hamza A Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, AlKhoud 123, Muscat, Oman.
| |
Collapse
|
6
|
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen ( pvrbsa). Front Genet 2018; 9:372. [PMID: 30250483 PMCID: PMC6139305 DOI: 10.3389/fgene.2018.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
The RBSA protein is encoded by a gene described in Plasmodium species having tropism for reticulocytes. Since this protein is antigenic in natural infections and can bind to target cells, it has been proposed as a potential candidate for an anti-Plasmodium vivax vaccine. However, genetic diversity (a challenge which must be overcome for ensuring fully effective vaccine design) has not been described at this locus. Likewise, the minimum regions mediating specific parasite-host interaction have not been determined. This is why the rbsa gene’s evolutionary history is being here described, as well as the P. vivax rbsa (pvrbsa) genetic diversity and the specific regions mediating parasite adhesion to reticulocytes. Unlike what has previously been reported, rbsa was also present in several parasite species belonging to the monkey-malaria clade; paralogs were also found in Plasmodium parasites invading reticulocytes. The pvrbsa locus had less diversity than other merozoite surface proteins where natural selection and recombination were the main evolutionary forces involved in causing the observed polymorphism. The N-terminal end (PvRBSA-A) was conserved and under functional constraint; consequently, it was expressed as recombinant protein for binding assays. This protein fragment bound to reticulocytes whilst the C-terminus, included in recombinant PvRBSA-B (which was not under functional constraint), did not. Interestingly, two PvRBSA-A-derived peptides were able to inhibit protein binding to reticulocytes. Specific conserved and functionally important peptides within PvRBSA-A could thus be considered when designing a fully-effective vaccine against P. vivax.
Collapse
Affiliation(s)
- Paola Andrea Camargo-Ayala
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | | | - Oscar Noya
- Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Manuel A Patarroyo
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
7
|
Chua CY, Lee PC, Lau TY. Analysis of polymorphisms and selective pressures on ama1 gene in Plasmodium knowlesi isolates from Sabah, Malaysia. J Genet 2017; 96:653-663. [PMID: 28947714 DOI: 10.1007/s12041-017-0817-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 10/18/2022]
Abstract
The apical membrane antigen-1 (AMA-1) of Plasmodium spp. is a merozoite surface antigen that is essential for the recognition and invasion of erythrocytes. Polymorphisms occurring in this surface antigen will cause major obstacles in developing effective malaria vaccines based on AMA-1. The objective of this study was to characterize ama1 gene in Plasmodium knowlesi isolates from Sabah. DNA was extracted from blood samples collected from Keningau, Kota Kinabalu and Kudat. The Pkama1 gene was amplified using nested PCR and subjected to bidirectional sequencing. Analysis of DNA sequence revealed that most of the nucleotide polymorphisms were synonymous and concentrated in domain I of PkAMA-1. Forteen haplotypes were identified based on amino acid variations and haplotype K5 was the most common haplotype. dN/dS ratios implied that purifying selection was prevalent in Pkama1 gene. Fu and Li's D and F values further provided evidence of negative selection acting on domain II of Pkama1. Lownucleotide diversitywas also detected for the Pkama1 sequences,which is similar to reports on Pkama1 from Peninsular Malaysia and Sarawak. The presence of purifying selection and low nucleotide diversity indicated that domain II of Pkama1 can be used as a target for vaccine development.
Collapse
Affiliation(s)
- Chuen Yang Chua
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
| | | | | |
Collapse
|
8
|
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, Chung YT, Sthitmatee N. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 54:447-454. [PMID: 28807856 DOI: 10.1016/j.meegid.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46-99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.
Collapse
Affiliation(s)
| | | | - Pacharathon Simking
- Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | | | | | | | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
9
|
Buitrago SP, Garzón-Ospina D, Patarroyo MA. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J 2016; 15:501. [PMID: 27756311 PMCID: PMC5069803 DOI: 10.1186/s12936-016-1563-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background Designing a vaccine against Plasmodium vivax has focused on selecting antigens involved in invasion mechanisms that must have domains with low polymorphism for avoiding allele-specific immune responses. The rhoptry neck protein 4 (RON4) forms part of the tight junction, which is essential in the invasion of hepatocytes and/or erythrocytes; however, little is known about this locus’ genetic diversity. Methods DNA sequences from 73 Colombian clinical isolates from pvron4 gene were analysed for characterizing their genetic diversity; pvron4 haplotype number and distribution, as well as the evolutionary forces determining diversity pattern, were assessed by population genetics and molecular evolutionary approaches. Results ron4 has low genetic diversity in P. vivax at sequence level; however, a variable amount of tandem repeats at the N-terminal region leads to extensive size polymorphism. This region seems to be exposed to the immune system. The central region has a putative esterase/lipase domain which, like the protein’s C-terminal fragment, is highly conserved at intra- and inter-species level. Both regions are under purifying selection. Conclusions pvron4 is the locus having the lowest genetic diversity described to date for P. vivax. The repeat regions in the N-terminal region could be associated with immune evasion mechanisms while the central region and the C-terminal region seem to be under functional or structural constraint. Bearing such results in mind, the PvRON4 central and/or C-terminal portions represent promising candidates when designing a subunit-based vaccine as they are aimed at avoiding an allele-specific immune response, which might limit vaccine efficacy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1563-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sindy P Buitrago
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,Microbiology Postgraduate Program, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.
| |
Collapse
|
10
|
Chaurio RA, Pacheco MA, Cornejo OE, Durrego E, Stanley CE, Castillo AI, Herrera S, Escalante AA. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Negl Trop Dis 2016; 10:e0004786. [PMID: 27347876 PMCID: PMC4922550 DOI: 10.1371/journal.pntd.0004786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/28/2016] [Indexed: 11/23/2022] Open
Abstract
Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. Plasmodium vivax is the most prevalent human malarial parasite outside Africa. The fact that patients can relapse due to the parasite dormant liver stages, among other biologic and epidemiologic characteristics of vivax malaria, facilitates the persistence of the disease in many endemic areas. These challenges have fueled the search for new control tools, including transmission blocking (TB) vaccines targeting the parasite sexual stages. Here we study the genetic diversity of two major TB vaccine antigens, Pvs25 and Pvs28. We show that these genes are relatively conserved worldwide but still harbor diversity that is not evenly distributed across the genes. These patterns are shared by the same proteins in closely related parasite species suggesting their functional importance. We also identify strong geographic differentiation between the circulating variants found in Asia and the Americas. Finally, evolutionary genetic analyses indicate that the observed variation in both genes could be maintained by natural selection. Thus, these polymorphisms may confer an adaptive advantage to the parasite. These results indicate that the genetic variation found in these genes and their geographic distribution should be considered by vaccine developers.
Collapse
Affiliation(s)
- Ricardo A Chaurio
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ester Durrego
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Craig E Stanley
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Andreína I Castillo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Rawa MSA, Fong MY, Lau YL. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia. Malar J 2016; 15:62. [PMID: 26847346 PMCID: PMC4743133 DOI: 10.1186/s12936-016-1127-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. METHODS Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. RESULTS Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. CONCLUSIONS The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated purifying (negative) selection of the gene. The separation of PkRAP-1haplotypes into two groups provides further evidence to the postulation of two distinct P. knowlesi types or lineages.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mun-Yik Fong
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee-Ling Lau
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Fong MY, Wong SS, Silva JRD, Lau YL. Genetic polymorphism in domain I of the apical membrane antigen-1 among Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Acta Trop 2015; 152:145-150. [PMID: 26384455 DOI: 10.1016/j.actatropica.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 01/23/2023]
Abstract
The simian malaria parasite Plasmodium knowlesi is now recognized as a species that can cause human malaria. The first report of large scale human knowlesi malaria was in 2004 in Malaysia Borneo. Since then, hundreds of human knowlesi malaria cases have been reported in Southeast Asia. The present study investigates the genetic polymorphism of P. knowlesi DI domain of the apical membrane antigen-1 (AMA-1), a protein considered as a promising vaccine candidate for malaria. The DI domain of AMA-1 gene of P. knowlesi clinical isolates from Peninsular Malaysia was amplified by PCR, cloned into Escherichia coli, then sequenced and analysed. Ninety-seven DI domain sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 21 synonymous and 25 nonsynonymous mutations. Nonetheless, nucleotide sequence analysis revealed low genetic diversity of the DI domain, and it was under purifying (negative) selection. At the amino acid level, 26 different haplotypes were identified and 2 were predominant haplotypes (H1, H2) with high frequencies. Phylogenetic analysis revealed that the 26 haplotypes could be clustered into 2 distinct groups (I and II). Members of the groups were basically derived from haplotypes H1 and H2, respectively.
Collapse
Affiliation(s)
- Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Shen Siang Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jeremy Ryan De Silva
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
14
|
Faber BW, Abdul Kadir K, Rodriguez-Garcia R, Remarque EJ, Saul FA, Vulliez-Le Normand B, Bentley GA, Kocken CHM, Singh B. Low levels of polymorphisms and no evidence for diversifying selection on the Plasmodium knowlesi Apical Membrane Antigen 1 gene. PLoS One 2015; 10:e0124400. [PMID: 25881166 PMCID: PMC4400157 DOI: 10.1371/journal.pone.0124400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.
Collapse
Affiliation(s)
- Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail: (BWF); (BS)
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | | | - Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Frederick A. Saul
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Brigitte Vulliez-Le Normand
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
- * E-mail: (BWF); (BS)
| |
Collapse
|
15
|
Muehlenbein MP, Pacheco MA, Taylor JE, Prall SP, Ambu L, Nathan S, Alsisto S, Ramirez D, Escalante AA. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol 2015; 32:422-39. [PMID: 25389206 PMCID: PMC4298170 DOI: 10.1093/molbev/msu310] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although parasitic organisms are found worldwide, the relative importance of host specificity and geographic isolation for parasite speciation has been explored in only a few systems. Here, we study Plasmodium parasites known to infect Asian nonhuman primates, a monophyletic group that includes the lineage leading to the human parasite Plasmodium vivax and several species used as laboratory models in malaria research. We analyze the available data together with new samples from three sympatric primate species from Borneo: The Bornean orangutan and the long-tailed and the pig-tailed macaques. We find several species of malaria parasites, including three putatively new species in this biodiversity hotspot. Among those newly discovered lineages, we report two sympatric parasites in orangutans. We find no differences in the sets of malaria species infecting each macaque species indicating that these species show no host specificity. Finally, phylogenetic analysis of these data suggests that the malaria parasites infecting Southeast Asian macaques and their relatives are speciating three to four times more rapidly than those with other mammalian hosts such as lemurs and African apes. We estimate that these events took place in approximately a 3-4-Ma period. Based on the genetic and phenotypic diversity of the macaque malarias, we hypothesize that the diversification of this group of parasites has been facilitated by the diversity, geographic distributions, and demographic histories of their primate hosts.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe
| | - Jesse E Taylor
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe
| | - Sean P Prall
- Department of Anthropology, Indiana University, Bloomington
| | | | | | - Sylvia Alsisto
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Diana Ramirez
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Ananias A Escalante
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
16
|
Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J 2014; 13:495. [PMID: 25496322 PMCID: PMC4300842 DOI: 10.1186/1475-2875-13-495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Background The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. Methods DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, −7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. Results The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. Conclusions The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3′-end of these genes encode MSP-7 proteins’ functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-495) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Lauron EJ, Oakgrove KS, Tell LA, Biskar K, Roy SW, Sehgal RNM. Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malar J 2014; 13:382. [PMID: 25261185 PMCID: PMC4182871 DOI: 10.1186/1475-2875-13-382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium erythrocyte invasion genes play a key role in malaria parasite transmission, host-specificity and immuno-evasion. However, the evolution of the genes responsible remains understudied. Investigating these genes in avian malaria parasites, where diversity is particularly high, offers new insights into the processes that confer malaria pathogenesis. These parasites can pose a significant threat to birds and since birds play crucial ecological roles they serve as important models for disease dynamics. Comprehensive knowledge of the genetic factors involved in avian malaria parasite invasion is lacking and has been hampered by difficulties in obtaining nuclear data from avian malaria parasites. Thus the first Illumina-based de novo transcriptome sequencing and analysis of the chicken parasite Plasmodium gallinaceum was performed to assess the evolution of essential Plasmodium genes. Methods White leghorn chickens were inoculated intravenously with erythrocytes containing P. gallinaceum. cDNA libraries were prepared from RNA extracts collected from infected chick blood and sequencing was run on the HiSeq2000 platform. Orthologues identified by transcriptome sequencing were characterized using phylogenetic, ab initio protein modelling and comparative and population-based methods. Results Analysis of the transcriptome identified several orthologues required for intra-erythrocytic survival and erythrocyte invasion, including the rhoptry neck protein 2 (RON2) and the apical membrane antigen-1 (AMA-1). Ama-1 of avian malaria parasites exhibits high levels of genetic diversity and evolves under positive diversifying selection, ostensibly due to protective host immune responses. Conclusion Erythrocyte invasion by Plasmodium parasites require AMA-1 and RON2 interactions. AMA-1 and RON2 of P. gallinaceum are evolutionarily and structurally conserved, suggesting that these proteins may play essential roles for avian malaria parasites to invade host erythrocytes. In addition, host-driven selection presumably results in the high levels of genetic variation found in ama-1 of avian Plasmodium species. These findings have implications for investigating avian malaria epidemiology and population dynamics. Moreover, this work highlights the P. gallinaceum transcriptome as an important public resource for investigating the diversity and evolution of essential Plasmodium genes. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-382) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elvin J Lauron
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | | | | | | | |
Collapse
|
18
|
The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol 2014; 78:172-84. [PMID: 24862221 DOI: 10.1016/j.ympev.2014.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
Abstract
The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as "decoys", via antigenic diversity, during the critical process of invading the host red blood cells.
Collapse
|
19
|
Genetic diversity, haplotypes and allele groups of Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit Vectors 2014; 7:161. [PMID: 24693997 PMCID: PMC4022242 DOI: 10.1186/1756-3305-7-161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background The monkey malaria parasite Plasmodium knowlesi is now recognized as the fifth species of Plasmodium that can cause human malaria. Like the region II of the Duffy binding protein of P. vivax (PvDBPII), the region II of the P. knowlesi Duffy binding protein (PkDBPαII) plays an essential role in the parasite’s invasion into the host’s erythrocyte. Numerous polymorphism studies have been carried out on PvDBPII, but none has been reported on PkDBPαII. In this study, the genetic diversity, haplotyes and allele groups of PkDBPαII of P. knowlesi clinical isolates from Peninsular Malaysia were investigated. Methods Blood samples from 20 knowlesi malaria patients and 2 wild monkeys (Macaca fascicularis) were used. These samples were collected between 2010 and 2012. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and haplotypes of PkDBPαII were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Results Fifty-three PkDBPαII sequences from human infections and 6 from monkeys were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence showed 52 synonymous and 76 nonsynonymous mutations. Analysis on the rate of these mutations indicated that PkDBPαII was under purifying (negative) selection. At the amino acid level, 36 different PkDBPαII haplotypes were identified. Twelve of the 20 human and 1 monkey blood samples had mixed haplotype infections. These haplotypes were clustered into 2 distinct allele groups. The majority of the haplotypes clustered into the large dominant group. Conclusions Our present study is the first to report the genetic diversity and natural selection of PkDBPαII. Hence, the haplotypes described in this report can be considered as novel. Although a high level of genetic diversity was observed, the PkDBPαII appeared to be under purifying selection. The distribution of the haplotypes was skewed, with one dominant major and one minor group. Future study should investigate PkDBPαII of P. knowlesi from Borneo, which hitherto has recorded the highest number of human knowlesi malaria.
Collapse
|
20
|
Forero-Rodríguez J, Garzón-Ospina D, Patarroyo MA. Low genetic diversity and functional constraint in loci encoding Plasmodium vivax P12 and P38 proteins in the Colombian population. Malar J 2014; 13:58. [PMID: 24533461 PMCID: PMC3930544 DOI: 10.1186/1475-2875-13-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/13/2014] [Indexed: 11/11/2022] Open
Abstract
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved. Conclusions Due to the role that malaria parasite P12 and P38 proteins seem to play during invasion in Plasmodium species, added to the Pv12 and Pv38 antigenic characteristics and the low genetic diversity observed, these proteins might be good candidates to be evaluated in the design of a multistage/multi-antigen vaccine.
Collapse
Affiliation(s)
| | | | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, DC, Colombia.
| |
Collapse
|
21
|
Chenet SM, Pacheco MA, Bacon DJ, Collins WE, Barnwell JW, Escalante AA. The evolution and diversity of a low complexity vaccine candidate, merozoite surface protein 9 (MSP-9), in Plasmodium vivax and closely related species. INFECTION GENETICS AND EVOLUTION 2013; 20:239-48. [PMID: 24044894 DOI: 10.1016/j.meegid.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The merozoite surface protein-9 (MSP-9) has been considered a target for an anti-malarial vaccine since it is one of many proteins involved in the erythrocyte invasion, a critical step in the parasite life cycle. Orthologs encoding this antigen have been found in all known species of Plasmodium parasitic to primates. In order to characterize and investigate the extent and maintenance of MSP-9 genetic diversity, we analyzed DNA sequences of the following malaria parasite species: Plasmodium falciparum, Plasmodium reichenowi, Plasmodium chabaudi, Plasmodium yoelii, Plasmodium berghei, Plasmodium coatneyi, Plasmodium gonderi, Plasmodium knowlesi, Plasmodium inui, Plasmodium simiovale, Plasmodium fieldi, Plasmodium cynomolgi and Plasmodium vivax and evaluated the signature of natural selection in all MSP-9 orthologs. Our findings suggest that the gene encoding MSP-9 is under purifying selection in P. vivax and closely related species. We further explored how selection affected different regions of MSP-9 by comparing the polymorphisms in P. vivax and P. falciparum, and found contrasting patterns between these two species that suggest differences in functional constraints. This observation implies that the MSP-9 orthologs in human parasites may interact differently with the host immune response. Thus, studies carried out in one species cannot be directly translated into the other.
Collapse
Affiliation(s)
- Stella M Chenet
- Arizona State University, School of Life Sciences, Tempe, AZ, USA; Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, Escalante AA. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2012; 12:978-86. [PMID: 22414917 DOI: 10.1016/j.meegid.2012.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 01/08/2023]
Abstract
Evidence for natural selection, positive or negative, on gene encoding antigens may indicate variation or functional constraints that are immunologically relevant. Most malaria surface antigens with high genetic diversity have been reported to be under positive-diversifying selection. However, antigens with limited genetic variation are usually ignored in terms of the role that natural selection may have in generating such patterns. We investigated orthologous genes encoding two merozoite proteins, MSP8 and MSP10, among several mammalian Plasmodium spp. These antigens, together with MSP1, are among the few MSPs that have two epidermal growth factor-like domains (EGF) at the C-terminal. Those EGF are relatively conserved (low levels of genetic polymorphism) and have been proposed to act as ligands during the invasion of RBCs. We use several evolutionary genetic methods to detect patterns consistent with natural selection acting on MSP8 and MSP10 orthologs in the human parasites Plasmodium falciparum and P. vivax, as well as closely related malarial species found in non-human primates (NHPs). Overall, these antigens have low polymorphism in the human parasites in comparison with the orthologs from other Plasmodium spp. We found that the MSP10 gene polymorphism in P. falciparum only harbor non-synonymous substitutions, a pattern consistent with a gene under positive selection. Evidence of purifying selection was found on the polymorphism observed in both orthologs from P. cynomolgi, a non-human primate parasite closely related to P. vivax, but it was not conclusive in the human parasite. Yet, using phylogenetic base approaches, we found evidence for purifying selection on both MSP8 and MSP10 in the lineage leading to P. vivax. Such antigens evolving under strong functional constraints could become valuable vaccine candidates. We discuss how comparative approaches could allow detecting patterns consistent with negative selection even when there is low polymorphism in the extant populations.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | | | | | | | | | | | | |
Collapse
|