1
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Whittle M, Bonsall MB, Barreaux AMG, Ponton F, English S. A theoretical model for host-controlled regulation of symbiont density. J Evol Biol 2023; 36:1731-1744. [PMID: 37955420 PMCID: PMC7617405 DOI: 10.1111/jeb.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
There is growing empirical evidence that animal hosts actively control the density of their mutualistic symbionts according to their requirements. Such active regulation can be facilitated by compartmentalization of symbionts within host tissues, which confers a high degree of control of the symbiosis to the host. Here, we build a general theoretical framework to predict the underlying ecological drivers and evolutionary consequences of host-controlled endosymbiont density regulation for a mutually obligate association between a host and a compartmentalized, vertically transmitted symbiont. Building on the assumption that the costs and benefits of hosting a symbiont population increase with symbiont density, we use state-dependent dynamic programming to determine an optimal strategy for the host, i.e., that which maximizes host fitness, when regulating the density of symbionts. Simulations of active host-controlled regulation governed by the optimal strategy predict that the density of the symbiont should converge to a constant level during host development, and following perturbation. However, a similar trend also emerges from alternative strategies of symbiont regulation. The strategy which maximizes host fitness also promotes symbiont fitness compared to alternative strategies, suggesting that active host-controlled regulation of symbiont density could be adaptive for the symbiont as well as the host. Adaptation of the framework allowed the dynamics of symbiont density to be predicted for other host-symbiont ecologies, such as for non-essential symbionts, demonstrating the versatility of this modelling approach.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Michael B. Bonsall
- Department of Biology, University of Oxford, Oxford, UK
- St Peter’s College, Oxford, UK
| | | | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
4
|
Dieng MM, Dera KSM, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, Mulandane FC, Neves L, Mdluli S, Rayaisse JB, Belem AMG, Pagabeleguem S, de Beer CJ, Parker AG, Van Den Abbeele J, Mach RL, Vreysen MJB, Abd-Alla AMM. Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication. Sci Rep 2022; 12:3322. [PMID: 35228552 PMCID: PMC8885713 DOI: 10.1038/s41598-022-06699-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.
Collapse
Affiliation(s)
- Mouhamadou M Dieng
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Percy Moyaba
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Gisele M S Ouedraogo
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Guler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fernando C Mulandane
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique
| | - Luis Neves
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Sihle Mdluli
- Epidemiology Unit, Department of Veterinary Services, PO Box 4192, Manzini, Eswatini
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | | | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso.,University of Dedougou, B.P. 176, Dédougou 01, Burkina Faso
| | - Chantel J de Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | | | | | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.
| |
Collapse
|
5
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
7
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
8
|
Demirbas-Uzel G, De Vooght L, Parker AG, Vreysen MJB, Mach RL, Van Den Abbeele J, Abd-Alla AMM. Combining paratransgenesis with SIT: impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol 2018; 18:160. [PMID: 30470179 PMCID: PMC6251162 DOI: 10.1186/s12866-018-1283-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males. Results Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies. Conclusion Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach – using modified Sodalis to produce males refractory to trypanosome infection – with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1283-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
9
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Bossard G, Bartoli M, Fardeau ML, Holzmuller P, Ollivier B, Geiger A. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria. Gut Microbes 2017; 8:413-427. [PMID: 28586253 PMCID: PMC5628649 DOI: 10.1080/19490976.2017.1331833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.
Collapse
Affiliation(s)
- Géraldine Bossard
- CIRAD, UMR INTERTRYP, Montpellier, France,CONTACT Géraldine Bossard Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Campus international de Baillarguet TA-A/17G 34398 Montpellier, France
| | | | | | - Philippe Holzmuller
- CIRAD, UMR CMAEE (control des maladies animales exotiques et émergentes), Montpellier, France
| | | | | |
Collapse
|
11
|
Geiger A, Tchicaya B, Rihet P. Technical data of the transcriptomic analysis performed on tsetse fly symbionts, Sodalis glossinidius and Wigglesworthia glossinidia, harbored, respectively by non-infected, Trypanosoma brucei gambiense infected and self-cured Glossina palpalis gambiensis tsetse flies. GENOMICS DATA 2015; 4:133-6. [PMID: 26484198 PMCID: PMC4535939 DOI: 10.1016/j.gdata.2015.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/03/2022]
Abstract
Microarray is a powerful and cheap method to identify and quantify gene expression in particular in a mix of total RNA extracted from biological samples such as the tsetse fly gut, including several organisms (here, the fly tissue and the intestinal microorganisms). Besides, biostatistics and bioinformatics allow comparing the transcriptomes from samples collected from differently treated flies, and thus to identify and quantify differential expressed genes. Here, we describe in details a whole microarray transcriptome dataset produced from tsetse flies symbionts, Sodalis glossinidius and Wigglesworthia glossinidia. The tsetse fly midguts were sampled at key steps of tsetse fly infection by trypanosomes, 3-day and 10-day sampling times to target differentially expressed genes involved, respectively, in early events associated with trypanosome entry into the midgut and with the establishment of infection; 20 days to target the genes involved in events occurring later in the infection process. We describe in detail the methodology applied for analyzing the microarray data including differential expression as well as functional annotation of the identified symbiont genes. Both the microarray data and design are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48360;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48361;http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55931.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Bernadette Tchicaya
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Pascal Rihet
- UMR1090 TAGC, INSERM, Marseille F-13288, France ; Aix-Marseille University, Marseille F-13288, France
| |
Collapse
|
12
|
Dennis JW, Durkin SM, Horsley Downie JE, Hamill LC, Anderson NE, MacLeod ET. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasit Vectors 2014; 7:378. [PMID: 25138709 PMCID: PMC4153904 DOI: 10.1186/1756-3305-7-378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies are the biological vectors of African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. The tsetse endosymbiont Sodalis glossinidius has been suggested to play a role in tsetse susceptibility to infection. Here we investigate the prevalence of African trypanosomes within tsetse from the Luambe National Park, Zambia and if there is an association between S. glossinidius and presence of trypanosomes within the tsetse examined. METHODS Tsetse representing three species (Glossina brevipalpis, Glossina morsitans morsitans and Glossina pallidipes), were sampled from Luambe National Park, Zambia. Following DNA extraction, PCR was used to examine the tsetse for presence of trypanosomes and the secondary endosymbiont S. glossinidius. RESULTS S. glossinidius infection rates varied significantly between tsetse species, with G. brevipalpis (93.7%) showing the highest levels of infection followed by G. m. morsitans (17.5%) and G. pallidipes (1.4%). ITS-PCR detected a wide variety of trypanosomes within the tsetse that were analysed. Significant differences were found in terms of trypanosome presence between the three tsetse species. A high proportion of G. m. morsitans were shown to carry T. brucei s.l. DNA (73.7%) and of these around 50% were positive for Trypanosoma brucei rhodesiense. T. vivax, T. godfreyi, T. simiae, T. simiae Tsavo and T. congolense were also detected. No association was found between the occurrence of S. glossinidius and the presence of trypanosome DNA in any of the three tsetse species tested. CONCLUSION The current work shows that T. b. rhodesiense was circulating in Luambe National Park, representing a risk for people living in the park or surrounding area and for tourists visiting the park. The differences in trypanosome DNA presence observed between the different tsetse species tested may indicate host feeding preferences, as the PCR will not discriminate between a fly with an active/resident infection compared to a refractory fly that has fed on an infected animal. This makes it difficult to establish if S. glossinidius may play a role in the susceptibility of tsetse flies to trypanosome infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewan T MacLeod
- Division of Pathway Medicine, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| |
Collapse
|
13
|
Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health 2014; 107:285-92. [PMID: 24188239 DOI: 10.1179/2047773213y.0000000109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Symbiosis is a widespread biological phenomenon, and is particularly common in arthropods. Bloodsucking insects are among the organisms that rely on beneficial bacterial symbionts to complement their unbalanced diet. This review is focused on describing symbiosis, and possible strategies for the symbiont-based control of insects and insect-borne diseases, in three bloodsucking insects of medical importance: the flies of the genus Glossina, the lice of the genus Pediculus, and triatomine bugs of the subfamily Triatominae. Glossina flies are vector of Trypanosoma brucei, the causative agent of sleeping sickness and other pathologies. They are also associated with two distinct bacterial symbionts, the primary symbiont Wigglesworthia spp., and the secondary, culturable symbiont Sodalis glossinidius. The primary symbiont of human lice, Riesia pediculicola, has been shown to be fundamental for the host, due to its capacity to synthesize B-group vitamins. An antisymbiotic approach, with antibiotic treatment targeted on the lice symbionts, could represent an alternative strategy to control these ectoparasites. In the case of triatominae bugs, the genetic modification of their symbiotic Rhodococcus bacteria, for production of anti-Trypanosoma molecules, is an example of paratransgenesis, i.e. the use of symbiotic microorganism engineered in order to reduce the vector competence of the insect host.
Collapse
|
14
|
Hamidou Soumana I, Tchicaya B, Loriod B, Rihet P, Geiger A. Identification of overexpressed genes in Sodalis glossinidius inhabiting trypanosome-infected self-cured tsetse flies. Front Microbiol 2014; 5:255. [PMID: 24904565 PMCID: PMC4033830 DOI: 10.3389/fmicb.2014.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/09/2014] [Indexed: 02/03/2023] Open
Abstract
Sodalis glossinidius, one of the three tsetse fly maternally inherited symbionts, was previously shown to favor fly infection by trypanosomes, the parasites causing human sleeping sickness. Among a population of flies taking a trypanosome-infected blood meal, only a few individuals will acquire the parasite; the others will escape infection and be considered as refractory to trypanosome infection. The aim of the work was to investigate whether fly refractoriness could be associated with specific Sodalis gene expression. The transcriptome of S. glossinidius harbored by flies that were fed either with a non-infected blood meal (control) or with a trypanosome-infected meal but that did not develop infection were analyzed, using microarray technology, and compared. The analysis using the microarray procedure yielded 17 genes that were found to have a significant differential expression between the two groups. Interestingly, all these genes were overexpressed in self-cured (refractory) flies. Further analysis of functional annotation of these genes indicated that most associated biological process terms were related to metabolic and biosynthetic processes as well as to oxido-reduction mechanisms. These results evidence the occurrence of molecular crosstalk between the different partners, induced by the passage of the trypanosomes through the fly's gut even though the parasites were unable to establish in the gut and to develop a permanent infection.
Collapse
Affiliation(s)
| | | | - Béatrice Loriod
- INSERM, UMR1090 TAGC Marseille, France ; Biology Department, Aix-Marseille University Marseille, France
| | - Pascal Rihet
- INSERM, UMR1090 TAGC Marseille, France ; Biology Department, Aix-Marseille University Marseille, France
| | | |
Collapse
|
15
|
Abstract
Microbial symbionts can be instrumental to the evolutionary success of their hosts. Here, we discuss medically significant tsetse flies (Diptera: Glossinidae), a group comprised of over 30 species, and their use as a valuable model system to study the evolution of the holobiont (i.e., the host and associated microbes). We first describe the tsetse microbiota, which, despite its simplicity, harbors a diverse range of associations. The maternally transmitted microbes consistently include two Gammaproteobacteria, the obligate mutualists Wigglesworthia spp. and the commensal Sodalis glossinidius, along with the parasitic Alphaproteobacteria Wolbachia. These associations differ in their establishment times, making them unique and distinct from previously characterized symbioses, where multiple microbial partners have associated with their host for a significant portion of its evolution. We then expand into discussing the functional roles and intracommunity dynamics within this holobiont, which enhances our understanding of tsetse biology to encompass the vital functions and interactions of the microbial community. Potential disturbances influencing the tsetse microbiome, including salivary gland hypertrophy virus and trypanosome infections, are highlighted. While previous studies have described evolutionary consequences of host association for symbionts, the initial steps facilitating their incorporation into a holobiont and integration of partner biology have only begun to be explored. Research on the tsetse holobiont will contribute to the understanding of how microbial metabolic integration and interdependency initially may develop within hosts, elucidating mechanisms driving adaptations leading to cooperation and coresidence within the microbial community. Lastly, increased knowledge of the tsetse holobiont may also contribute to generating novel African trypanosomiasis disease control strategies.
Collapse
|