1
|
Hakim MS, Annisa L, Gazali FM, Aman AT. The origin and continuing adaptive evolution of chikungunya virus. Arch Virol 2022; 167:2443-2455. [PMID: 35987965 DOI: 10.1007/s00705-022-05570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the responsible agent of chikungunya fever, a debilitating arthritic disease in humans. CHIKV is endemic in Africa and Asia, although transmission cycles are considerably different on these continents. Before 2004, CHIKV had received little attention, since it was only known to cause localised outbreaks in a limited region with no fatalities. However, the recent global reemergence of CHIKV has caused serious global health problems and shown its potential to become a significant viral threat in the future. Unexpectedly, the reemergence is more rapid and is geographically more extensive, especially due to increased intensity of global travel systems or failure to contain mosquito populations. Another important factor is the successful adaptation of CHIKV to a new vector, the Aedes albopictus mosquito. Ae. albopictus survives in both temperate and tropical climates, thus facilitating CHIKV expansion to non-endemic regions. The continuous spread and transmission of CHIKV pose challenges for the development of effective vaccines and specific antiviral therapies. In this review, we discuss the biology and origin of CHIKV in Africa as well as its subsequent expansion to other parts of the world. We also review the transmission cycle of CHIKV and its continuing adaptation to its mosquito vectors and vertebrate hosts. More-complete understanding of the continuous evolution of CHIKV may help in predicting the emergence of CHIKV strains with possibly greater transmission efficiency in the future.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Faris M Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Dahl E, Öborn L, Sjöberg V, Lundkvist Å, Hesson JC. Vertical Transmission of Sindbis Virus in Culex Mosquitoes. Viruses 2022; 14:v14091915. [PMID: 36146722 PMCID: PMC9504956 DOI: 10.3390/v14091915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Vertical transmission (VT) is a phenomenon of vector-borne diseases where a pathogen is transferred from an infected arthropod mother to her offspring. For mosquito-borne flavi- and alphaviruses, VT is commonly viewed as rare; however, both field and experimental studies report on vertical transmission efficiency to a notably varying degree. It is likely that this reflects the different experimental methods used to test vertical transmission efficiency as well as differences between virus–vector combinations. There are very few investigations of the VT of an alphavirus in a Culex vector. Sindbis virus (SINV) is an arthritogenic alphavirus that utilizes Culex species as main vectors both in the summer transmission season and for its persistence over the winter period in northern latitudes. In this study, we investigated the vertical transmission of the SINV in Culex vectors, both in the field and in experimental settings. The detection of SINV RNA in field-collected egg rafts and emerging adults shows that vertical transmission takes place in the field. Experimentally infected females gave rise to adult offspring containing SINV RNA at emergence; however, three to four weeks after emergence none of the offspring contained SINV RNA. This study shows that vertical transmission may be connected to SINV’s ability to persist throughout northern winters and also highlights many aspects of viral replication that need further study.
Collapse
|
3
|
Structurally conserved domains between flavivirus and alphavirus fusion glycoproteins contribute to replication and infectious virion production. J Virol 2021; 96:e0177421. [PMID: 34757841 DOI: 10.1128/jvi.01774-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants including an envelope glycoprotein variant in β-strand c (V114M) of domain II. We have previously shown that the analogous β-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E β-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice, and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo. Importance Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge on the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.
Collapse
|
4
|
Djiappi-Tchamen B, Nana-Ndjangwo MS, Tchuinkam T, Makoudjou I, Nchoutpouen E, Kopya E, Talipouo A, Bamou R, Mayi MPA, Awono-Ambene P, Wondji C, Antonio-Nkondjio C. Aedes Mosquito Distribution along a Transect from Rural to Urban Settings in Yaoundé, Cameroon. INSECTS 2021; 12:819. [PMID: 34564259 PMCID: PMC8471432 DOI: 10.3390/insects12090819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The surveillance of mosquito vectors is important for the control of arboviruses diseases worldwide. Detailed information on the bionomics and distribution of their main vectors, Aedes aegypti and Aedes albopictus, is essential for assessing disease transmission risk and for better planning of control interventions. METHODS Entomological surveys were carried out from November 2019 to November 2020 in six localities of Yaoundé city following a transect from urban to rural settings: two urban (Obili, Mvan), two peri-urban (Simbock, Ahala) and two rural areas (Lendom, Elig-essomballa)-during rainy and dry seasons. All water containers were inspected. Aedes mosquito abundance, species distribution and seasonal distribution patterns were compared using generalized linear models. Stegomyia indexes were estimated to determine the risk of arbovirus transmission. RESULTS A total of 6332 mosquitoes larvae were collected (2342 in urban areas, 1694 in peri-urban areas and 2296 in rural sites). Aedes species recorded included Ae. albopictus, Ae. aegytpi, Ae. simpsoni and Aedes spp. High mosquito abundance was registered in the rainy season (4706) compared to the dry season (1626) (p < 0.0001). Ae. albopictus was the most abundant Aedes species in urban (96.89%) and peri-urban (95.09%) sites whereas Ae. aegypti was more prevalent in rural sites (68.56%) (p < 0.0001). Both species were found together in 71 larval habitats. Ae. albopictus was mostly found in discarded tires (42.51%), whereas Ae. aegypti was more prevalent in plastic containers used for storing water (65.87%). The majority of Aedes mosquitoes' breeding places were situated close to human dwellings (0-10 m). CONCLUSION Uncontrolled urbanization seems to greatly favour the presence of Aedes mosquito species around human dwellings in Yaoundé. Controlling Aedes mosquito distribution is becoming urgent to reduce the risk of arbovirus outbreaks in the city of Yaoundé.
Collapse
Affiliation(s)
- Borel Djiappi-Tchamen
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang P.O. Box 067, Cameroon; (B.D.-T.); (T.T.); (R.B.); (M.P.A.M.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
| | - Mariette Stella Nana-Ndjangwo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 337, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang P.O. Box 067, Cameroon; (B.D.-T.); (T.T.); (R.B.); (M.P.A.M.)
| | - Idene Makoudjou
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 337, Cameroon
| | - Elysée Nchoutpouen
- Centre for Research in Infectious Disease (CRID), Yaoundé P.O. Box 13591, Cameroon; (E.N.); (C.W.)
| | - Edmond Kopya
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 337, Cameroon
| | - Abdou Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 337, Cameroon
| | - Roland Bamou
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang P.O. Box 067, Cameroon; (B.D.-T.); (T.T.); (R.B.); (M.P.A.M.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
| | - Marie Paul Audrey Mayi
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang P.O. Box 067, Cameroon; (B.D.-T.); (T.T.); (R.B.); (M.P.A.M.)
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
| | - Charles Wondji
- Centre for Research in Infectious Disease (CRID), Yaoundé P.O. Box 13591, Cameroon; (E.N.); (C.W.)
- Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (M.S.N.-N.); (I.M.); (E.K.); (A.T.); (P.A.-A.)
- Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
5
|
Kiser LM, Sokoloski KJ, Hardy RW. Interactions between capsid and viral RNA regulate Chikungunya virus translation in a host-specific manner. Virology 2021; 560:34-42. [PMID: 34023723 PMCID: PMC8206026 DOI: 10.1016/j.virol.2021.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Lauren M Kiser
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Richard W Hardy
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Nuñez AI, Talavera S, Birnberg L, Rivas R, Pujol N, Verdún M, Aranda C, Berdugo M, Busquets N. Evidence of Zika virus horizontal and vertical transmission in Aedes albopictus from Spain but not infectious virus in saliva of the progeny. Emerg Microbes Infect 2021; 9:2236-2244. [PMID: 33008282 PMCID: PMC7594878 DOI: 10.1080/22221751.2020.1830718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aedes albopictus mosquitoes have been experimentally demonstrated to be a competent vector for Zika virus (ZIKV) in different countries, but there are still some gaps related to the importance of Ae. albopictus in ZIKV transmission. Recent studies on Spanish Ae. albopictus populations showed controversial results for ZIKV transmission and no studies have been performed yet to detect infectious ZIKV in saliva of progeny of infected female mosquitoes. Herein, the horizontal transmission (HT) and vertical transmission (VT) of ZIKV in field-collected Ae. albopictus mosquitoes from Spain were evaluated for ZIKV strains (African I and Asian lineages) to better estimate the risk of ZIKV transmission by Ae. albopictus. The two field-collected Ae. albopictus populations assayed were infected by all tested ZIKV strains, however differences in terms of vector competence were detected depending on strain-population combination. Moreover, a higher susceptibility to the African I lineage strain than to the Asian lineage strain was observed in both mosquito populations. On the other hand, VT was demonstrated for both ZIKV lineages, detecting the virus in both males and females of the progeny of infected females, although importantly ZIKV dissemination and transmission were not detected in the infected females from the offspring. The results of the present study demonstrate that Spanish Ae. albopictus populations could sustain virus transmission in case of ZIKV introduction, but VT would play a poor role in the ZIKV epidemiology. Overall, our results provide helpful information to health authorities to establish efficient surveillance and vector control programmes for ZIKV.
Collapse
Affiliation(s)
- Ana I Nuñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Lotty Birnberg
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Raquel Rivas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Núria Pujol
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Marta Verdún
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Carles Aranda
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.,Consell Comarcal del Baix Llobregat, Servei de Control de Mosquits, Barcelona, Spain
| | - Miguel Berdugo
- Institut de Biología evolutiva de Barcelona, Universidad Pompeu Fabra-CSIC, Dr. Aigüader 88, Barcelona, 08003, Spain
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
7
|
Talavera-Aguilar LG, Murrieta RA, Kiem S, Cetina-Trejo RC, Baak-Baak CM, Ebel GD, Blitvich BJ, Machain-Williams C. Infection, dissemination, and transmission efficiencies of Zika virus in Aedes aegypti after serial passage in mosquito or mammalian cell lines or alternating passage in both cell types. Parasit Vectors 2021; 14:261. [PMID: 34006306 PMCID: PMC8130322 DOI: 10.1186/s13071-021-04726-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04726-1.
Collapse
Affiliation(s)
- Lourdes G Talavera-Aguilar
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sungmin Kiem
- Department of Infectious Diseases in Internal Medicine, Sejong Chungnam National University Hospital, School of Medicine, Chungnam National University, Sejong, Korea
| | - Rosa C Cetina-Trejo
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Carlos M Baak-Baak
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Carlos Machain-Williams
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México.
| |
Collapse
|
8
|
Migné CV, Moutailler S, Attoui H. Strategies for Assessing Arbovirus Genetic Variability in Vectors and/or Mammals. Pathogens 2020; 9:pathogens9110915. [PMID: 33167317 PMCID: PMC7694381 DOI: 10.3390/pathogens9110915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Animal arboviruses replicate in their invertebrate vectors and vertebrate hosts. They use several strategies to ensure replication/transmission. Their high mutation rates and propensity to generate recombinants and/or genome segment reassortments help them adapt to new hosts/emerge in new geographical areas. Studying arbovirus genetic variability has been used to identify indicators which predict their potential to adapt to new hosts and/or emergence and in particular quasi-species. Multiple studies conducted with insect-borne viruses laid the foundations for the "trade-off" hypothesis (alternation of host transmission cycle constrains arbovirus evolution). It was extrapolated to tick-borne viruses, where too few studies have been conducted, even though humans faced emergence of numerous tick-borne virus during the last decades. There is a paucity of information regarding genetic variability of these viruses. In addition, insects and ticks do not have similar lifecycles/lifestyles. Indeed, tick-borne viruses are longer associated with their vectors due to tick lifespan. The objectives of this review are: (i) to describe the state of the art for all strategies developed to study genetic variability of insect-borne viruses both in vitro and in vivo and potential applications to tick-borne viruses; and (ii) to highlight the specificities of arboviruses and vectors as a complex and diverse system.
Collapse
Affiliation(s)
- Camille Victoire Migné
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France;
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| | - Houssam Attoui
- UMR1161 Virologie, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France
- Correspondence: (S.M.); (H.A.); Tel.: +33-1-49-77-46-50 (S.M.); +33-1-43-96-70-07 (H.A.)
| |
Collapse
|
9
|
Insight into the origin of chikungunya virus in Malaysian non-human primates via sequence analysis. Heliyon 2019; 5:e02682. [PMID: 31867449 PMCID: PMC6906679 DOI: 10.1016/j.heliyon.2019.e02682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/15/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
Chikungunya virus (CHIKV) is maintained in the sylvatic cycle in West Africa and is transmitted by Aedes mosquito species to monkeys. In 2006, four verified CHIKV isolates were obtained during a survey of arboviruses in monkeys (Macaca fascicularis) in Pahang state, Peninsular Malaysia. RNA was extracted from the CHIKV isolates and used in reverse transcription polymerase chain reactions (RT-PCR) to amplify PCR fragments for sequencing. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the whole viral sequence. A total of 11,238 base pairs (bp) corresponding to open reading frames (ORFs) from our isolates and 47 other registered isolates in the National Center for Biotechnology Information (NCBI) were used to elucidate sequences, amino acids, and phylogenetic relationships and to estimate divergence times by using MEGA 7.0 and the Bayesian Markov chain Monte Carlo method. Phylogenetic analysis revealed that all CHIKV isolates could be classified into the Asian genotype and clustered with Bagan Panchor clades, which are associated with the chikungunya outbreak reported in 2006, with sequence and amino acid similarities of 99.9% and 99.7%, respectively. Minor amino acid differences were found between human and non-human primate isolates. Amino acid analysis showed a unique amino acid at position 221 in the nsP1region, at which a glycine (G) was found only in monkey isolates, whereas arginine (R) was found at the same position only in human isolates. The time to the most recent common ancestor (MRCA) estimation indicated that CHIKV probably started to diverge from human to non-human primates in approximately 2004 in Malaysia. The results suggested that CHIKV in non-human primates probably resulted from the spillover of the virus from humans. The study will be helpful in understanding the movement and evolution of CHIKV in Malaysia and globally.
Collapse
|
10
|
Hery L, Boullis A, Delannay C, Vega-Rúa A. Transmission potential of African, Asian and American Zika virus strains by Aedes aegypti and Culex quinquefasciatus from Guadeloupe (French West Indies). Emerg Microbes Infect 2019; 8:699-706. [PMID: 31109248 PMCID: PMC6534219 DOI: 10.1080/22221751.2019.1615849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zika virus (ZIKV) is an arbovirus that has dramatically spread in South America and the Caribbean regions since 2015. The majority of vector incrimination studies available for ZIKV showed that Aedes aegypti mosquitoes are important vectors for this virus. However, several reports suggest that Culex quinquefasciatus mosquitoes may be implicated in ZIKV transmission in certain urban settings. In the present study, we evaluated the vector competence for ZIKV of Cx. quinquefasciatus and Ae. aegypti mosquitoes from Guadeloupe using African, American and Asian strains. The results demonstrated that Cx. quinquefasciatus is refractory to ZIKV infection whatever the strain tested at 7, 14 or 21 days post-infection (dpi), while ZIKV transmission was recorded in Ae. aegypti for all the three strains. The African ZIKV strain was better transmitted by Ae. aegypti (∼ 50% mean transmission efficiency) and with a shorter incubation period (7 dpi) when compared to the Asian and American strains (<14% transmission efficiency; incubation period of 14–21 dpi). Taken together, these results suggest that only Ae. aegypti mosquitoes are involved in urban ZIKV transmission in Guadeloupe and highlight a higher infectiousness of the African ZIKV strain in this mosquito species when compared to the Asian and American ones.
Collapse
Affiliation(s)
- Lyza Hery
- a Institute Pasteur of Guadeloupe, Laboratory of Vector Control research, Unit Transmission Reservoir and Pathogens Diversity , Les Abymes , France
| | - Antoine Boullis
- a Institute Pasteur of Guadeloupe, Laboratory of Vector Control research, Unit Transmission Reservoir and Pathogens Diversity , Les Abymes , France
| | - Christelle Delannay
- a Institute Pasteur of Guadeloupe, Laboratory of Vector Control research, Unit Transmission Reservoir and Pathogens Diversity , Les Abymes , France
| | - Anubis Vega-Rúa
- a Institute Pasteur of Guadeloupe, Laboratory of Vector Control research, Unit Transmission Reservoir and Pathogens Diversity , Les Abymes , France
| |
Collapse
|
11
|
Experimental Assessment of Zika Virus Mechanical Transmission by Aedes Aegypti. Viruses 2019; 11:v11080695. [PMID: 31370135 PMCID: PMC6723193 DOI: 10.3390/v11080695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
The pandemic emergence of several mosquito-borne viruses highlights the need to understand the different ways in which they can be transmitted by vectors to human hosts. In this study, we evaluated the propensity of Aedes aegypti to transmit mechanically Zika virus (ZIKV) using an experimental design. Mosquitoes were allowed to feed on ZIKV-infected blood and were then rapidly transferred to feed on ZIKV-free blood until they finished their meal. The uninfected blood meals, the mosquito abdomens, as well as the mouthparts dissected from fully and partially engorged mosquitoes were analyzed using RT-qPCR and/or virus titration. All the fully engorged mosquito abdomens were ZIKV-infected, whereas their mouthparts were all ZIKV-negative. Nonetheless, one of the partially engorged mosquitoes carried infectious particles on mouthparts. No infectious virus was found in the receiver blood meals, while viral RNA was detected in 9% of the samples (2/22). Thus, mechanical transmission of ZIKV may sporadically occur via Ae. aegypti bite. However, as the number of virions detected on mouthparts (2 particles) is not sufficient to induce infection in a naïve host, our results indicate that mechanical transmission does not impact ZIKV epidemiology.
Collapse
|
12
|
Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, Young I, Waddell L. A scoping review of published literature on chikungunya virus. PLoS One 2018; 13:e0207554. [PMID: 30496207 PMCID: PMC6264817 DOI: 10.1371/journal.pone.0207554] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused several major epidemics globally over the last two decades and is quickly expanding into new areas. Although this mosquito-borne disease is self-limiting and is not associated with high mortality, it can lead to severe, chronic and disabling arthritis, thereby posing a heavy burden to healthcare systems. The two main vectors for CHIKV are Aedes aegypti and Aedes albopictus (Asian tiger mosquito); however, many other mosquito species have been described as competent CHIKV vectors in scientific literature. With climate change, globalization and unfettered urban planning affecting many areas, CHIKV poses a significant public health risk to many countries. A scoping review was conducted to collate and categorize all pertinent information gleaned from published scientific literature on a priori defined aspects of CHIKV and its competent vectors. After developing a sensitive and specific search algorithm for the research question, seven databases were searched and data was extracted from 1920 relevant articles. Results show that CHIKV research is reported predominantly in areas after major epidemics have occurred. There has been an upsurge in CHIKV publications since 2011, especially after first reports of CHIKV emergence in the Americas. A list of hosts and vectors that could potentially be involved in the sylvatic and urban transmission cycles of CHIKV has been compiled in this scoping review. In addition, a repository of CHIKV mutations associated with evolutionary fitness and adaptation has been created by compiling and characterizing these genetic variants as reported in scientific literature.
Collapse
Affiliation(s)
- Mariola Mascarenhas
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sophiya Garasia
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Philippe Berthiaume
- National Microbiology Laboratory at St. Hyacinthe, Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - Tricia Corrin
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Judy Greig
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victoria Ng
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Lisa Waddell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Arbovirus Adaptation: Roles in Transmission and Emergence. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
15
|
Zouache K, Failloux AB. Insect-pathogen interactions: contribution of viral adaptation to the emergence of vector-borne diseases, the example of chikungunya. CURRENT OPINION IN INSECT SCIENCE 2015; 10:14-21. [PMID: 29588001 DOI: 10.1016/j.cois.2015.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/08/2023]
Abstract
The emergence or re-emergence of vector borne diseases represents a major public health problem. In general, therapeutic or prophylactic treatments along with vaccines are missing or inefficient, emphasizing the need for increased control of vector populations. Understanding the interactions of human pathogens with their insect vectors will aid us in our understanding of viral emergence and the dynamics of these events. Chikungunya virus (CHIKV) is a mosquito-borne virus that typically causes incapacitating arthralgia, rash, and fever. It is mainly transmitted by Aedes aegypti and secondarily by Aedes albopictus. Since its emergence in 2004, CHIKV has continued to spread globally due in large part to an enhanced transmission of the virus by the vector Ae. albopictus. Ae. albopictus-adaptive mutations modulated by epistatic interactions have modified CHIKV transmission and thus the global spread and dynamics of this disease.
Collapse
Affiliation(s)
- Karima Zouache
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France.
| |
Collapse
|
16
|
Figueiredo MLGD, Figueiredo LTM. Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop 2015; 47:677-83. [PMID: 25626645 DOI: 10.1590/0037-8682-0246-2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emergent arthropod-borne viruses that produce outbreaks of acute febrile illness with arthropathy. Despite their different continental origins, CHIKV and MAYV are closely related and are components of the Semliki Forest Complex of the Alphavirus (Togaviridae). MAYV and, more recently, CHIKV, which are both transmitted by Aedes mosquitoes, have resulted in severe public health problems in the Americas, including Brazil. In this review, we present aspects of the pathogenesis, clinical presentation and treatment of febrile illnesses produced by CHIKV and MAYV. We also discuss the epidemiological aspects and effects related to the prophylaxis of infections by both viruses.
Collapse
Affiliation(s)
| | - Luiz Tadeu Moraes Figueiredo
- Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, Pondeville E. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes. INSECTS 2015; 6:236-78. [PMID: 26463078 PMCID: PMC4553541 DOI: 10.3390/insects6010236] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023]
Abstract
Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.
Collapse
Affiliation(s)
- Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Stephanie M Rainey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
18
|
|