1
|
Fang J, Zhou ZJ, Yuan S, Qiu Y, Ge XY. Lineage classification and selective site identification of Orthoebolavirus zairense. Microbes Infect 2025; 27:105304. [PMID: 38278475 DOI: 10.1016/j.micinf.2024.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
As the high pathogenic species of Filoviridae virus family, Orthoebolavirus zairense (EBOV) shows frequent outbreaks in human in recently years since its first emerging in 1976 in Democratic Republic of the Congo (COD), bringing ongoing risks and burden on public health safety. Here, the phylogenetic relationship among major outbreaks was analyzed. The results showed that EBOV isolates could be divided into four lineages according to spatial and temporal epidemics. Then, the positive selection sites (PSSs) were detected on all proteins of the EBOV, exhibiting lineage characteristic. Particularly, sites in GP and VP24 were identified to be significantly under positive selection, and partial of which were maintained in the latest isolates in 2021. GP and L were found to have high variability between lineages. Substitutions including F443L and F443S in GP, as well as F1610L and I1951V in L could be characteristic of the two large outbreaks in COD (2018) and West Africa (2014), respectively. Further, substitutions of significant PSSs in VP24 and L proteins were visualized for analysis of structural changes, which may affect EBOV pathogenesis. In summary, our results gains insights in genetic characteristic and adaptive evolution of EBOV, which could facilitate gene functional research against EBOV.
Collapse
Affiliation(s)
- Jie Fang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Zhi-Jian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China.
| |
Collapse
|
2
|
Tiper I, Kourout M, Lanning B, Fisher C, Konduru K, Purkayastha A, Kaplan G, Duncan R. Tracking ebolavirus genomic drift with a resequencing microarray. PLoS One 2022; 17:e0263732. [PMID: 35143574 PMCID: PMC8830711 DOI: 10.1371/journal.pone.0263732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Filoviruses are emerging pathogens that cause acute fever with high fatality rate and present a global public health threat. During the 2013–2016 Ebola virus outbreak, genome sequencing allowed the study of virus evolution, mutations affecting pathogenicity and infectivity, and tracing the viral spread. In 2018, early sequence identification of the Ebolavirus as EBOV in the Democratic Republic of the Congo supported the use of an Ebola virus vaccine. However, field-deployable sequencing methods are needed to enable a rapid public health response. Resequencing microarrays (RMA) are a targeted method to obtain genomic sequence on clinical specimens rapidly, and sensitively, overcoming the need for extensive bioinformatic analysis. This study presents the design and initial evaluation of an ebolavirus resequencing microarray (Ebolavirus-RMA) system for sequencing the major genomic regions of four Ebolaviruses that cause disease in humans. The design of the Ebolavirus-RMA system is described and evaluated by sequencing repository samples of three Ebolaviruses and two EBOV variants. The ability of the system to identify genetic drift in a replicating virus was achieved by sequencing the ebolavirus glycoprotein gene in a recombinant virus cultured under pressure from a neutralizing antibody. Comparison of the Ebolavirus-RMA results to the Genbank database sequence file with the accession number given for the source RNA and Ebolavirus-RMA results compared to Next Generation Sequence results of the same RNA samples showed up to 99% agreement.
Collapse
Affiliation(s)
- Irina Tiper
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Moussa Kourout
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Bryan Lanning
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Carolyn Fisher
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Krishnamurthy Konduru
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | | | - Gerardo Kaplan
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Robert Duncan
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
3
|
Computational Evolutionary Biology. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses 2018; 11:v11010015. [PMID: 30587835 PMCID: PMC6356362 DOI: 10.3390/v11010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/05/2023] Open
Abstract
Since the largest 2014⁻2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.
Collapse
|
5
|
Abstract
The Filoviridae are a family of negative-strand RNA viruses that include several important human pathogens. Ebola virus (EBOV) and Marburg virus are well-known filoviruses which cause life-threatening viral hemorrhagic fever in human and nonhuman primates. In addition to severe pathogenesis, filoviruses also exhibit a propensity for human-to-human transmission by close contact, posing challenges to containment and crisis management. Past outbreaks, in particular the recent West African EBOV epidemic, have been responsible for thousands of deaths and vaulted the filoviruses into public consciousness. Both national and international health agencies continue to regard potential filovirus outbreaks as critical threats to global public health. To develop effective countermeasures, a basic understanding of filovirus biology is needed. This review encompasses the epidemiology, ecology, molecular biology, and evolution of the filoviruses.
Collapse
Affiliation(s)
- Jackson Emanuel
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
6
|
Urbanowicz RA, McClure CP, Sakuntabhai A, Sall AA, Kobinger G, Müller MA, Holmes EC, Rey FA, Simon-Loriere E, Ball JK. Human Adaptation of Ebola Virus during the West African Outbreak. Cell 2017; 167:1079-1087.e5. [PMID: 27814505 PMCID: PMC5101188 DOI: 10.1016/j.cell.2016.10.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022]
Abstract
The 2013–2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the co-circulation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages. EBOV adapted to humans during the West African outbreak Amino acid substitutions in the EBOV glycoprotein increase human cell tropism The same glycoprotein amino acid substitutions decrease tropism for bat cells
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - C Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris, France
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fever Unit, Institut Pasteur de Dakar, BP 220 Dakar, Senegal
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, ON K1A 0K9, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R32T 2N2, Canada
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2050, Australia
| | - Félix A Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, 75724 Paris Cedex 15, France
| | - Etienne Simon-Loriere
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris, France.
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK.
| |
Collapse
|
7
|
Ueda MT, Kurosaki Y, Izumi T, Nakano Y, Oloniniyi OK, Yasuda J, Koyanagi Y, Sato K, Nakagawa S. Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency. Genes Cells 2017; 22:148-159. [PMID: 28084671 DOI: 10.1111/gtc.12463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
Ebola virus (EBOV) is extremely virulent, and its glycoprotein is necessary for viral entry. EBOV may adapt to its new host humans during outbreaks by acquiring mutations especially in glycoprotein, which allows EBOV to spread more efficiently. To identify these evolutionary selected mutations and examine their effects on viral infectivity, we used experimental-phylogenetic-structural interdisciplinary approaches. In evolutionary analysis of all available Zaire ebolavirus glycoprotein sequences, we detected two codon sites under positive selection, which are located near/within the region critical for the host-viral membrane fusion, namely alanine-to-valine and threonine-to-isoleucine mutations at 82 (A82V) and 544 (T544I), respectively. The fine-scale transmission dynamics of EBOV Makona variants that caused the 2014-2015 outbreak showed that A82V mutant was fixed in the population, whereas T544I was not. Furthermore, pseudotype assays for the Makona glycoprotein showed that the A82V mutation caused a small increase in viral infectivity compared with the T544I mutation. These findings suggest that mutation fixation in EBOV glycoprotein may be associated with their increased infectivity levels; the mutant with a moderate increase in infectivity will fix. Our findings showed that a driving force for Ebola virus evolution via glycoprotein may be a balance between costs and benefits of its virulence.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa, 259-1193, Japan
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Taisuke Izumi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,CREST, Japan Science and Technology Agency, Saitama, 322-0012, Japan
| | - Yusuke Nakano
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Olamide K Oloniniyi
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,CREST, Japan Science and Technology Agency, Saitama, 322-0012, Japan
| | - So Nakagawa
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa, 259-1193, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
8
|
Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V. Human transmission of Ebola virus. Curr Opin Virol 2016; 22:51-58. [PMID: 28012412 DOI: 10.1016/j.coviro.2016.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Ever since the first recognised outbreak of Ebolavirus in 1976, retrospective epidemiological analyses and extensive studies with animal models have given us insight into the nature of the pathology and transmission mechanisms of this virus. In this review focusing on Ebolavirus, we present an outline of our current understanding of filovirus human-to-human transmission and of our knowledge concerning the molecular basis of viral transmission and potential for adaptation, with particular focus on what we have learnt from the 2014 outbreak in West Africa. We identify knowledge gaps relating to transmission and pathogenicity mechanisms, molecular adaptation and filovirus ecology.
Collapse
Affiliation(s)
- Philip Lawrence
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France
| | - Nicolas Danet
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Olivier Reynard
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| |
Collapse
|
9
|
Li X, Zai J, Liu H, Feng Y, Li F, Wei J, Zou S, Yuan Z, Shao Y. The 2014 Ebola virus outbreak in West Africa highlights no evidence of rapid evolution or adaptation to humans. Sci Rep 2016; 6:35822. [PMID: 27767073 PMCID: PMC5073338 DOI: 10.1038/srep35822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Following its immergence in December 2013, the recent Zaire Ebola virus (EBOV) outbreak in West Africa has spread and persisted for more than two years, making it the largest EBOV epidemic in both scale and geographical region to date. In this study, a total of 726 glycoprotein (GP) gene sequences of the EBOV full-length genome obtained from West Africa from the 2014 outbreak, combined with 30 from earlier outbreaks between 1976 and 2008 were used to investigate the genetic divergence, evolutionary history, population dynamics, and selection pressure of EBOV among distinct epidemic waves. Results from our dataset showed that no non-synonymous substitutions occurred on the GP gene coding sequences of EBOV that were likely to have affected protein structure or function in any way. Furthermore, the significantly different dN/dS ratios observed between the 2014 West African outbreak and earlier outbreaks were more likely due to the confounding presence of segregating polymorphisms. Our results highlight no robust evidence that the 2014 EBOV outbreak is fast-evolving and adapting to humans. Therefore, the unprecedented nature of the 2014 EBOV outbreak might be more likely related to non-virological elements, such as environmental and sociological factors.
Collapse
Affiliation(s)
- Xingguang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Junjie Zai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Fan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jing Wei
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Sen Zou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Abstract
Genomic analysis is a powerful tool for understanding viral disease outbreaks. Sequencing of viral samples is now easier and cheaper than ever before and can supplement epidemiological methods by providing nucleotide-level resolution of outbreak-causing pathogens. In this review, we describe methods used to answer crucial questions about outbreaks, such as how they began and how a disease is transmitted. More specifically, we explain current techniques for viral sequencing, phylogenetic analysis, transmission reconstruction, and evolutionary investigation of viral pathogens. By detailing the ways in which genomic data can help us understand viral disease outbreaks, we aim to provide a resource that will facilitate the response to future outbreaks.
Collapse
Affiliation(s)
- Shirlee Wohl
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.,Broad Institute, Cambridge, Massachusetts 02142; ,
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.,Broad Institute, Cambridge, Massachusetts 02142; , .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.,Broad Institute, Cambridge, Massachusetts 02142; , .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Brown CJ, Quates CJ, Mirabzadeh CA, Miller CR, Wichman HA, Miura TA, Ytreberg FM. New Perspectives on Ebola Virus Evolution. PLoS One 2016; 11:e0160410. [PMID: 27479005 PMCID: PMC4968807 DOI: 10.1371/journal.pone.0160410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022] Open
Abstract
Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.
Collapse
Affiliation(s)
- Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Caleb J Quates
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher A Mirabzadeh
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - F Marty Ytreberg
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
12
|
Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses. Sci Rep 2016; 6:23743. [PMID: 27009368 PMCID: PMC4806318 DOI: 10.1038/srep23743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.
Collapse
|
13
|
Schuit M, Miller DM, Reddick-Elick MS, Wlazlowski CB, Filone CM, Herzog A, Colf LA, Wahl-Jensen V, Hevey M, Noah JW. Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood. PLoS One 2016; 11:e0148476. [PMID: 26849135 PMCID: PMC4744009 DOI: 10.1371/journal.pone.0148476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
In support of the response to the 2013–2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.
Collapse
Affiliation(s)
- Michael Schuit
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - David M. Miller
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - Mary S. Reddick-Elick
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - Carly B. Wlazlowski
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - Claire Marie Filone
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - Artemas Herzog
- Censeo Consulting Group, Washington, DC, United States of America
| | - Leremy A. Colf
- Department of Homeland Security (DHS) Science and Technology Directorate, Washington, DC, United States of America
| | - Victoria Wahl-Jensen
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - Michael Hevey
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
| | - James W. Noah
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, United States of America
- * E-mail:
| |
Collapse
|
14
|
Local Mutational Pressures in Genomes of Zaire Ebolavirus and Marburg Virus. Adv Bioinformatics 2015; 2015:678587. [PMID: 26798338 PMCID: PMC4698526 DOI: 10.1155/2015/678587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
Heterogeneities in nucleotide content distribution along the length of Zaire ebolavirus and Marburg virus genomes have been analyzed. Results showed that there is asymmetric mutational A-pressure in the majority of Zaire ebolavirus genes; there is mutational AC-pressure in the coding region of the matrix protein VP40, probably, caused by its high expression at the end of the infection process; there is also AC-pressure in the 3'-part of the nucleoprotein (NP) coding gene associated with low amount of secondary structure formed by the 3'-part of its mRNA; in the middle of the glycoprotein (GP) coding gene that kind of mutational bias is linked with the high amount of secondary structure formed by the corresponding fragment of RNA negative (-) strand; there is relatively symmetric mutational AU-pressure in the polymerase (Pol) coding gene caused by its low expression level. In Marburg virus all genes, including C-rich fragment of GP coding region, demonstrate asymmetric mutational A-bias, while the last gene (Pol) demonstrates more symmetric mutational AU-pressure. The hypothesis of a newly synthesized RNA negative (-) strand shielding by complementary fragments of mRNAs has been described in this work: shielded fragments of RNA negative (-) strand should be better protected from oxidative damage and prone to ADAR-editing.
Collapse
|
15
|
Petti S, Messano GA, Vingolo EM, Marsella LT, Scully C. The face of Ebola: changing frequency of haemorrhage in the West African compared with Eastern-Central African outbreaks. BMC Infect Dis 2015; 15:564. [PMID: 26653293 PMCID: PMC4676861 DOI: 10.1186/s12879-015-1302-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The West-African (WA) Zaire Ebolavirus disease (EVD) outbreak was characterized by an exceptionally high number of cases and deaths as compared with the Eastern-Central African (ECA) outbreaks. Despite the Zaire Ebolavirus being the most lethal for humans, case-fatality rate, close to 80 % in ECA outbreaks, almost halved to 47 % in Guinea-Liberia-Sierra Leone (WA). Such an improvement was due to the remarkable implementation of international humanitarian aids. Some studies also suggested that the long human-to-human transmission cycle occurred in WA, gave rise to human adaptation and consequent immune escape. Haemorrhage, the main feature in seriously infected EVD patients, is due to the immune system that triggers the infected endothelial cells which expose the spike-like glycoprotein (GP) of the virion on their surface. If the human adaptation hypothesis holds true, the proportion of EVD patients with haemorrhage in the WA outbreak should be lower than in the ECA outbreaks due to immune escape. Therefore, the aim of this meta-analysis was to compare the relative frequencies of three typical haemorrhagic symptoms (conjunctival -CB, nasal -NB, gingival -GB- bleedings) in the ECA and WA outbreaks. METHODS Literature searches were performed through PubMed and Scopus using generic keywords; surveys including at least ten patients reporting CB, NB, GB relative frequencies were extracted and split into ECA and WA. The meta-analytical methods chosen were based on the levels of between-study heterogeneity and publication bias. Pooled CB, NB, GB relative frequencies in ECA and WA were estimated and compared. Subgroup analysis including only studies on Zaire Ebolavirus also was performed. RESULTS Fifteen studies (10 ECA, 5 WA) were located with 4,867 (CB), 3,859 (NB), 4,278 (GB) EVD patients overall. GB pooled relative frequency was 45.3 % (95 % confidence interval -95 CI, 34.7-56.1 %) and 18.0 % (95 CI, 6.0-34.5 %), in ECA and WA; NB was 10.6 % (95 CI, 5.7-16.8 %) and 1.3 % (1.0-1.8 %); GB was 24.2 % (95 CI, 11.9-39.2 %) and 1.9 % (95 CI, 1.4-2.4 %). Subgroup analysis confirmed these results. CONCLUSIONS During the WA outbreak the relative frequency of GB decreased by two thirds, while NB and GB almost disappeared, suggesting that the Zaire Ebolavirus human adaptation hypothesis is plausible.
Collapse
Affiliation(s)
- Stefano Petti
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Giuseppe Alessio Messano
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Enzo Maria Vingolo
- Ophthalmology Department, Sapienza University, Viale del Policlinico 155, 00186, Rome, Italy.
| | - Luigi Tonino Marsella
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Oxford 81, 00133, Rome, Italy.
| | - Crispian Scully
- University College London, Gower Street WC1E 6BT, London, UK.
| |
Collapse
|
16
|
Liu SQ, Rayner S, Zhang B. How Ebola has been evolving in West Africa. Trends Microbiol 2015; 23:387-8. [PMID: 25986056 DOI: 10.1016/j.tim.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 02/04/2023]
Abstract
The ongoing Ebola outbreak in West Africa has generated fears of a global epidemic. Particularly, estimates of higher substitution rates have raised concerns about increased transmissibility or virulence. A recent study using a more comprehensive datasets demonstrates lower variation, highlighting the importance of representative datasets and limitations of computational modelling.
Collapse
Affiliation(s)
- Si-Qing Liu
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Simon Rayner
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bo Zhang
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|