1
|
Pimenta YC, Bonfim FFDO, Figueiredo CEDS, Pedroso BLDA, Silva MF, Olivares AIO, Delgado IF, Leite JPG, de Moraes MTB. Polymorphisms in the ACE I/D ( rs4646994) and ACE2 G8790A ( rs2285666) in Young Children Living in the Amazon Region and SARS-CoV-2 Infection. Trop Med Infect Dis 2024; 9:270. [PMID: 39591276 PMCID: PMC11598624 DOI: 10.3390/tropicalmed9110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
COVID-19 infection caused by SARS-CoV-2 continues to cause significant mortality and morbidity. ACE2 is a key regulator of the renin-angiotensin-aldosterone system (RAAS). Differences in COVID-19 severity are thought to be due to the imbalance of RAAS/ACE mutations. This retrospective study evaluated the detection and genetic susceptibility to SARS-CoV-2 infection in 202 children ≤3 years of age living in the Amazon region in 2021. The angiotensin-converting enzyme ACE I/D (rs4646994) and ACE2 G8790A (rs2285666) polymorphisms were detected by SYBR GREEN real-time PCR and PCR-RFLP/Alul digestion, respectively. SARS-CoV-2 detection was performed by RT-qPCR in feces and saliva samples collected simultaneously from the same children presenting acute gastroenteritis (AGE) or acute respiratory infection (ARI). The frequency of SARS-CoV-2 detected by qRT-PCR in children was low (5.9%, 12/202), although higher in the group of children with AGE (8.9%, 9/101) than with ARI (2.9%, 3/101). Susceptibility to SARS-CoV-2 infection was not verified due to the low frequency. Homozygous II (rs4646994) children were the majority (87.1%, 176/202). Boys with genotype A (rs2285666) were more susceptible to ARI and pneumonia symptoms than AGE (OR = 3.8, 95% CI 1.4-10.3, p 0.007). Boys with genotype G (rs4646994) or the combination II + G were more susceptible to acquiring AGE. Surveillance, along with understanding their causes, is crucial to controlling ARI and COVID-19 in children living in low-income countries.
Collapse
Affiliation(s)
- Yan Cardoso Pimenta
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Flávia Freitas de Oliveira Bonfim
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Carlos Eduardo da Silva Figueiredo
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- National Institute of Women, Children and Adolescents’ Health Fernandes Figueira, Oswald °Cruz Foundation (Fiocruz), Avenida Rui Barbosa, 716-Flamengo, Rio de Janeiro 22250-020, RJ, Brazil
| | - Bruno Loreto de Aragão Pedroso
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Mauro França Silva
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Technological Coordination, Tetraviral Vaccine, Immunobiological Technology Institute (Biomanguinhos), Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alberto Ignacio Olivares Olivares
- Secretaria Estadual de Saúde de Roraima, SESAU/RR, Rua Madrid, 180-Aeroporto, Boa Vista 69310-043, RR, Brazil;
- Medicine & Health School, State University of Roraima, Rua Presidente Juscelino Kubitscheck, 300, Canarinho, Boa Vista 69360-000, RR, Brazil
| | - Isabella Fernandes Delgado
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
2
|
Magwira CA, Nndwamato NP, Selabe G, Seheri ML. Lewis a-b- histo-blood group antigen phenotype is predictive of severe COVID-19 in the black South African population group. Glycobiology 2024; 34:cwad090. [PMID: 37950443 DOI: 10.1093/glycob/cwad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Several risk factors have been associated with SARS-CoV-2 infections and severity of COVID-19 disease it causes. This study investigated whether variations in histo-blood group antigen (HBGA) expression can predispose individuals to SARS-CoV-2 infections and severity of the disease. Nasopharyngeal swabs, randomly selected from SARS-CoV-2 positive and SARS-CoV-2 negative individuals, were tested for Lewis and H-type 1 HBGA phenotypes by ELISA using monoclonal antibodies specific to Lewis a, Lewis b and H type 1 antigens. The most common Lewis HBGA phenotype among all study participants was Lewis a-b+ (46%), followed by Lewis a-b- (24%), Lewis a+b- and Lewis a+b+ (15% each), while 55% of the study participants were H-type 1. Although SARS-CoV-2 negative individuals had a lower likelihood of having a Lewis a-b- phenotype compared to their SARS-CoV-2 positives counterparts (OR: 0.53, 95% C.I: 0.255-1.113), it did not reach statistical significance (P = 0.055). The frequency of Lewis a+b+, Lewis a+B-, Lewis a-b+, H type 1 positive and H type 1 negative were consistent between SARS-CoV-2 positive and SARS-CoV-2 negative individuals. When stratified according to severity of the disease, individuals with Lewis a+b- phenotype had a higher likelihood of developing mild COVID-19 symptoms (OR: 3.27, 95% CI; 0.9604-11.1), but was not statistically significant (P = 0.055), while Lewis a-b- phenotype was predictive of severe COVID-19 symptoms (OR: 4.3, 95% CI: 1.274-14.81), P = 0.016. In conclusion, individuals with Lewis a-b- phenotype were less likely to be infected by SARS-CoV-2, but when infected, they were at risk of severe COVID-19.
Collapse
Affiliation(s)
- Cliff A Magwira
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Ndivho P Nndwamato
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Gloria Selabe
- Hepatitis and HIV Research Unit, Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit (DPRU), Department of Medical Virology, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| |
Collapse
|
3
|
Kabue JP, Khumela R, Meader E, Baroni de Moraes MT, Traore AN, Potgieter N. Norovirus-Associated Gastroenteritis Vesikari Score and Pre-Existing Salivary IgA in Young Children from Rural South Africa. Viruses 2023; 15:2185. [PMID: 38005863 PMCID: PMC10674611 DOI: 10.3390/v15112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus (NoV) is the leading cause of viral gastroenteritis, mostly affecting young children worldwide. However, limited data are available to determine the severity of norovirus-associated AGE (acute gastroenteritis) and to correlate it with the NoV-specific IgA antibodies' level. Between October 2019 and September 2021, two hundred stool samples were randomly collected from symptomatic cases for the vesikari score and NoV-specific IgA assessment in young children from rural South Africa. Additionally, one hundred saliva specimens were concomitantly sampled within the same cohort to evaluate the NoV-specific salivary IgA levels. In addition, 50 paired saliva and stool samples were simultaneously collected from asymptomatic children to serve as controls. NoV strains in stool samples were detected using real-time RT-PCR, amplified, and genotyped with RT-PCR and Sanger sequencing. ELISA using NoV VLP (virus-like particles) GII.4 as antigens was performed on the saliva specimens. Dehydrated children were predominantly those with NoV infections (65/74, 88%; p < 0.0001). NoV-positive infections were significantly associated with the severe diarrhea cases having a high vesikari score (55%, 33/60) when compared to the non-severe diarrheal score (29.3%, 41/140; p < 0.0308). NoV of the GII genogroup was mainly detected in severe diarrhea cases (50.9%, 30/59; p = 0.0036). The geometric means of the NoV-specific IgA level were higher in the asymptomatic NoV-infected group (0.286) as compared to the symptomatic group (0.174). This finding suggests that mucosal immunity may not protect the children from the NoV infection. However, the findings indicated the contribution of the pre-existing NoV-specific IgA immune response in reducing the severity of diarrheal disease. A high vesikari score of AGE associated with the NoV GII genogroup circulating in the study area underscores the need for an appropriate treatment of AGE based on the severity level of NoV-associated clinical symptoms in young children.
Collapse
Affiliation(s)
- Jean-Pierre Kabue
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Ronewa Khumela
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Emma Meader
- Clinical Microbiology, Pathology Department, East Kent Hospitals University NHS Foundation Trust, Ashford TN24 OLZ, UK;
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brazil, 4365-Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| |
Collapse
|
4
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
5
|
Binia A, Siegwald L, Sultana S, Shevlyakova M, Lefebvre G, Foata F, Combremont S, Charpagne A, Vidal K, Sprenger N, Rahman M, Palleja A, Eklund AC, Nielsen HB, Brüssow H, Sarker SA, Sakwinska O. The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study. mSphere 2021; 6:e0068621. [PMID: 34756056 PMCID: PMC8579893 DOI: 10.1128/msphere.00686-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Acute respiratory infections (ARIs) are one of the most common causes of morbidity and mortality in young children. The aim of our study was to examine whether variation in maternal FUT2 (α1,2-fucosyltransferase 2) and FUT3 (α1,3/4-fucosyltransferase 3) genes, which shape fucosylated human milk oligosaccharides (HMOs) in breast milk, are associated with the occurrence of ARIs in breastfed infants as well as the influence of the nasopharyngeal microbiome on ARI risk. Occurrences of ARIs were prospectively recorded in a cohort of 240 breastfed Bangladeshi infants from birth to 2 years. Secretor and Lewis status was established by sequencing of FUT2/3 genes. The nasopharyngeal microbiome was characterized by shotgun metagenomics, complemented by specific detection of respiratory pathogens; 88.6% of mothers and 91% of infants were identified as secretors. Maternal secretor status was associated with reduced ARI incidence among these infants in the period from birth to 6 months (incidence rate ratio [IRR], 0.66; 95% confidence interval [CI], 0.47 to 0.94; P = 0.020), but not at later time periods. The nasopharyngeal microbiome, despite precise characterization to the species level, was not predictive of subsequent ARIs. The observed risk reduction of ARIs among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. However, we found no evidence that modulation of the nasopharyngeal microbiome influenced ARI risk. IMPORTANCE The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Our observations add to the evidence for a role of fucosylated HMOs in protection against respiratory infections in exclusively or predominantly breastfed infants in low-resource settings. There is no indication that the nasopharyngeal microbiome substantially modulates the risk of subsequent mild ARIs. Larger studies are needed to provide mechanistic insights on links between secretor status, HMOs, and risk of respiratory infections.
Collapse
Affiliation(s)
| | | | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | - Mahbubar Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | - Shafiqul Alam Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
6
|
de Moraes MTB, Leitão GAA, Olivares AIO, Xavier MDPTP, Bispo RDS, Sharma S, Leite JPG, Svensson L, Nordgren J. Molecular Epidemiology of Sapovirus in Children Living in the Northwest Amazon Region. Pathogens 2021; 10:965. [PMID: 34451429 PMCID: PMC8400878 DOI: 10.3390/pathogens10080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sapovirus is an important etiological agent of acute gastroenteritis (AGE), mainly in children under 5 years old living in lower-income communities. Eighteen identified sapovirus genotypes have been observed to infect humans. The aim of this study was to identify sapovirus genotypes circulating in the Amazon region. Twenty-eight samples were successfully genotyped using partial sequencing of the capsid gene. The genotypes identified were GI.1 (n = 3), GI.2 (n = 7), GII.1 (n = 1), GII.2 (n = 1), GII.3 (n = 5), GII.5 (n = 1), and GIV.1 (n = 10). The GIV genotype was the most detected genotype (35.7%, 10/28). The phylogenetic analysis identified sapovirus genotypes that had no similarity with other strains reported from Brazil, indicating that these genotypes may have entered the Amazon region via intense tourism in the Amazon rainforest. No association between histo-blood group antigen expression and sapovirus infection was observed.
Collapse
Affiliation(s)
- Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil; (G.A.A.L.); (M.d.P.T.P.X.); (J.P.G.L.)
| | - Gabriel Azevedo Alves Leitão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil; (G.A.A.L.); (M.d.P.T.P.X.); (J.P.G.L.)
| | | | - Maria da Penha Trindade Pinheiro Xavier
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil; (G.A.A.L.); (M.d.P.T.P.X.); (J.P.G.L.)
| | - Romanul de Souza Bispo
- Research Center Roraima Health Observatory (ObservaRR), Federal University of Roraima, Boa Vista 69310-000, RR, Brazil;
| | - Sumit Sharma
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, 581 85 Linköping, Sweden; (S.S.); (L.S.); (J.N.)
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil; (G.A.A.L.); (M.d.P.T.P.X.); (J.P.G.L.)
| | - Lennart Svensson
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, 581 85 Linköping, Sweden; (S.S.); (L.S.); (J.N.)
- Department of Medicine, Division of Infectious Diseases, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Johan Nordgren
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, 581 85 Linköping, Sweden; (S.S.); (L.S.); (J.N.)
| |
Collapse
|
7
|
Olivares AIO, Leitão GAA, Pimenta YC, Cantelli CP, Fumian TM, Fialho AM, da Silva E Mouta S, Delgado IF, Nordgren J, Svensson L, Miagostovich MP, Leite JPG, de Moraes MTB. Epidemiology of enteric virus infections in children living in the Amazon region. Int J Infect Dis 2021; 108:494-502. [PMID: 34052409 DOI: 10.1016/j.ijid.2021.05.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To verify the frequency of viruses causing acute gastroenteritis (AGE) in association with the histo-blood group antigen (HBGA) and Rotarix™ vaccination coverage in children from the Amazon region. DESIGN Fecal and saliva samples were collected from children with AGE (n = 485) and acute respiratory infection (ARI) (n = 249) clinical symptoms. Rotavirus A (RVA), norovirus, human adenovirus (HAdV), and sapovirus (SaV) were verified in feces by molecular detection. Saliva samples were used for HBGA phenotyping/FUT3 genotyping. Blood group types, clinical aspects and Rotarix™ RVA vaccination data were recorded. RESULTS Norovirus remained the most prevalently detected cause of AGE (38%, 184/485 and ARI 21.3%, 53/249). High HAdV frequencies were observed in AGE children (28.6%, 139/485) and ARI children (37.3%, 93/249). RVA was the third most prevalent virus causing AGE (22.7%, 110/485 and ARI 19.3%, 48/249) and a low RV1 coverage (61%, 448/734) was verified. The SaV frequencies were lower (7.2%, 35/485 for AGE and 6.8%, 17/249 for ARI). Secretor children were HBGA susceptible to HAdV infection (OR 1.5, 95% CI 1.0-2.3; P = 0.04) but not to RVA, norovirus or SaV infection. CONCLUSIONS Norovirus could be considered the main etiological agent of AGE. No association was verified for HBGA susceptibility to RVA, norovirus and SaV. Secretor children showed a slight susceptibility to HAdV infection and the Le (a-b-) heterogeneous SNPs on the FUT3 gene.
Collapse
Affiliation(s)
- Alberto Ignacio Olivares Olivares
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Parasite Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Gabriel Azevedo Alves Leitão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Yan Cardoso Pimenta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Carina Pacheco Cantelli
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Alexandre Madi Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Sergio da Silva E Mouta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Isabella Fernandes Delgado
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Lin HY, Lai HH, Elaine Chen YF, Chao HC, Tsai CN, Chang YJ, Chen SY. Clinical significance of the fucosyltransferase 2 (FUT2) secretor status in children hospitalized with acute gastroenteritis in Taiwan. J Formos Med Assoc 2021; 120:212-216. [PMID: 32448707 DOI: 10.1016/j.jfma.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/PURPOSE The FUT2 gene is a histo-blood group antigen (HBGA) that determines the susceptibility to Norovirus (NoV) infection. This study investigated the clinical significance of the FUT2 gene profile and HBGA expression in NoV infection. METHODS Fecal specimens were collected from children in Chang-Gung Children's Hospital with acute gastroenteritis (AGE). The medical records were reviewed for clinical data. The viral etiology of gastroenteritis was validated using molecular methods. Genomic DNA was isolated from saliva or whole blood with the Puregene B Kit, according to the manufacturers' instructions. Single-nucleotide polymorphisms (SNPs) were determined by real-time PCR assays. RESULTS FUT2 gene DNA was examined in 98 children with AGE. NoV was detected by RT-PCR in 44 patients (44.8%), while 54 (55.2%) had non-NoV AGE. Of the 44 NoV patients, 38 (86.3%) were secretors (no G428A mutation) and six (13.7%) were non-secretors (G428A mutation). Of the 54 non-NoV AGE patients, 28 (51.9%) were secretors and 20 (48.1%) were non-secretors. NoV-infected patients who were secretors had more frequent vomiting (P < 0.001), longer duration of diarrhea (P < 0.001), and greater overall disease severity score (P < 0.001) compared with non-secretors. Non-NoV infection secretor AGE patients had a longer duration of diarrhea (P < 0.001) than non-secretors. CONCLUSION FUT2 secretor status affects NoV AGE in children. Secretor patients have prolonged diarrhea, more frequent vomiting, more severe disease, and greater infection transmissibility than non-secretors.
Collapse
Affiliation(s)
- Hsin-Yeh Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Hung-Hsiang Lai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ying Fang Elaine Chen
- Division of Neonatology, Department of Pediatrics, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan.
| | - Hsun-Ching Chao
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Yi-Jung Chang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Shih-Yen Chen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan.
| |
Collapse
|
9
|
Loureiro Tonini MA, Pires Gonçalves Barreira DM, Bueno de Freitas Santolin L, Bondi Volpini LP, Gagliardi Leite JP, Le Moullac-Vaidye B, Le Pendu J, Cruz Spano L. FUT2, Secretor Status and FUT3 Polymorphisms of Children with Acute Diarrhea Infected with Rotavirus and Norovirus in Brazil. Viruses 2020; 12:E1084. [PMID: 32992989 PMCID: PMC7600990 DOI: 10.3390/v12101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Host susceptibility according to human histo-blood group antigens (HBGAs) is widely known for norovirus infection, but is less described for rotavirus. Due to the variable HBGA polymorphism among populations, we aimed to evaluate the association between HBGA phenotypes (ABH, Lewis and secretor status) and susceptibility to rotavirus and norovirus symptomatic infection, and the polymorphisms of FUT2 and FUT3, of children from southeastern Brazil. Paired fecal-buccal specimens from 272 children with acute diarrhea were used to determine rotavirus/norovirus genotypes and HBGAs phenotypes/genotypes, respectively. Altogether, 100 (36.8%) children were infected with rotavirus and norovirus. The rotavirus P[8] genotype predominates (85.7%). Most of the noroviruses (93.8%) belonged to genogroup II (GII). GII.4 Sydney represented 76% (35/46) amongst five other genotypes. Rotavirus and noroviruses infected predominantly children with secretor status (97% and 98.5%, respectively). However, fewer rotavirus-infected children were Lewis-negative (8.6%) than the norovirus-infected ones (18.5%). FUT3 single nucleotide polymorphisms (SNP) occurred mostly at the T59G > G508A > T202C > C314T positions. Our results reinforce the current knowledge that secretors are more susceptible to infection by both rotavirus and norovirus than non-secretors. The high rate for Lewis negative (17.1%) and the combination of SNPs, beyond the secretor status, may reflect the highly mixed population in Brazil.
Collapse
Affiliation(s)
- Marco André Loureiro Tonini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Débora Maria Pires Gonçalves Barreira
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Luciana Bueno de Freitas Santolin
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Lays Paula Bondi Volpini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro 4365, RJ, Brazil;
| | | | - Jacques Le Pendu
- CRCINA, Inserm, Université de Nantes, F-44000 Nantes, France; (B.L.M.-V.); (J.L.P.)
| | - Liliana Cruz Spano
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| |
Collapse
|
10
|
Cantelli CP, Fumian TM, Malta FC, da Cunha DC, Brasil P, Nordgren J, Svensson L, Miagostovich MP, de Moraes MTB, Leite JPG. Norovirus infection and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 82:104280. [PMID: 32165242 DOI: 10.1016/j.meegid.2020.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/29/2022]
Abstract
Norovirus has emerged as an important viral agent of acute pediatric gastroenteritis, with a growing genetic diversity reported in the last decades. Histo-blood group antigens (HBGAs) present on the surface of enterocytes are susceptibility factors for norovirus infection and differ between populations which could affects the epidemiology and evolution of these viruses. This study investigated the frequency, incidence and genetic diversity of noroviruses in a cohort of rotavirus A vaccinated children in association to the host HBGA (Secretor/Lewis) genetic susceptibility profile. Norovirus genogroups I and II (GI/GII) were screened by RT-qPCR in 569 stool samples from 132 children followed-up from birth to 11 months of age during 2014--2018. Noroviruses were identified in 21.2% of children enrolled in this study, with a norovirus detection rate of 5.6% (32/569), in 17.1% and 4.7% of acute diarrheic episodes (ADE) and non-ADE, respectively. The norovirus incidence was 5.8 infections per 100 child-months. Partial nucleotide sequencing characterized six different norovirus genotypes, with GII.4 Sydney 2012 being detected in 50% associated with three different polymerase genotypes (GII·P31, GII·P16 and GII·P4 New Orleans 2009). FUT3 genotyping was yielded seven new mutations in this population. A significant association between symptomatic norovirus infection and secretor profile could be inferred.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil; Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Denise Cotrim da Cunha
- Sérgio Arouca Public Health National School, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Cantelli CP, Velloso AJ, Assis RMSD, Barros JJ, Mello FCDA, Cunha DCD, Brasil P, Nordgren J, Svensson L, Miagostovich MP, Leite JPG, Moraes MTBD. Rotavirus A shedding and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil, 2014-2018. Sci Rep 2020; 10:6965. [PMID: 32332841 PMCID: PMC7181595 DOI: 10.1038/s41598-020-64025-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the human histo-blood group antigen (HBGAs) could affect the effectiveness of the oral rotavirus vaccines, suggesting secretor positive individuals develop a more robust response. We investigated the Rotavirus A (RVA) shedding in association with the host susceptibility profile in children from a birth community-cohort in Rio de Janeiro, Brazil, from 2014 to 2018. A total of 132 children were followed-up between 0 to 11-month-old, stool samples were collected before/after the 1st/2nd RV1 vaccination doses and saliva samples were collected during the study. RVA shedding was screened by RT-qPCR and G/P genotypes determined by multiplex RT-PCR and/or Sanger nucleotide sequencing. The sequencing indicated an F167L amino acid change in the RV1 VP8* P[8] in 20.5% of shedding follow-ups and these mutant subpopulations were quantified by pyrosequencing. The HBGA/secretor status was determined and 80.3% of the children were secretors. Twenty-one FUT2 gene SNPs were identified and two new mutations were observed. The mutant F167L RV1 VP8* P[8] was detected significantly more in Le (a+b+) secretors (90.5%) compared to non-secretors and even to secretors Le (a-b+) (9.5%). The study highlights the probable association between RV1 shedding and HBGAs as a marker for evaluating vaccine strain host susceptibility.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Alvaro Jorge Velloso
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Júnior Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | | | - Denise Cotrim da Cunha
- Sérgio Arouca National School of Public Health, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Leitão GAA, Olivares AIO, Pimenta YC, Delgado IF, Miagostovich MP, Leite JPG, Moraes MTBD. Human Bocavirus genotypes 1 and 2 detected in younger Amazonian children with acute gastroenteritis or respiratory infections, respectively. Int J Infect Dis 2020; 95:32-37. [PMID: 32251804 DOI: 10.1016/j.ijid.2020.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aimed to verify the frequency, genotypes, and etiological role of Human Bocavirus (HBoV) in younger Amazonian children with either acute gastroenteritis (AGE) or respiratory infections (ARI). The influence of Rotarix™ vaccination and co-infection status was also investigated. DESIGN HBoV quantitative polymerase chain reaction (qPCR) testing was done on both fecal and saliva (1468 samples) from 734 children < 5 months old living in the Amazon (Brazil, Guyana, and Venezuela). High and median HBoV viral load samples were used for extraction, nested PCR amplification, and sequencing for genotyping. HBoV mRNA detection was done by reverse transcription following DNA amplification. RESULTS The overall HBoV frequencies were 14.2% (69/485; AGE) and 14.1% (35/249; ARI) (p = 0.83). HBoV exclusively infected 4.5% (22/485; AGE) and 4% (10/249) of the Amazonian children (Odds ratios 1.13, 95% confidence interval= 2.42-0.52). HBoV 1 was mainly detected in feces and saliva from AGE children; and HBoV2, from ARI children. HBoV mRNA was detected only in feces. The Rotarix™ vaccination status did not affect the HBoV frequencies. CONCLUSIONS We suggest that, after entry into the air/oral pathways, HBoV1 continues infecting toward the intestinal tract causing AGE. HBoV2 can be a causative agent of AGE and ARI in younger Amazonian children.
Collapse
Affiliation(s)
- Gabriel Azevedo Alves Leitão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil; Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Alberto Ignácio Olivares Olivares
- Post-Graduate Program in Parasite Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Yan Cardoso Pimenta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Isabella Fernandes Delgado
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|