1
|
Javadi K, Ghaemian P, Baziboron M, Pournajaf A. Investigating the Link Between Biofilm Formation and Antibiotic Resistance in Clinical Isolates of Acinetobacter baumannii. Int J Microbiol 2025; 2025:1009049. [PMID: 39974278 PMCID: PMC11839262 DOI: 10.1155/ijm/1009049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Background: Acinetobacter baumannii has become a significant problem in hospitals worldwide during the last decades. Biofilm formation is a virulence factor that may affect antibiotic resistance. This study aimed to elucidate the correlation between biofilm formation and biofilm-related and oxacillinase genes in A. baumannii clinical isolates. Methods: This study was conducted on 53 A. baumannii isolates collected from hospitals affiliated with Babol University of Medical Sciences (Babol, Iran) from April to October 2023. Kirby-Bauer disc diffusion was used to determine antibacterial resistance. Biofilm formation was examined using crystal violet staining. Polymerase chain reaction was used to detect oxacillinase (bla OXA-23, bla OXA-24, bla OXA-51, and bla OXA-58) and biofilm-encoding (bap and bla PER-1) genes using specific primers. Results: The strains showed the highest resistance to trimethoprim/sulfamethoxazole and ciprofloxacin (98.11%) and the lowest resistance to ampicillin/sulbactam (66.03%). All isolates formed biofilms. Also, 67.92%, 18.86%, and 11.32% were strong, moderate, and weak biofilm producers, respectively. The frequencies of bla OXA-23, bla OXA-24, bla OXA-51, bap, and bla PER-1 genes were 92.45%, 71.69%, 100%, 73.58%, and 58.49%, respectively. None of the isolates harbored bla OXA-58. Conclusions: A high prevalence of antibiotic-resistant strains was found among A. baumannii clinical isolates. There was no significant correlation between the clinical sample type and biofilm formation, but a notable link was found between antimicrobial resistance and biofilm formation, except for ciprofloxacin. Oxacillinase genes were not significantly correlated with biofilm formation, but biofilm production was associated with bap rather than bla PER-1. Understanding the A. baumannii biofilm formation process is crucial for effective control of associated infections by targeting this mechanism.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Poorya Ghaemian
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mana Baziboron
- Infectious Department, Rouhani Hospital, Bobol University of Medical Science, Babol, Iran
| | - Abazar Pournajaf
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Dubey V, Farrington N, Harper N, Johnson A, Horner I, Stevenson A, Parkes A, Hoare L, Das S, Hope W. Acinetobacter baumannii transformants expressing oxacillinases and metallo-β-lactamases that confer resistance to meropenem: new tools for anti- Acinetobacter drug development and AMR preparedness. Antimicrob Agents Chemother 2024; 68:e0022224. [PMID: 39189767 PMCID: PMC11465972 DOI: 10.1128/aac.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in Acinetobacter baumannii is an unmet medical need. Multiple drug-resistant/extremely drug-resistant strains of A. baumannii do not display growth well in in vivo models, and consequently, their response to antibacterial therapy is inconsistent. We addressed this issue by engineering carbapenem resistance motifs into the highly virulent genetic background of A. baumannii AB5075. This strain has a chromosomally encoded oxa-23 that was deleted (Δoxa-23), then plasmids expressing oxa-23, oxa-24/40, oxa-58, imp-1, vim-2, and ndm-1 were introduced to create the mutant strains. Each transformant was used as a challenge strain in a neutropenic murine thigh infection model and assessed for the extent of growth and response to meropenem 200 mg/kg subcutaneously every 6 h (q6h). Pharmacodynamic analyses were performed by transforming drug exposure from dose (mg/kg) to the fraction of the dosing interval; free meropenem concentrations were >minimum inhibitory concentration (MIC) (fT > MIC). AB5075 and the AB5075Δoxa-23 mutant had a MICs of 32 and 4 mg/L, respectively. The transformants harboring oxacillinases oxa-24/40 and oxa-58 had an MIC of 64 mg/L. The metallo-β-lactamases imp-1, vim-2, and ndm-1 had MICs of 128, 64, and 64 mg/L, respectively. All vehicle-treated transformants displayed in vivo growth in the range of 0.75-1.4 log. The response to meropenem was consistent with the varying fT > MIC of the transformants and was readily described by an inhibitory sigmoid Emax relationship. Stasis was achieved with a fT > MIC of 0.36. These A. baumannii transformants are invaluable new tools for the assessment of anti-Acinetobacter compounds and provide a new pathway for AMR preparedness.
Collapse
Affiliation(s)
- Vineet Dubey
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Nicola Farrington
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Nicholas Harper
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Adam Johnson
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Iona Horner
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Adam Stevenson
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Annie Parkes
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Lewis Hoare
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Shampa Das
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - William Hope
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| |
Collapse
|
3
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Abbasi E, van Belkum A, Ghaznavi-Rad E. High frequency of carbapenemase in extensively drug-resistant Acinetobacter baumannii isolates in central Iran. World J Microbiol Biotechnol 2023; 39:321. [PMID: 37755552 DOI: 10.1007/s11274-023-03778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES We assessed the frequency of occurrence for infections caused by wild-type A. baumannii, multidrug-resistant (MDR) or XDR A. baumannii, and CRAB. We detected different antibiotic resistance genes in the genomes of infectious A. baumannii strains from central Iran. METHODS This study investigated 546 clinical patient samples for the presence of A. baumannii by using conventional culture methods and PCR. Antibiotic resistance profiles, and the phenotypic and genotypic characteristics of various antibiotic genes were analyzed. RESULTS Out of 546 samples, 87 (15.9%) A. baumannii isolates were obtained using culture and all culture positive samples were also positive by PCR. The most effective antibiotics were polymyxin B (n = 84 strains) (96.6% susceptibility), colistin (n = 81) (93.1%), and ampicillin/sulbactam (n = 18) (20.7%). All clinical A. baumannii isolates were ESBL-positive. The number of CRAB was 84 (96.5%). All CRAB isolates were both MDR and XDR. Of all CRAB isolates, 78 out of 84 (92.4%) produced metallo-β-lactamase (MBL) by phenotypic diagnosis. The most abundant genes were blaPER (32/87; 36.7%), blaTEM (29/87; 33.3%), blaVEB (26/87; 29.8%) for ESBL and Ambler class D β -lactamases included blaOXA-23 (69/84; 82.1%), blaOXA-24 (46/84; 54.7%), MBLs included blaVIM (51/84; 60.7%), and blaIMP (28/84; 33.3%) for carbapenemase. CONCLUSION High frequencies of XDR A. baumannii and CRAB (96.5%) were detected in central Iran. Quick and accurate diagnosis, appropriate isolation of patients colonized or infected by CRAB isolates, application of accurate and effective infection control policies and programs, and appropriate preventive measures are deemed helpful in preventing the further spread of these resistant and clinically highly relevant strains.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- , Khomein, Iran
| | | | - Ehsanollah Ghaznavi-Rad
- Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- , Arak, Iran.
| |
Collapse
|
5
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
6
|
Khoshnood S, Sadeghifard N, Mahdian N, Heidary M, Mahdian S, Mohammadi M, Maleki A, Haddadi MH. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. J Clin Lab Anal 2022; 37:e24814. [PMID: 36573013 PMCID: PMC9833984 DOI: 10.1002/jcla.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a pathogen responsible for nosocomial infections, especially in patients with burns and ventilator-associated pneumonia (VAP). The aims of this study was to compare the biofilm formation capacity, antimicrobial resistance patterns and molecular typing based on PFGE (Pulsed-Field Gel Electrophoresis) in A. baumannii isolated from burn and VAP patients. MATERIALS AND METHODS A total of 50 A. baumannii isolates were obtained from burn and VAP patients. In this study, we assessed antimicrobial susceptibility, biofilm formation capacity, PFGE fingerprinting, and the distribution of biofilm-related genes (csuD, csuE, ptk, ataA, and ompA). RESULTS Overall, 74% of the strains were multidrug resistant (MDR), and 26% were extensively drug-resistant (XDR). Regarding biofilm formation capacity, 52%, 36%, and 12% of the isolates were strong, moderate, and weak biofilm producers. Strong biofilm formation capacity significantly correlated with XDR phenotype (12/13, 92.3%). All the isolates harbored at least one biofilm-related gene. The most prevalent gene was csuD (98%), followed by ptk (90%), ataA (88%), ompA (86%), and csuE (86%). Harboring all the biofilm-related genes was significantly associated with XDR phenotype. Finally, PFGE clustering revealed 6 clusters, among which cluster No. 2 showed a significant correlation with strong biofilm formation and XDR phenotype. CONCLUSION Our findings revealed the variable distribution of biofilm-related genes among MDR and XDR A. baumannii isolates from burn and VAP patients. A significant correlation was found between strong biofilm formation capacity and XDR phenotype. Finally, our results suggested that XDR phenotype was predominant among strong-biofilm producer A. baumannii in our region.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | | - Nahid Mahdian
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Mohsen Heidary
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Somayeh Mahdian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Maryam Mohammadi
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Abbas Maleki
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | |
Collapse
|
7
|
The prevalence of antibiotic-resistant Acinetobacter baumannii infections among the Iranian ICU patients: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Nazari M, Azizi O, Solgi H, Fereshteh S, Shokouhi S, Badmasti F. Emergence of carbapenem resistant Acinetobacter baumannii clonal complexes CC2 and CC10 among fecal carriages in an educational hospital. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1478-1488. [PMID: 33855919 DOI: 10.1080/09603123.2021.1892036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/13/2021] [Indexed: 05/23/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii strains are increasing worldwide. In this study, samples were collected from hospital environments, extra hospital environments, and fecal carriages. 76% (89/117) of bacterial isolates were detected as A. baumannii strains. The imipenem resistance in the hospital environment, fecal carriages, extra hospital environments, and clinical isolates was 37.7% (17/45), 100% (9/9), 0% (0/45), and 92.9% (92/99), respectively. The blaVIM and blaOXA-23 were detected in 6.6% (3/45) and 2.2% (1/45) of strains isolated from hospital environments. Interestingly, strains isolated from fecal carriages had blaVIM, blaOXA-23, and blaIMP genes which resembled carbapenem resistance genes in clinical strains. The structure of clonal relatedness among all non-clinical isolates was as follows: CC2, 37% (33/89); CC1, 22.4% (20/89); CC3, 12.3% (11/89); CC25, 7.8% (7/89); CC10, 4.4% (4/89) and CC15, 2.2% (2/89). Comparison of clonal relatedness among clinical and non-clinical isolates indicated that widespread clones including CC2, CC3, and CC10 were common clonal complexes between two categories.
Collapse
Affiliation(s)
- Mohsen Nazari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Omid Azizi
- Health Science Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hamid Solgi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shervin Shokouhi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
A New Twist: The Combination of Sulbactam/Avibactam Enhances Sulbactam Activity against Carbapenem-Resistant Acinetobacter baumannii (CRAB) Isolates. Antibiotics (Basel) 2021; 10:antibiotics10050577. [PMID: 34068158 PMCID: PMC8152955 DOI: 10.3390/antibiotics10050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
An increasing number of untreatable infections are recorded every year. Many studies have focused their efforts on developing new β-lactamase inhibitors to treat multi-drug resistant (MDR) isolates. In the present study, sulbactam/avibactam and sulbactam/relebactam combination were tested against 187 multi-drug resistant (MDR) Acinetobacter clinical isolates; both sulbactam/avibactam and sulbactam/relebactam restored sulbactam activity. A decrease ≥2 dilutions in sulbactam MICs was observed in 89% of the isolates when tested in combination with avibactam. Sulbactam/relebactam was able to restore sulbactam susceptibility in 40% of the isolates. In addition, the susceptibility testing using twenty-three A. baumannii AB5075 knockout strains revealed potential sulbactam and/or sulbactam/avibactam target genes. We observed that diazabicyclooctanes (DBOs) β-lactamase inhibitors combined with sulbactam restore sulbactam susceptibility against carbapenem-resistant Acinetobacter clinical isolates. However, relebactam was not as effective as avibactam when combined with sulbactam. Exploring novel combinations may offer new options to treat Acinetobacter spp. infections, especially for widespread oxacillinases and metallo-β-lactamases (MBLs) producers.
Collapse
|
10
|
Carbapenemase-Producing Non-Glucose-Fermenting Gram-Negative Bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Int J Microbiol 2020; 2020:9461901. [PMID: 33204275 PMCID: PMC7658691 DOI: 10.1155/2020/9461901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Studies have reported that the existence of CP bacteria in Africa, but, in general, comprehensive data about the molecular epidemiology of CP organisms are limited. Therefore, this systematic review and meta-analysis expound the pooled prevalence of CP P. aeruginosa and CP A. baumannii clinical isolates in Africa. It also identified the diversity of carbapenemases or their encoding genes among the isolates in Africa. Lastly, the review observed the trends of these CP isolates in Africa. Methods A comprehensive search was performed between July 2019 and October 2019 in the following databases: PubMed, Google Scholar, and African Journal online. The included articles were published only in English. The screening was done by two authors independently. The data extracted on Excel spreadsheet were transferred to STATA 11 software for analysis. Results From a total of 1,454 articles searched, 42 articles were eligible. Most of the studies were conducted in the North Africa region. But there was no report from Central Africa. The pooled prevalence of CP P. aeruginosa and CP A. baumannii among the clinical specimens in Africa was 21.36% and 56.97%, respectively. OXA-23 and VIM were the most prevailing carbapenemase among P. aeruginosa and A. baumannii, respectively. The cumulative meta-analysis revealed a relative increment of the prevalence of CP P. aeruginosa over time in Africa but it showed a higher prevalence of CP A. baumannii isolates across years. Conclusion The review revealed a high pooled prevalence of CP A. baumannii clinical isolates in Africa which needs urgent action. Moreover, the emergence of concomitant carbapenemases, especially OXA-23 + NDM among CP A. baumannii, was also an alarming problem.
Collapse
|
11
|
Mortazavi SM, Farshadzadeh Z, Janabadi S, Musavi M, Shahi F, Moradi M, Khoshnood S. Evaluating the frequency of carbapenem and aminoglycoside resistance genes among clinical isolates of Acinetobacter baumannii from Ahvaz, south-west Iran. New Microbes New Infect 2020; 38:100779. [PMID: 33194209 PMCID: PMC7644744 DOI: 10.1016/j.nmni.2020.100779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii is one of the most important opportunistic challenging pathogens as a result of its ability to acquire resistance to broad range of antibiotics and cause a variety of severe nosocomial infections. We investigated the frequency of the aminoglycoside-modifying enzymes (AMEs) and oxacillinase genes among clinical isolates of A. baumannii collected from hospitalized patients in Imam Khomeini Hospital, Ahvaz city, Iran. This prospective cross-sectional study was performed on 80 clinical isolates of A. baumannii collected from patients referred to Imam Khomeini Hospital in Ahvaz, Iran. Initial identification of isolates as A. baumannii was performed using conventional bacteriologic tests, and final confirmation was carried out by PCR of blaOXA-51-like gene and multiplex PCR of gyrB locus. MICs of different classes of antibiotics against these strains was measured by using VITEK 2 system. After extraction of genomic DNA, two groups of multidrug-resistant A. baumannii genes including AME (aadA1, aadB, aphA6 and aacC1) and oxacillinases (blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like and blaOXA-143-like) were detected. According to antibiotic susceptibility testing, among 80 A. baumannii strains, 75 isolates (91.25%) were multidrug resistant. The results showed that colistin and tigecycline, with respective sensitivity rates of 97.5% (78/80) and 56.25% (45/80), had the highest effects. The presence of blaOXA-51-like and gyrB genes was confirmed in all strains. Furthermore, blaOXA-23-like and blaOXA-24-like genes were found in 68.75% (55/80) and 20% (16/80) of isolates respectively, while no isolate harbored the blaOXA-143-like gene. The frequency of genes encoding the AMEs including aadA1, aacC1, aphA6 and aadB were 11.25% (9/80), 16.25% (13/80), 22.5% (18/80) and 30% (24/80) respectively. Our findings indicate that the presence of the aadB and aphA6 is correlated with high resistance against amikacin and gentamicin. We found a very high resistance rate against most of the antimicrobial agents usually prescribed for severe infections caused by A. baumannii. Therefore, because of rapid emergence of resistance even for colistin or tigecycline, monotherapy should be avoided. These results show the importance of providing antibiotics correctly in intensive care units and following antibiotic stewardship protocols as the only effective strategies to attempt to control antibiotic resistance in healthcare settings.
Collapse
Affiliation(s)
- S M Mortazavi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Z Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Iran.,Health Research Institute of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Janabadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Musavi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - F Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Iran.,Health Research Institute of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Moradi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Iran.,Health Research Institute of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Khoshnood
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
12
|
Systematic surveillance and meta-analysis on the prevalence of metallo-β-lactamase producers among carbapenem resistant clinical isolates in Pakistan. J Glob Antimicrob Resist 2020; 23:55-63. [PMID: 32858259 DOI: 10.1016/j.jgar.2020.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Emergence of carbapenem resistance (CR) is a health concern of pertinent importance. Epidemiological surveillance of CR at global and indigenous level (Pakistan) can help to improve infection control and establish pharmacovigilance programs. This study evaluates the prevalence of clinically significant CR isolates, and its genetic variant distribution among geographical regions of Pakistan. METHODS A meta-analysis was conducted to present the current rate of CR infections and prevalence of Metallo-β-lactamases (MBLs). The proposed subject was researched using electronic databases to identify the available literature. Thereafter, relevant data was extracted and statistical analysis was performed using STATA version 14. RESULTS A total of 110 relevant studies were identified with 19 meeting the inclusion criteria for the meta-analysis of CR, while 22 for MBLs. Pooled rate for carbapenem resistance was determined to be 0.28 (95% CI: 0.26-0.31) with overall significant heterogeneity (I2=99.61%, P<0.001) and significant estimated score ES=0 (Z=22.65, P<0.001). In Pakistan, the pooled proportion of MBL producers was 0.34 (95% CI: 0.29-0.39) with overall heterogeneity significance (I2=99.62%, P<0.001) and significant ES=0 (Z=13.17, P<0.001). CONCLUSION Conclusively, diverse variants of carbapenemases (VIM, IMP, NDM, KPC, GIM) along with other β-lactamase variants (OXA, TEM, SHV, CTX-M) have been reported across the country. However, New Delhi Metallo-β-lactamase (NDM)-variants were reported in predominant literature. The prevalence of CR isolates in Pakistan is alarming, associated with MBL production primarily evident from the studies. The study emphasizes the need for regular surveillance, pharmacovigilance and antibiotic stewardship programs to ensure the availability of data to the authorities for preemptive measures of infection control.
Collapse
|
13
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
14
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
15
|
López-Durán PA, Fonseca-Coronado S, Lozano-Trenado LM, Araujo-Betanzos S, Rugerio-Trujillo DA, Vaughan G, Saldaña-Rivera E. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. PLoS One 2020; 15:e0231829. [PMID: 32302355 PMCID: PMC7164640 DOI: 10.1371/journal.pone.0231829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic infectious agent that affects primarily immunocompromised individuals. A. baumannii is highly prevalent in hospital settings being commonly associated with nosocomial transmission and drug resistance. Here, we report the identification and genetic characterization of A. baumannii strains among patients in a tertiary level hospital in Mexico. Whole genome sequencing analysis was performed to establish their genetic relationship and drug resistance mutations profile. Ten genetically different, extensively drug resistant strains were identified circulating among seven wards. The genetic profiles showed resistance primarily against aminoglycosides and beta-lactam antibiotics. Importantly, no mutants conferring resistance to colistin were observed. The results highlight the importance of implementing robust classification schemes for advanced genetic characterization of A. baumannii clinical isolates and simultaneous detection of drug resistance markers for adequate patient's management in clinical settings.
Collapse
Affiliation(s)
- Paúl Alexis López-Durán
- Departamento de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Laboratorio de Investigación en Enfermedades Infecciosas; Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, México City, Edo. de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Naucalpan de Juárez, Estado de México, México
| | - Salvador Fonseca-Coronado
- Laboratorio de Investigación en Enfermedades Infecciosas; Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, México City, Edo. de México, México
| | | | - Sergio Araujo-Betanzos
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, México
| | | | - Gilberto Vaughan
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Naucalpan de Juárez, Estado de México, México
| | - Elsa Saldaña-Rivera
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Ciudad de México, México
| |
Collapse
|
16
|
Accumulation of Antibiotic Resistance Genes in Carbapenem-Resistant Acinetobacter baumannii Isolates Belonging to Lineage 2, Global Clone 1, from Outbreaks in 2012-2013 at a Tehran Burns Hospital. mSphere 2020; 5:5/2/e00164-20. [PMID: 32269158 PMCID: PMC7142300 DOI: 10.1128/msphere.00164-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii strains are among the most critical antibiotic-resistant bacteria causing hospital-acquired infections and treatment failures. The global spread of two clones has been responsible for the bulk of the resistance, in particular, carbapenem resistance. However, there is a substantial gap in our knowledge of which clones and which specific lineages within each clone are circulating in many parts of the world, including Africa and the Middle East region. This is the first genomic analysis of carbapenem-resistant A. baumannii strains from Iran. All the isolates, from a single hospital, belonged to lineage 2 of global clone 1 (GC1) but fell into two groups distinguished by genes in the locus for capsule biosynthesis. The analysis suggests a potential origin of multiply antibiotic-resistant lineage 2 in the Middle East region and highlights the ongoing evolution of carbapenem-resistant GC1 A. baumannii strains. It will enhance future studies on the local and global GC1 population structure. The worldwide distribution of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a global concern, particularly in countries where antibiotic prescription is not tightly regulated. However, knowledge of the genomic aspects of CRAB from many parts of the world is still limited. Here, 50 carbapenem-resistant A. baumannii isolates recovered at a single hospital in Tehran, Iran, during several outbreaks in 2012 and 2013 were found to be resistant to multiple antibiotics. They were examined using PCR mapping and multilocus sequence typing (MLST). All Iranian strains belonged to sequence type 328 in the Institut Pasteur MLST scheme (ST328IP), a single-locus variant of ST81IP, and all Iranian strains contained two carbapenem resistance genes, oxa23 and oxa24. The oxa23 gene is in the transposon Tn2006 in AbaR4, which interrupts the chromosomal comM gene. Phylogenetic analysis using whole-genome sequence (WGS) data for 9 isolates showed that they belonged to the same clade, designated the ST81/ST328 clade, within lineage 2 of global clone 1 (GC1). However, there were two groups that included either KL13 or KL18 at the K locus (KL) for capsular polysaccharide synthesis and either a tet39 or an aadB resistance gene, respectively. The genetic context of the resistance genes was determined, and the oxa24 (OXA-72 variant) and tet39 (tetracycline resistance) genes were each in a pdif module in different plasmids. The aadB gene cassette (which encodes gentamicin, kanamycin, and tobramycin resistance) was harbored by pRAY*, and the aphA6 gene (which encodes amikacin resistance) and sul2 gene (which encodes sulfamethoxazole resistance) were each harbored by a different plasmid. The sequences obtained here will underpin future studies of GC1 CRAB strains from the Middle East region. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii strains are among the most critical antibiotic-resistant bacteria causing hospital-acquired infections and treatment failures. The global spread of two clones has been responsible for the bulk of the resistance, in particular, carbapenem resistance. However, there is a substantial gap in our knowledge of which clones and which specific lineages within each clone are circulating in many parts of the world, including Africa and the Middle East region. This is the first genomic analysis of carbapenem-resistant A. baumannii strains from Iran. All the isolates, from a single hospital, belonged to lineage 2 of global clone 1 (GC1) but fell into two groups distinguished by genes in the locus for capsule biosynthesis. The analysis suggests a potential origin of multiply antibiotic-resistant lineage 2 in the Middle East region and highlights the ongoing evolution of carbapenem-resistant GC1 A. baumannii strains. It will enhance future studies on the local and global GC1 population structure.
Collapse
|
17
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
18
|
Hoang Quoc C, Nguyen Thi Phuong T, Nguyen Duc H, Tran Le T, Tran Thi Thu H, Nguyen Tuan S, Phan Trong L. Carbapenemase Genes and Multidrug Resistance of Acinetobacter Baumannii: A Cross Sectional Study of Patients with Pneumonia in Southern Vietnam. Antibiotics (Basel) 2019; 8:antibiotics8030148. [PMID: 31547482 PMCID: PMC6783976 DOI: 10.3390/antibiotics8030148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Acinetobacter baumannii (Ab) is an opportunistic bacterial pathogen found in hospital-acquired infections including nosocomial pneumonia, especially multidrug-resistant Ab. This study aims to survey the drug resistance profiles of Ab isolated from patients in Thong Nhat Dong Nai General Hospital and assess the relationship between genotypes and antibiotic resistance; Methods: Ninety-seven Ab strains isolated from 340 lower respiratory tract specimens among pneumonia patients were used to screen the most common local carbapenemase genes. Antimicrobial susceptibility testing results and demographic data were collected and minimum inhibitory concentrations (MIC) of colistin were also determined; Results: Over 80% and 90% of Ab strains were determined as carbapenem-resistant and multidrug-resistant (MDR), respectively. Most of the strains carried carbapenemase genes, including blaOXA-51, blaOXA-23-like, blaOXA-58-like, and blaNDM-1, with proportions of 97 (100%), 76 (78.4%), 10 (10.3%), 6 (6.2%), respectively. Amongst these genes, blaOXA-23-like was the only gene which significantly influenced the resistance (p < 0.0001); and Conclusions: The severity of Ab antibiotic resistance is urgent and specifically related to carbapenemase encoding genes. Therefore, screening of MDR Ab and carbapenemase for better treatment options is necessary.
Collapse
Affiliation(s)
| | - Thao Nguyen Thi Phuong
- Department of health and applied science, Dong Nai Technology University, Dong Nai Province 710000, Vietnam
| | - Hai Nguyen Duc
- Department of planning division, The Pasteur Institute, Ho Chi Minh City 700000, Vietnam
| | - Trung Tran Le
- College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hang Tran Thi Thu
- Training center, The Pasteur Institute, Ho Chi Minh City 700000, Vietnam
| | - Si Nguyen Tuan
- Department of microbiology, Thong Nhat Dong Nai General Hospital, Bien Hoa City, Dong Nai Province 710000, Vietnam
| | | |
Collapse
|