1
|
Konjengbam BD, Meitei HN, Pandey A, Haobam R. Goals and strategies in vaccine development against tuberculosis. Mol Immunol 2025; 183:56-71. [PMID: 40327952 DOI: 10.1016/j.molimm.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major health problem globally. The emergence of multi-drug-resistant TB and extensively drug-resistant TB has become a severe threat to TB control programs. Currently, the Bacille Calmette-Guerin (BCG) vaccine protects a child from disease dissemination efficiently, but its efficiency wanes in adults. Despite all the limitations of BCG and accelerated TB vaccine research, BCG remains the only approved vaccine available for TB. Anti-TB drug treatment has been successful in combating the disease, but it has various side effects and requires an extended drug treatment period. So, vaccination is the finest outlook that can surpass the above-mentioned limitations. Several vaccine candidates are in the pipeline, and the hope for a potential candidate to either boost the BCG vaccine or replace BCG is underway. This review discusses different approaches to TB vaccine development. It summarizes all the challenges and limitations in vaccine development, and its preclinical and clinical trials. Additionally, DNA vaccines and their vaccination techniques are also discussed. Furthermore, the immunoinformatics approach and nanomaterial-based vaccine delivery with practical and productive endpoints are also discussed. Lastly, the potential prospects are also suggested for further studies, which would help bring positive outcomes.
Collapse
Affiliation(s)
| | | | - Anupama Pandey
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India.
| |
Collapse
|
2
|
Singh S, Verma P, Gaur M, Bhati L, Madan R, Sharma PP, Rawat A, Rathi B, Singh M. In-silico development of a novel TLR2-mediating multi-epitope vaccine against Mycobacterium tuberculosis. In Silico Pharmacol 2025; 13:34. [PMID: 40018380 PMCID: PMC11861476 DOI: 10.1007/s40203-025-00322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of mortality worldwide. The elusive nature of this pathogen and its ability to develop drug resistance makes it a serious threat to global health. BCG, the only preventive vaccine for TB, has a limited efficacy and provides partial protection against the disease. A new effective recombinant vaccine capable of producing a stronger and more comprehensive immune response is required to address this global threat. In the present study, we adopted an in-silico approach to develop a multi-epitope vaccine by screening 198 "regulatory proteins" of Mtb H37Rv strain. Epitopes generated from these proteins were screened on the basis of antigenicity, cytokine profile, allergenicity, toxicity, conservancy and population coverage. Selected epitopes were docked with predominant MHC alleles that were used to develop a vaccine construct using suitable linkers and adjuvant. The construct was subjected to homology modelling, tertiary structure validation and refinement and was eventually docked with Toll-like receptor 2 receptor. Molecular dynamic simulation studies revealed stable interactions between the vaccine construct and TLR-2 receptor. The construct also displayed a high probability to elicit a protective immune response involving both humoral and cell-mediated components. In conclusion, the findings suggest that the constructed vaccine has the potential to induce a robust immune response against Mtb. However, further in-vitro and in-vivo studies are required to assess the safety, efficacy, and long-term protective effects of the vaccine construct. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00322-8.
Collapse
Affiliation(s)
- Swati Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanshu Verma
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
- Hansraj College, University of Delhi, New Delhi, India
| | - Madhav Gaur
- School of Life Sciences, Technical University of Munich, Munich, Germany
- Hansraj College, University of Delhi, New Delhi, India
| | - Lavi Bhati
- Department of Reproductive Biology, All India Institute for Medical Sciences, New Delhi, India
- Hansraj College, University of Delhi, New Delhi, India
| | - Riya Madan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
- Hansraj College, University of Delhi, New Delhi, India
| | - Prem P. Sharma
- Hansraj College, University of Delhi, New Delhi, India
- HeteroChem InnoTech, New Delhi, Delhi India
| | - Ayushi Rawat
- Hansraj College, University of Delhi, New Delhi, India
| | - Brijesh Rathi
- H.G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, New Delhi, India
| | - Medha Singh
- Centre for Tuberculosis Research, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
3
|
Eke IE, Abramovitch RB. Functions of nitroreductases in mycobacterial physiology and drug susceptibility. J Bacteriol 2025; 207:e0032624. [PMID: 39772630 PMCID: PMC11841060 DOI: 10.1128/jb.00326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis is a respiratory infection that is caused by members of the Mycobacterium tuberculosis complex, with M. tuberculosis (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen. This reductive activation is mediated by mycobacterial nitroreductases, leading to the hypothesis that these nitroreductases contribute to the specificity of the nitro prodrugs for mycobacteria. In addition to their prodrug-activating activities, these nitroreductases have different native activities that support the growth of the bacteria. This review summarizes the activities of different mycobacterial nitroreductases with respect to their activation of different nitro prodrugs and highlights their physiological functions in the bacteria.
Collapse
Affiliation(s)
- Ifeanyichukwu E. Eke
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Sethi G, Varghese RP, Lakra AK, Nayak SS, Krishna R, Hwang JH. Immunoinformatics and structural aided approach to develop multi-epitope based subunit vaccine against Mycobacterium tuberculosis. Sci Rep 2024; 14:15923. [PMID: 38987613 PMCID: PMC11237054 DOI: 10.1038/s41598-024-66858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb), which is one of the prominent reasons for the death of millions worldwide. The bacterium has a substantially higher mortality rate than other bacterial diseases, and the rapid rise of drug-resistant strains only makes the situation more concerning. Currently, the only licensed vaccine BCG (Bacillus Calmette-Guérin) is ineffective in preventing adult pulmonary tuberculosis prophylaxis and latent tuberculosis re-activation. Therefore, there is a pressing need to find novel and safe vaccines that provide robust immune defense and have various applications. Vaccines that combine epitopes from multiple candidate proteins have been shown to boost immunity against Mtb infection. This study applies an immunoinformatic strategy to generate an adequate multi-epitope immunization against Mtb employing five antigenic proteins. Potential B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes were speculated from the intended proteins and coupled with 50 s ribosomal L7/L12 adjuvant, and the vaccine was constructed. The vaccine's physicochemical profile demonstrates antigenic, soluble, and non-allergic. In the meantime, docking, molecular dynamics simulations, and essential dynamics analysis revealed that the multi-epitope vaccine structure interacted strongly with Toll-like receptors (TLR2 and TLR3). MM-PBSA analysis was performed to ascertain the system's intermolecular binding free energies accurately. The immune simulation was applied to the vaccine to forecast its immunogenic profile. Finally, in silico cloning was used to validate the vaccine's efficacy. The immunoinformatics analysis suggests the multi-epitope vaccine could induce specific immune responses, making it a potential candidate against Mtb. However, validation through the in-vivo study of the developed vaccine is essential to assess its efficacy and immunogenicity profile, which will assure active protection against Mtb.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | | | - Avinash Kant Lakra
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | | | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
6
|
Jiang F, Han Y, Liu Y, Xue Y, Cheng P, Xiao L, Gong W. A comprehensive approach to developing a multi-epitope vaccine against Mycobacterium tuberculosis: from in silico design to in vitro immunization evaluation. Front Immunol 2023; 14:1280299. [PMID: 38022558 PMCID: PMC10652892 DOI: 10.3389/fimmu.2023.1280299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Bacillus Calmette-Guérin (BCG) vaccine, currently used against tuberculosis (TB), exhibits inconsistent efficacy, highlighting the need for more potent TB vaccines. Materials and methods In this study, we employed reverse vaccinology techniques to develop a promising multi-epitope vaccine (MEV) candidate, called PP13138R, for TB prevention. PP13138R comprises 34 epitopes, including B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes. Using bioinformatics and immunoinformatics tools, we assessed the physicochemical properties, structural features, and immunological characteristics of PP13138R. Results The vaccine candidate demonstrated excellent antigenicity, immunogenicity, and solubility without any signs of toxicity or sensitization. In silico analyses revealed that PP13138R interacts strongly with Toll-like receptor 2 and 4, stimulating innate and adaptive immune cells to produce abundant antigen-specific antibodies and cytokines. In vitro experiments further supported the efficacy of PP13138R by significantly increasing the population of IFN-γ+ T lymphocytes and the production of IFN-γ, TNF-α, IL-6, and IL-10 cytokines in active tuberculosis patients, latent tuberculosis infection individuals, and healthy controls, revealing the immunological characteristics and compare the immune responses elicited by the PP13138R vaccine across different stages of Mycobacterium tuberculosis infection. Conclusion These findings highlight the potential of PP13138R as a promising MEV candidate, characterized by favorable antigenicity, immunogenicity, and solubility, without any toxicity or sensitization.
Collapse
Affiliation(s)
- Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Section of Health, No. 94804 Unit of the Chinese People’s Liberation Army, Shanghai, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Yong Han
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Andongma BT, Huang Y, Chen F, Tang Q, Yang M, Chou SH, Li X, He J. In silico design of a promiscuous chimeric multi-epitope vaccine against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2023; 21:991-1004. [PMID: 36733703 PMCID: PMC9883148 DOI: 10.1016/j.csbj.2023.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is a global health threat, killing approximately 1.5 million people each year. The eradication of Mycobacterium tuberculosis, the main causative agent of TB, is increasingly challenging due to the emergence of extensive drug-resistant strains. Vaccination is considered an effective way to protect the host from pathogens, but the only clinically approved TB vaccine, Bacillus Calmette-Guérin (BCG), has limited protection in adults. Multi-epitope vaccines have been found to enhance immunity to diseases by selectively combining epitopes from several candidate proteins. This study aimed to design a multi-epitope vaccine against TB using an immuno-informatics approach. Through functional enrichment, we identified eight proteins secreted by M. tuberculosis that are either required for pathogenesis, secreted into extracellular space, or both. We then analyzed the epitopes of these proteins and selected 16 helper T lymphocyte epitopes with interferon-γ inducing activity, 15 cytotoxic T lymphocyte epitopes, and 10 linear B-cell epitopes, and conjugated them with adjuvant and Pan HLA DR-binding epitope (PADRE) using appropriate linkers. Moreover, we predicted the tertiary structure of this vaccine, its potential interaction with Toll-Like Receptor-4 (TLR4), and the immune response it might elicit. The results showed that this vaccine had a strong affinity for TLR4, which could significantly stimulate CD4+ and CD8+ cells to secrete immune factors and B lymphocytes to secrete immunoglobulins, so as to obtain good humoral and cellular immunity. Overall, this multi-epitope protein was predicted to be stable, safe, highly antigenic, and highly immunogenic, which has the potential to serve as a global vaccine against TB.
Collapse
Affiliation(s)
- Binda T. Andongma
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yazheng Huang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
8
|
Cheng P, Jiang F, Wang G, Wang J, Xue Y, Wang L, Gong W. Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB. Front Immunol 2023; 14:1102578. [PMID: 36825009 PMCID: PMC9942524 DOI: 10.3389/fimmu.2023.1102578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background With the increasing incidence of tuberculosis (TB) and the shortcomings of existing TB vaccines to prevent TB in adults, new TB vaccines need to be developed to address the complex TB epidemic. Method The dominant epitopes were screened from antigens to construct a novel epitope vaccine termed HP13138PB. The immune properties, structure, and function of HP13138PB were predicted and analyzed with bioinformatics and immunoinformatics. Then, the immune responses induced by the HP13138PB were confirmed by enzyme-linked immunospot assay (ELISPOT) and Th1/Th2/Th17 multi-cytokine detection kit. Result The HP13138PB vaccine consisted of 13 helper T lymphocytes (HTL) epitopes, 13 cytotoxic T lymphocytes (CTL) epitopes, and 8 B-cell epitopes. It was found that the antigenicity, immunogenicity, and solubility index of the HP13138PB vaccine were 0.87, 2.79, and 0.55, respectively. The secondary structure prediction indicated that the HP13138PB vaccine had 31% of α-helix, 11% of β-strand, and 56% of coil. The tertiary structure analysis suggested that the Z-score and the Favored region of the HP13138PB vaccine were -4.47 88.22%, respectively. Furthermore, the binding energies of the HP13138PB to toll-like receptor 2 (TLR2) was -1224.7 kcal/mol. The immunoinformatics and real-world experiments showed that the HP13138PB vaccine could induce an innate and adaptive immune response characterized by significantly higher levels of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and IL-10. Conclusion The HP13138PB is a potential vaccine candidate to prevent TB, and this study preliminarily evaluated the ability of the HP13138PB to generate an immune response, providing a precursor target for developing TB vaccines.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Jiang
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Guiyuan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Hebei North University, Zhangjiakou, Hebei, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Wang
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Front Immunol 2022; 13:1023558. [PMID: 36426350 PMCID: PMC9679648 DOI: 10.3389/fimmu.2022.1023558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Kumar P, Shiraz M, Akif M. Multi-epitope-based vaccine design by exploring antigenic potential among leptospiral lipoproteins using comprehensive immunoinformatics and structure-based approaches. Biotechnol Appl Biochem 2022; 70:670-687. [PMID: 35877991 DOI: 10.1002/bab.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/17/2022] [Indexed: 11/08/2022]
Abstract
Leptospirosis is a tropical and globally neglected zoonotic disease caused by pathogenic spirochetes, leptospira. Although the disease has been studied for decades, a potent or effective vaccine is not available so far. Efforts are being made to design an efficient vaccine candidate using different approaches. Immunoinformatics approaches have been proven to be promising in terms of time and cost. Here, we used immunoinformatics and structure-based approaches to evaluate antigenic B and T-cell epitopes present on the Leptospiral lipoproteins (LipL). The promiscuous overlapping epitopes (B-cell, T-cell, IFN- γ positive and non-allergens), which can induce humoral, cell-mediated, and innate immunity, were selected to generate a multi-epitope chimeric vaccine. To enhance the vaccine immunogenicity, a TLR agonist was fused to the vaccine with a suitable linker. The chimeric vaccine structure was predicted for molecular docking studies with immune receptors. Moreover, the stability of the vaccine-immune receptor complexes was analyzed by normal mode analysis (NMA). The potency of the vaccine construct was predicted by the immune simulation tool. The study provides additional information towards constructing a peptide-based chimeric vaccine effort against Leptospira. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| | - Mohd Shiraz
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| |
Collapse
|
11
|
Cheng P, Wang L, Gong W. In silico Analysis of Peptide-Based Biomarkers for the Diagnosis and Prevention of Latent Tuberculosis Infection. Front Microbiol 2022; 13:947852. [PMID: 35836423 PMCID: PMC9273951 DOI: 10.3389/fmicb.2022.947852] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Latent tuberculosis infection (LTBI) is the primary source of active tuberculosis (ATB), but there are no specific methods for diagnosing and preventing LTBI. Methods Dominant T and B cell epitopes predicted from five antigens related to LTBI and Mycobacterium tuberculosis region of difference (LTBI-RD) were used to construct a novel polypeptide molecule (PPM). Then, the physicochemical properties, secondary structure, tertiary structure of the PPM, and its binding ability to toll-like receptor 2 (TLR2) and TLR4 were analyzed by bioinformatics tools. Finally, immune stimulation and expression optimization of the PPM were carried out. Results Four helper T lymphocytes (HTL) epitopes, five cytotoxic T lymphocytes (CTL) epitopes, and three B cell epitopes were predicted and screened from five LTBI-RD related antigens. These epitopes were connected in series with linkers and adjuvants to construct a novel PPM termed C543P. The results indicated that antigenicity and immunogenicity scores of the C543P candidate were 0.936399 and 1.36469, respectively. The structural analysis results showed that the C543P candidate had good stability. Its secondary structure contained 43.6% α-helix, the Z-score after tertiary structure optimization was −7.9, and the Ramachandran diagram showed that 88.77% amino acid residues of the C543P candidate were in the allowable region. Furthermore, the C543P candidate showed an excellent affinity to TLR2 (−1091.7kcal/mol) and TLR4 (−1102.7kcal/mol). In addition, we also analyzed the immunological characteristics of the C543P candidate. Immune stimulation prediction showed that the C543P candidate could effectively activate T and B lymphocytes and produce high levels of Th1 cytokines such as IFN-γ and IL-2. Conclusion We constructed a novel PPM with acceptable antigenicity, immunogenicity, stability, and ability to induce robust immune responses. This study provides a new diagnostic biomarker or peptides-based vaccine for LTBI diagnosis and prevention.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8 Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, China
| | - Liang Wang
- Department of Geriatrics, The 8 Medical Center of PLA General Hospital, Beijing, China
- Liang Wang,
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8 Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Wenping Gong,
| |
Collapse
|
12
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Kumar P, Lata S, Shankar UN, Akif M. Immunoinformatics-Based Designing of a Multi-Epitope Chimeric Vaccine From Multi-Domain Outer Surface Antigens of Leptospira. Front Immunol 2021; 12:735373. [PMID: 34917072 PMCID: PMC8670241 DOI: 10.3389/fimmu.2021.735373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate information on antigenic epitopes within a multi-domain antigen would provide insights into vaccine design and immunotherapy. The multi-domain outer surface Leptospira immunoglobulin-like (Lig) proteins LigA and LigB, consisting of 12–13 homologous bacterial Ig (Big)-like domains, are potential antigens of Leptospira interrogans. Currently, no effective vaccine is available against pathogenic Leptospira. Both the humoral immunity and cell-mediated immunity of the host play critical roles in defending against Leptospira infection. Here, we used immunoinformatics approaches to evaluate antigenic B-cell lymphocyte (BCL) and cytotoxic T-lymphocyte (CTL) epitopes from Lig proteins. Based on certain crucial parameters, potential epitopes that can stimulate both types of adaptive immune responses were selected to design a chimeric vaccine construct. Additionally, an adjuvant, the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), was incorporated into the final multi-epitope vaccine construct with a suitable linker. The final construct was further scored for its antigenicity, allergenicity, and physicochemical parameters. A three-dimensional (3D) modeled construct of the vaccine was implied to interact with Toll-like receptor 4 (TLR4) using molecular docking. The stability of the vaccine construct with TLR4 was predicted with molecular dynamics simulation. Our results demonstrate the application of immunoinformatics and structure biology strategies to develop an epitope-specific chimeric vaccine from multi-domain proteins. The current findings will be useful for future experimental validation to ratify the immunogenicity of the chimera.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Surabhi Lata
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umate Nachiket Shankar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|