1
|
Bougouizi A, Tagueha AD, Scribano D, Chekroud Z, Lamraoui ZEI, Nencioni L, Ambrosi C, Rahab H. Third-Generation Cephalosporin-Resistant Uropathogenic Escherichia coli From Community- and Hospital-Acquired Infections Show High Level of Antibiotic Resistance and Specific Virulence Traits. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:9021465. [PMID: 40351510 PMCID: PMC12066185 DOI: 10.1155/cjid/9021465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025]
Abstract
Escherichia coli is a leading cause of both community-acquired and nosocomial infections. In particular, E. coli is responsible for 90% of all uncomplicated urinary tract infections (UTIs) and 65% of complicated UTIs. Among complicated UTIs, those caused by third-generation cephalosporin (3GC)-resistant E. coli strains, expressing extended-spectrum beta-lactamases (ESBLs), are on the rise. These strains show often a multidrug-resistant (MDR) phenotype, limiting the therapeutic options and the increasing incidence of MDR E. coli in Algeria is concerning. This study aims to compare the antibiotic resistance rates and profiles as well as the virulence traits between 3CG-resistant E. coli isolates, collected from Algerian inpatients (IPs) and outpatients (OPs). Our analyses include phenotypic and genotypic resistance factor detection, strains classification by genotyping and phylogrouping, as well as genotypic and phenotypic virulence factor evaluation. Among 42 E. coli isolates, 76.20% caused UTIs. ESBL producers (n = 35) carried all the bla CTX-M, while bla TEM was found in 69.04% of isolates. All isolates were MDR, and no significant differences in type and rate of antibiotic resistance were observed between IP- and OP-isolates. OP-isolates demonstrated greater virulence, exhibiting higher motility and biofilm production, compared to IP-isolates. Moreover, pathogenic Phylogroup B2 was prevalent among OP-isolates, while IP-isolates belonged predominantly to Phylogroup A. Our data suggest a uniform spreading of antibiotic-resistant genes within hospitals and communities. However, hospital environment selects for less virulent strains with increasing level of resistance; differently, communities host more virulent strains. This study highlights the urgent need to implement the surveillance of 3CG-resistant E. coli and to adopt the One Health approach to monitor the antimicrobial resistance (AMR) in the country.
Collapse
Affiliation(s)
- Amina Bougouizi
- Research Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology, Department of Nature and Life Sciences, Faculty of Sciences, University 20 August 1955 Skikda, Skikda 21000, Algeria
| | - Astri Dwyanti Tagueha
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome 00185, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome 00185, Italy
| | - Zohra Chekroud
- Research Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology, Department of Nature and Life Sciences, Faculty of Sciences, University 20 August 1955 Skikda, Skikda 21000, Algeria
| | - Zahrat el Imen Lamraoui
- Biotechnology's Laboratory of the Bioactive Molecules and the Cellular Physiopathology, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna2, Batna, Algeria
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome 00185, Italy
| | - Cecilia Ambrosi
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele University, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Hamza Rahab
- Biotechnology Research Center - C.R.Bt Constantine, El Khroub, Algeria
| |
Collapse
|
2
|
Sattasathuchana P, Srikullabutr S, Kerdsin A, Assawarachan SN, Amavisit P, Surachetpong W, Thengchaisri N. Antimicrobial resistance of Escherichia coli in cats and their drinking water: drug resistance profiles and antimicrobial-resistant genes. BMC Vet Res 2024; 20:573. [PMID: 39707426 DOI: 10.1186/s12917-024-04435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global health concern that is exacerbated by the transmission of bacteria and genetic material between humans, animals and the environment. This study investigated AMR of Escherichia coli (E. coli) isolated from cats' feces and their drinking water. The study compared the AMR of fecal and environmental E. coli isolates from pet cats. RESULTS A total of 104 samples (52 cat feces and 52 cat drinking water samples) was cultured for E. coli. The study compared the AMR of fecal and environmental E. coli isolates from pet cats. An analysis of carbapenemase and extended-spectrum β-lactamase (ESBL)-producing E. coli genes (blaTEM, blaSHV and blaCTX-M) and phylogroups of E. coli was also performed. E. coli was identified from all fecal (100%) and almost half of drinking water (44.2%) samples. All E. coli isolate was susceptible to amikacin or imipenem. Clindamycin showed the highest resistance rate. β-lactam was the most found with co-resistance profiles, comprising β-lactams with aminoglycosides, quinolones, sulfonamides, macrolides or carbapenems. Very strong positive correlations of bactericidal agents were found among quinolones (r > 0.8, p < 0.01). Within the group of bacteriostatic agents, moderate correlation was observed between azithromycin and sulfa-trimethoprim (r = 0.5253, p < 0.01). Carbapenemase gene was not detected in this study. Extended-spectrum β-lactamase-producing E. coli genes (blaTEM, blaSHV and blaCTX-M) were identified in E. coli isolates, with blaTEM being the most predominant. Furthermore, phylogroup B2 was the dominant segregation among the E. coli, particularly in fecal isolates. CONCLUSIONS This study identified AMRin E. coli isolated from cats' feces and their drinking water. The results revealed that the phylogroup B2 was predominant, with blaTEM being the most widespread ESBL gene.
Collapse
Affiliation(s)
- Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Suttiporn Srikullabutr
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | | | - Patamabhorn Amavisit
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Bachelle SV, Bah SY, Addo RT, Bediako-Bowan AAA, Egyir B, Tsatsu SE, Dzudzor B, Amarh V. Genomic analysis of Enterobacteriaceae from colorectal cancer patients at a tertiary hospital in Ghana: a case-control study. Sci Rep 2024; 14:23195. [PMID: 39369124 PMCID: PMC11455924 DOI: 10.1038/s41598-024-74299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Colorectal cancer (CRC) is a severe gastrointestinal cancer and a leading cause of cancer-related deaths in Ghana. The potential role of gut Enterobacteriaceae in the increasing incidence of CRC in Ghana is yet to be thoroughly investigated. In this study, Enterobacteriaceae from CRC patients and healthy control participants were analyzed by whole genome sequencing to identify genomic features that are associated with CRC. Socio-demographic data showed a significant association between age and alcohol consumption and CRC. Escherichia coli was the most abundant Enterobacteriaceae isolated from the study participants and they were predominantly intestinal commensals. Escherichia coli isolates belonging to phylogroup D encoded the highest number of virulence genes. The agn43 and int genes were widespread in Escherichia coli isolates from the CRC patients. Multilocus sequence types of potentially pathogenic Escherichia coli from the CRC patients also encoded genes involved in aggregation, adherence and biofilm formation. The ampC2 and ampH antimicrobial resistance genes were also widespread in the genome of the Escherichia coli isolates. This study highlights the virulence tendencies of Escherichia coli from CRC patients and their ability to transfer virulence determinants to other Enterobacteriaceae residing in the gut.
Collapse
Affiliation(s)
- Sarah V Bachelle
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Saikou Y Bah
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Richmond T Addo
- Central Laboratory, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Antoinette A A Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Korle-Bu, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Sandra E Tsatsu
- Department of Surgery, University of Ghana Medical School, Korle-Bu, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Korle-Bu, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana.
| | - Vincent Amarh
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu, Accra, Ghana.
| |
Collapse
|
4
|
de Melo Tavares R, Sereno MJ, Nunes da Cruz Encide Sampaio A, Pereira JG, Bersot LDS, Yamatogi RS, Call DR, Nero LA. Characterization of diarrheagenic Escherichia coli from different cattle production systems in Brazil. Food Microbiol 2024; 121:104508. [PMID: 38637072 DOI: 10.1016/j.fm.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/20/2024]
Abstract
Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.
Collapse
Affiliation(s)
- Rafaela de Melo Tavares
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Mallu Jagnow Sereno
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Aryele Nunes da Cruz Encide Sampaio
- Universidade Estadual de São Paulo (UNESP), Botucatu Campus, Faculdade de Medicina Veterinária e Zootecnia, Distrito de Rubião Jr, SN, 18618-970, Botucatu, SP, Brazil
| | - Juliano Gonçalves Pereira
- Universidade Estadual de São Paulo (UNESP), Botucatu Campus, Faculdade de Medicina Veterinária e Zootecnia, Distrito de Rubião Jr, SN, 18618-970, Botucatu, SP, Brazil
| | - Luciano Dos Santos Bersot
- Universidade Federal do Paraná, Palotina Campus, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Ricardo Seiti Yamatogi
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Douglas Ruben Call
- Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, PO Box 647090, 99164-7090, Pullman, WA, USA
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
5
|
Shi Z, Lan Y, Wang Y, Yan X, Ma X, Hassan FU, Rushdi HE, Xu Z, Wang W, Deng T. Multi-omics strategy reveals potential role of antimicrobial resistance and virulence factor genes responsible for Simmental diarrheic calves caused by Escherichia coli. mSystems 2024; 9:e0134823. [PMID: 38742910 PMCID: PMC11237395 DOI: 10.1128/msystems.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yali Lan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Kaur H, Singh I, Modgil V, Singh N, Mohan B, Taneja N. Genome sequence of pan drug-resistant enteroaggregative Escherichia coli belonging to ST38 clone from India, an emerging EAEC/UPEC hybrid pathotype. Indian J Med Microbiol 2024; 49:100606. [PMID: 38723718 DOI: 10.1016/j.ijmmb.2024.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Here, we report the genomic characterization of a pan drug-resistant (PDR) enteroaggregative Escherichia coli (EAEC) isolated from an immunocompromised infant who had diarrhea. The isolate belonged to the sequence type (ST) 38, which is a known enteroaggregative Escherichia coli (EAEC)/uropathogenic Escherichia coli (UPEC) hybrid strain having multi-drug resistance (MDR). The strain carried genes encoding multiple resistances to carbapenems, third-generation cephalosporins, polymyxin, fluoroquinolones, aminoglycosides, fosfomycin, nitrofurantoin, sulphonamides, and multiple efflux pump genes. Interspecies horizontal transfer, inter-strain, and clonal spread of these resistances to commensals and pathogens will be worrisome. We are concerned about the spread of such PDR strains. The genomic characterization of such strains will be useful in understanding the genetic makeup of EAEC/UPEC hybrid strains and developing new vaccines/diagnostics and therapeutics.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Inderjit Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Nisha Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Wei S, Ding B, Wang G, Luo S, Zhao H, Dan X. Population characteristics of pathogenic Escherichia coli in puerperal metritis of dairy cows in Ningxia region of China: a systemic taxa distribution of virulence factors and drug resistance genes. Front Microbiol 2024; 15:1364373. [PMID: 38694808 PMCID: PMC11061491 DOI: 10.3389/fmicb.2024.1364373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Escherichia coli (E. coli) is closely associated with the occurrence of puerperal metritis in dairy cows. E. coli carries some the virulence and multi-drug resistant genes, which pose a serious threat to the health of postpartum cows. In this study, E. coli was isolated and identified from the uterine contents of postpartum cows with puerperal metritis in the Ningxia region of China, and its phylogenetic subgroups were determined. Meanwhile, virulence and drug resistance genes carried by E. coli and drug sensitivity were detected, and the characteristics of virulence and drug resistance genes distribution in E. coli phylogroups were further analyzed. The results showed that the isolation rate of E. coli in puerperal metritis samples was 95.2%. E. coli was mainly divided into phylogroups B2 and D, followed by groups A and B1, and was more connected to O157:H7, O169:H4, and ECC-1470 type strains. The virulence genes were mainly dominated by ompF (100%), traT (100%), fimH (97%), papC (96%), csgA (95%), Ang43 (93.9%), and ompC (93%), and the resistance genes were dominated by TEM (99%), tetA (71.7%), aac(3)II (66.7%), and cmlA (53.5%). Additionally, it was observed that the virulence and resistance gene phenotypes could be divided into two subgroups, with subgroup B2 and D having the highest distributions. Drug sensitivity tests also revealed that the E. coli was most sensitive to the fluoroquinolones enrofloxacin, followed by macrolides, aminoglycosides, tetracyclines, β-lactams, peptides and sulfonamides, and least sensitive to lincosamides. These results imply that pathogenic E. coli, which induces puerperal metritis of dairy cows in the Ningxia region of China, primarily belongs to the group B2 and D, contains multiple virulence and drug resistance genes, Moreover, E. coli has evolved resistance to several drugs including penicillin, lincomycin, cotrimoxazole, and streptomycin. It will offer specific guidelines reference for the prevention and treatment of puerperal metritis in dairy cows with E. coli infections in the Ningxia region of China.
Collapse
Affiliation(s)
| | | | | | | | - Hongxi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xingang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
9
|
Aguirre-Sánchez JR, Quiñones B, Ortiz-Muñoz JA, Prieto-Alvarado R, Vega-López IF, Martínez-Urtaza J, Lee BG, Chaidez C. Comparative Genomic Analyses of Virulence and Antimicrobial Resistance in Citrobacter werkmanii, an Emerging Opportunistic Pathogen. Microorganisms 2023; 11:2114. [PMID: 37630674 PMCID: PMC10457828 DOI: 10.3390/microorganisms11082114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Citrobacter werkmanii is an emerging and opportunistic human pathogen found in developing countries and is a causative agent of wound, urinary tract, and blood infections. The present study conducted comparative genomic analyses of a C. werkmanii strain collection from diverse geographical locations and sources to identify the relevant virulence and antimicrobial resistance genes. Pangenome analyses divided the examined C. werkmanii strains into five distinct clades; the subsequent classification identified genes with functional roles in carbohydrate and general metabolism for the core genome and genes with a role in secretion, adherence, and the mobilome for the shell and cloud genomes. A maximum-likelihood phylogenetic tree with a heatmap, showing the virulence and antimicrobial genes' presence or absence, demonstrated the presence of genes with functional roles in secretion systems, adherence, enterobactin, and siderophore among the strains belonging to the different clades. C. werkmanii strains in clade V, predominantly from clinical sources, harbored genes implicated in type II and type Vb secretion systems as well as multidrug resistance to aminoglycoside, beta-lactamase, fluoroquinolone, phenicol, trimethoprim, macrolides, sulfonamide, and tetracycline. In summary, these comparative genomic analyses have demonstrated highly pathogenic and multidrug-resistant genetic profiles in C. werkmanii strains, indicating a virulence potential for this commensal and opportunistic human pathogen.
Collapse
Affiliation(s)
- José R. Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Culiacan 80110, Mexico;
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (B.Q.); (B.G.L.)
| | - José A. Ortiz-Muñoz
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Rogelio Prieto-Alvarado
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Inés F. Vega-López
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacan 80040, Mexico; (J.A.O.-M.); (R.P.-A.); (I.F.V.-L.)
| | - Jaime Martínez-Urtaza
- Departament de Genètica i de Microbiologia, Universitat Autờnoma de Barcelona, 08193 Bellaterra, Spain;
| | - Bertram G. Lee
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA; (B.Q.); (B.G.L.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Culiacan 80110, Mexico;
| |
Collapse
|
10
|
Mandujano A, Cortés-Espinosa DV, Vásquez-Villanueva J, Guel P, Rivera G, Juárez-Rendón K, Cruz-Pulido WL, Aguilera-Arreola G, Guerrero A, Bocanegra-García V, Martínez-Vázquez AV. Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Food-Producing Animals in Tamaulipas, Mexico. Antibiotics (Basel) 2023; 12:1010. [PMID: 37370329 DOI: 10.3390/antibiotics12061010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing E. coli has become an important global problem for the public health sector. This study aims to investigate the E. coli antimicrobial resistance profile among living food-producing animals in Tamaulipas, Mexico. A total of 200 fecal samples were collected from bovines, pigs, chickens and sheep. A total of 5.0% of the strains were phenotypically confirmed as ESBL producers. A high percentage of phenotypic antimicrobial resistance was observed against gentamicin (93.3%), tetracycline (86.6%) and streptomycin (83.3%). The gentamicin-resistant strains showed MDR, distributed among 27 resistance patterns to different antimicrobials. The antimicrobial resistance gene tet(A) was detected in 73.3% of isolates, aadA1 in 60.0% and sul2 in 43.3% of strains. The blaCTX-M gene was found in 23.3% of strains. The virulence gene hlyA was detected in 43.3% of isolates; stx1 and stx2 were not detected in any strain. The phylotyping indicated that the isolates belonged to groups A (33.3%), B1 (16.6%), B2 (40.0%) and D (10.0%). These results show that food-producing animals might be a reservoir of ESBL-producing bacteria and may play a role in their spread.
Collapse
Affiliation(s)
- Antonio Mandujano
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | | | - José Vásquez-Villanueva
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria C.P. 87274, Mexico
| | - Paulina Guel
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | - Karina Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas C.P. 88710, Mexico
| | | | | | - Abraham Guerrero
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Centro de Investigación en Alimentación y Desarrollo (CIAD), Mazatlán C.P. 82100, Mexico
| | | | | |
Collapse
|