1
|
Palmer RD, Elnashar MM, Vaccarezza M. Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging. Aging Med (Milton) 2021; 4:214-220. [PMID: 34553119 PMCID: PMC8444956 DOI: 10.1002/agm2.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a coenzyme found in every human cell and regulates a number of systems across multiple cellular compartments and tissue types via an endogenous and exogenous influence. NAD levels are demonstrated to decline with age and therefore measures to counteract the waning of NAD have been devised. A number of NAD precursor candidates such as nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), the reduced form of nicotinamide mononucleotide (NMNH), nicotinic acid (NA) nicotinamide (NAM), and dihydronicotinamide riboside (DNR) increase NAD levels in vitro and in vivo. This discussion will focus on the precursors NR, NMN, NMNH, and DNR in the upregulation of NAD. There are many publications on NAD precursors as it has become popular for human consumption in recent years due to its vital importance to the general consumer. However, there is no consensus between researchers and this was the aim of this review, to determine and discuss their areas of agreement versus disagreement, to highlight the gaps in research, and to give recommendations for future work. Bioavailability and potency of NR, NMNH, NMN, and DNR is also examined on the light of the most recent literature.
Collapse
Affiliation(s)
| | - Magdy Mahmoud Elnashar
- School of MedicineFaculty of Health SciencesCurtin UniversityPerthWAAustralia
- Center of ExcellenceDepartment of PolymersNational Research CentreCairoEgypt
| | - Mauro Vaccarezza
- School of MedicineFaculty of Health SciencesCurtin UniversityPerthWAAustralia
| |
Collapse
|
2
|
Eco-Friendly Direct GC–MS Method for Estimation of Niacin and Related Impurities Involving Pyridine in Food Supplements. SEPARATIONS 2021. [DOI: 10.3390/separations8040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Niacin is a water-soluble vitamin whose deficiency causes many disorders and diseases, including pellagra and high blood cholesterol. Herein, niacin and four common impurities, isonicotinic acid (ISO), 5-ethyl-2-methylpyridine (MP), pyridine-2, 5-dicarboxylic acid (PDC) and pyridine PYR, are simultaneously analyzed, where PYR is known as potentially nephrotoxic and hepatotoxic. The separation of a mixture using gas chromatography–mass spectroscopy (GC–MS) without any derivatization steps was the main target. Many studies have been published to study Niacin and its impurities using colorimetry and HPLC. GC–MS was selected to study the analyzed mixture owing to its known sensitivity and selectivity. In this study, a single quadrupole mass spectrometer operated in selected ion monitoring (SIM) mode at an electron ionization energy of 70 eV was applied for the quantitative analysis of Niacin. Helium was used as the carrier gas and adjusted to run through an HP-5ms (5%-phenyl)-methylpolysiloxane column. Statistical analysis proved that this method is equally effective as the previously reported method. Importantly, this study was eco-friendly as compared to the reported high performance thin layer chromatographic method (HPTLC). Finally, this study provides a new and valid eco-friendly method analysis to determine the concentration of niacin and its common impurities at very low concentration. Conclusion: A simple, rapid accurate and green GC–MS analytical method was developed and validated to determine niacin and its related official impurities.
Collapse
|
3
|
Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One 2020; 15:e0242174. [PMID: 33166357 PMCID: PMC7652347 DOI: 10.1371/journal.pone.0242174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100–1000 μM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 μM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Faisal Hayat
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Mikhail Makarov
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Marie E. Migaud
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States of America
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
4
|
Naguib IA, Abdallah FF. Two Multivariate Calibration Models for Assay of Niacin in Complex Mixtures with Its Official Impurities: A Pharmaceutical Application. J AOAC Int 2020; 103:1660-1666. [DOI: 10.1093/jaoacint/qsaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Niacin (NIA) is a water-soluble vitamin and the primary treatment of pellagra. No analytical method was found to assess NIA in complex mixtures with its official impurities.
Objective
Two validated, accurate, and selective chemometric models were developed to assay NIA in the presence of its four official impurities, including pyridine, a nephrotoxic and hepatotoxic substance. Additionally, the two selective chemometric models were compared by processing UV spectra in the range 220–305 nm and applying partial least squares regression (PLSR) and support vector regression (SVR) models.
Method
A five levels five factors experimental design was chosen to exhibit a training set of 25 mixtures that had numerous variable percentages of tested substances. A test set consisting of 10 mixtures was designed to confirm the predictive power of the suggested models.
Results
The presented results substantiate the strength of the developed multivariate calibration models to assay NIA specifically with high selectivity and accuracy (100.02 ± 1.312 and 100.04 ± 1.272 for PLSR and SVR models, respectively). The root mean square error of prediction for the validation set mixtures was applied as a main comparison tool and it was found to be 0.2016 and 0.1890 for PLSR and SVR models, respectively.
Conclusions
The results of the developed models and the reported HPLC method were statistically compared, where F-values and Student's t-tests did not show significant difference in regards to accuracy and precision. The SVR model proved to be more accurate than the PLSR model, producing a high generalization capacity, while PLSR was easy to implement and fast.
Highlights
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., 62514, Beni-Suef, Egypt
| | - Fatma F Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., 62514, Beni-Suef, Egypt
| |
Collapse
|
5
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Williams A. Pellagra: 4 D's and 8 Points. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2020; 20:fbfd9966. [PMID: 38125674 PMCID: PMC7615395 DOI: 10.47795/fbfd9966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pellagra has largely been forgotten. This is unfortunate as important lessons are to be learnt for the diseases and social consequences of poverty (and of affluence) that often involve dietary nicotinamide and nicotinamide adenine dinucleotide (NAD) homeostasis. NAD disruption can occur not only from poor diet but from increased consumption of NAD from genotoxic and other stresses. High doses of nicotinamide lead to inhibition of NAD-consuming enzymes and excessive induction of nicotinamide-n-methyl transferase (NNMT) with consequent effects on the methylome giving a mechanism for a new hypervitaminosis-B3.
Collapse
|
7
|
Pellagra in isoniazid preventive and antiretroviral therapy. IDCases 2019; 17:e00550. [PMID: 31193074 PMCID: PMC6515148 DOI: 10.1016/j.idcr.2019.e00550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 11/30/2022] Open
Abstract
Pellagra is caused by cellular deficiency of niacin or its precursor amino acid, tryptophan. Isoniazid preventive therapy (IPT) is the administration of isoniazid (INH) to latent tuberculosis (TB) infection affected people preventing advancement to active TB disease. Although potentially life-saving for human immunodeficiency virus (HIV)-infected people with no active TB, IPT is arguably a possible player in pellagra in addition to well-known malnourishment determinants particularly in developing nations where diagnosis is often overlooked or delayed. A case study examines clinical presentation and possible causes of pellagra, in HIV + patient on isoniazid prophylaxis. The 30 year old female on routine antiretroviral therapy presented with diarrhea, abdominal discomfort, painful swallowing, and epigastric pain, facial rash spread on the forehead, nose, cheeks and the chin, upper and lower limbs. Withdrawal of isoniazid, administration of nicotinamide and niacin supplements showed clinical improvement in four weeks. Decreased serum tryptophan in persons living with HIV (PLHIV) under IPT and lack of minimum dietary proteins threshold would be pointers to isoniazid induced pellagra risk. Appropriate dietary intake and counseling ought to be emphasized among PLHIV. Tryptophan and nicotinamide serum levels should be part of baseline investigations in PLHIV starting IPT and where feasible clinically, niacin/nicotinamide supplementation be adopted.
Collapse
|
8
|
Hill LJ, Williams AC. Meat Intake and the Dose of Vitamin B 3 - Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int J Tryptophan Res 2017; 10:1178646917704662. [PMID: 28579801 PMCID: PMC5419340 DOI: 10.1177/1178646917704662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/26/2022] Open
Abstract
Meat and vitamin B3 - nicotinamide - intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by 'welcoming' gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive 'meat transitions'. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic 'old friends' compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress.
Collapse
Affiliation(s)
- Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
9
|
Takeo N, Fujiwara S, Sakai T, Saito-Shono T, Ishikawa K, Hatano Y. Hereditary lactate dehydrogenase M-subunit deficiency with late-developing pustular psoriasis-like lesions. J Dermatol 2016; 43:1429-1432. [PMID: 27450766 DOI: 10.1111/1346-8138.13516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
Hereditary lactate dehydrogenase (LDH) M-subunit deficiency is very rare and we have found reports of close to a dozen cases in the published work, two of which were associated with pustular psoriasis-like lesions. We report a third case of pustular psoriasis-like eruptions associated with LDH M-subunit deficiency, which occurred 24 years after the diagnosis of LDH M-subunit deficiency. These cases indicate that abnormal activity of LDH can induce pustular psoriatic lesions in the long term. Some patients with symptoms of hereditary LDH M-subunit deficiency have antecedent annular scaly plaque lesions, that resemble psoriatic lesions. We discuss a hypothesis to explain this scenario.
Collapse
Affiliation(s)
- Naoko Takeo
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Sakuhei Fujiwara
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Sakai
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tomoko Saito-Shono
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazushi Ishikawa
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yutaka Hatano
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
10
|
The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair (Amst) 2014; 23:59-63. [PMID: 24794404 DOI: 10.1016/j.dnarep.2014.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/08/2023]
Abstract
Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics.
Collapse
|
11
|
Abstract
In our current society, achieving "productive aging," which aims to keep people as productive as possible with good health and spirit for their private and social activities as they grow older, will be important to maximize the duration of high quality of life and to promote a stable economy and solvent social security in healthcare systems. To achieve this goal, we have been studying mechanisms of mammalian aging and longevity, focusing on the physiological importance of the mammalian nicotinamide adenine dinucleotide (NAD)--dependent protein deacetylase SIRT1 and systemic NAD biosynthesis mediated by nicotinamide phosphoribosyltransferase for the regulation of metabolism and aging. Through these studies, we have recently proposed a comprehensive concept of a novel systemic regulatory network for metabolism and aging, named "NAD World." This new concept of NAD World also conveys ideas of functional hierarchy and frailty for the induction of aging in mammals. Details of the NAD World and its implications to age-associated metabolic diseases such as type 2 diabetes will be discussed.
Collapse
|
12
|
Shi Y, Zhang L, Jiang R, Chen W, Zheng W, Chen L, Tang L, Li L, Li L, Tang W, Wang Y, Yu Y. Protective effects of nicotinamide against acetaminophen-induced acute liver injury. Int Immunopharmacol 2012; 14:530-7. [PMID: 23059795 DOI: 10.1016/j.intimp.2012.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is involved in a wide range of biological processes. Recent evidence revealed the anti-inflammatory and anti-oxidant properties of NAM and suggests it may be used as a novel strategy in the prevention of acute liver injury. In the present study, we investigated the potential protective effects of NAM on acetaminophen (APAP)-induced acute liver injury in mice. Mice were treated with NAM at 400mg/kg 30 min before or after administration of APAP at a hepatotoxic dose of 400mg/kg body weight via intraperitoneal injection. Liver injury and the expression of inflammation-related molecules were determined by histological examination and biochemical analysis, respectively. In addition, the survival rate of mice was assessed after APAP administration. Pretreatment with NAM for 30 min significantly decreased plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA), and diminished histopathologic evidence of hepatic toxicity in mice following APAP administration. Similarly, posttreatment with NAM also decreased plasma ALT and AST levels in APAP-administrated mice. Furthermore, both pretreatment and posttreatment with NAM prolonged the survival rate of acute liver injury mice, accompanied by a significant reduction in the plasma levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and interleukin-6 (IL-6). Together, these findings suggest that NAM possesses protective effects on APAP-induced liver injury, which may involve the anti-inflammatory action.
Collapse
Affiliation(s)
- Youdan Shi
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
14
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
15
|
Chang J, Zhang B, Heath H, Galjart N, Wang X, Milbrandt J. Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc Natl Acad Sci U S A 2010; 107:21836-41. [PMID: 21106760 PMCID: PMC3003122 DOI: 10.1073/pnas.1002130107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular metabolism alters patterns of gene expression through a variety of mechanisms, including alterations in histone modifications and transcription factor activity. Nicotinamide adenine dinucleotide (NAD)-dependent proteins such as poly(ADP ribose) polymerases (PARPs) and sirtuin deacetylases play important roles in this regulation, thus NAD provides a crucial link between metabolism and these cellular signaling processes. Here, we found that lowering NAD levels in mouse primary cortical neurons led to decreased activity-dependent BDNF expression. The altered BDNF transcription occurred independently of Sirt or Parp activities; instead, low NAD levels promoted increased DNA methylation of the activity-dependent BDNF promoter. Increased methylation at this promoter triggered the dissociation of the insulator protein CTCF as well as the accompanying cohesin from the BDNF locus. The loss of these proteins resulted in histone acetylation and methylation changes at this locus consistent with chromatin compaction and gene silencing. Because BDNF is critical for neuronal function, these results suggest that age- or nutrition-associated declines in NAD levels as well as deficits in cohesin function associated with disease modulate BDNF expression and could contribute to cognitive impairment.
Collapse
Affiliation(s)
| | | | - Helen Heath
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Jeffrey Milbrandt
- Department of Genetics, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
16
|
Imai SI. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res 2010; 62:42-7. [PMID: 20085812 PMCID: PMC2873125 DOI: 10.1016/j.phrs.2010.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/10/2010] [Indexed: 12/19/2022]
Abstract
Aging science has recently drawn much attention, and discussions on the possibility of anti-aging medicine have multiplied. One potential target for the development of anti-aging drugs is the SIR2 (silent information regulator 2) family of NAD-dependent deacetylases/ADP-ribosyltransferases, called "sirtuins." Sirtuins regulate many fundamental biological processes in response to a variety of environmental and nutritional stimuli. In mammals, the mammalian SIR2 ortholog SIRT1 has been most studied, and small molecule SIRT1 activators (STACs), including a plant-derived polyphenolic compound resveratrol, have been developed. On the other hand, sirtuin activity is regulated by NAD biosynthetic pathways, and nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the regulation of mammalian sirtuin activity. Recent studies have provided a proof of concept for the idea that nicotinamide mononucleotide (NMN), the NAMPT reaction product, can be used as a nutriceutical to activate SIRT1 activity. Based on these recent findings, the possibility of sirtuin-targeted nutriceutical development will be discussed.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Imai SI. "Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1584-90. [PMID: 19897060 DOI: 10.1016/j.bbapap.2009.10.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/30/2022]
Abstract
SIR2 (silent information regulator 2) proteins, now called "sirtuins," are an evolutionarily conserved family of NAD-dependent protein deacetylases/ADP-ribosyltransferases. Sirtuins have recently attracted major attention in the field of aging research, and it has been demonstrated that SIR2 and its orthologs regulate aging and longevity in yeast, worms, and flies. In mammals, the SIR2 ortholog SIRT1 coordinates important metabolic responses to nutritional availability in multiple tissues. Most recently, it has been demonstrated that SIRT1 regulates the amplitude and the duration of circadian gene expression through the interaction and the deacetylation of key circadian clock regulators, such as BMAL1 and PER2. More strikingly, we and others have discovered a novel circadian clock feedback loop in which both the rate-limiting enzyme in mammalian NAD biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and NAD levels display circadian oscillations and modulate CLOCK:BMAL1-mediated circadian transcriptional regulation through SIRT1, demonstrating a new function of NAD as a "metabolic oscillator." These findings reveal a novel system dynamics of a recently proposed systemic regulatory network regulated by NAMPT-mediated NAD biosynthesis and SIRT1, namely, the NAD World. In the light of this concept, a new connection between physiological rhythmicity, metabolism, and aging will be discussed.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
19
|
Imai SI. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta Gen Subj 2009; 1790:997-1004. [PMID: 19289152 DOI: 10.1016/j.bbagen.2009.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 01/19/2023]
Abstract
For the past couple of decades, aging science has been rapidly evolving, and powerful genetic tools have identified a variety of evolutionarily conserved regulators and signaling pathways for the control of aging and longevity in model organisms. Nonetheless, a big challenge still remains to construct a comprehensive concept that could integrate many distinct layers of biological events into a systemic, hierarchical view of aging. The "heterochromatin island" hypothesis was originally proposed 10 years ago to explain deterministic and stochastic aspects of cellular and organismal aging, which drove the author to the study of evolutionarily conserved Sir2 proteins. Since a surprising discovery of their NAD-dependent deacetylase activity, Sir2 proteins, now called "sirtuins," have been emerging as a critical epigenetic regulator for aging. In this review, I will follow the process of conceptual development from the heterochromatin island hypothesis to a novel, comprehensive concept of a systemic regulatory network for mammalian aging, named "NAD World," summarizing recent studies on the mammalian NAD-dependent deacetylase Sirt1 and nicotinamide phosphoribosyltransferase (Nampt)-mediated systemic NAD biosynthesis. This new concept of the NAD World provides critical insights into a systemic regulatory mechanism that fundamentally connects metabolism and aging and also conveys the ideas of functional hierarchy and frailty for the regulation of aging in mammals.
Collapse
Affiliation(s)
- Shin-ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Abstract
The etiology of multiple sclerosis (MS) is unknown but it manifests as a chronic inflammatory demyelinating disease in the central nervous system (CNS). During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes. While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD. Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress. Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS. Animal models of MS involve artificially stimulated autoimmune attack of myelin by experimental autoimmune encephalomyelitis (EAE) or by viral-mediated demyelination using Thieler's murine encephalomyelitis virus (TMEV). The Wld(S) mouse dramatically resists razor axotomy mediated axonal degeneration. This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP. Although the Wld(S) genotype protects against EAE pathogenesis, TMEV-mediated pathogenesis is exacerbated. In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways. We speculate on the importance of increased SIRT1 activity in both PARP-1 inhibition and the potentially integral role of neuronal CD200 interactions through glial CD200R with induction of IDO in MS pathogenesis. A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented. Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.
Collapse
Affiliation(s)
- W Todd Penberthy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
21
|
Nutritional disorders. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18631821 DOI: 10.1016/s0072-9752(07)01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|