1
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
2
|
Jain R, Mathew D. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. MEDICAL RESEARCH ARCHIVES 2023; 11:4540. [PMID: 38933091 PMCID: PMC11198970 DOI: 10.18103/mra.v11i10.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.
Collapse
Affiliation(s)
- Roshni Jain
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| |
Collapse
|
3
|
Bhat S, Rishi P, Chadha VD. Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Res 2022; 318:198853. [PMID: 35777502 PMCID: PMC9236910 DOI: 10.1016/j.virusres.2022.198853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) has inflicted a global health challenge. Although the overwhelming escalation of mortality seen during the initial phase of the pandemic has reduced, emerging variants of SARS-CoV-2 continue to impact communities worldwide. Several studies have highlighted the association of gene specific epigenetic modifications in host cells with the pathogenesis and severity of the disease. Therefore, alongside the investigations into the virology and pathogenesis of SARS-CoV-2 infection, understanding the epigenetic mechanisms related to the disease is crucial for the rational design of effective targeted therapies. Here, we discuss the interaction of SARS-CoV-2 with the various epigenetic regulators and their subsequent contribution to the risk of disease severity and dysfunctional immune responses. Finally, we also highlight the use of epigenetically targeted drugs for the potential therapeutic interventions capable of eliminating viral infection and/or build effective immunity against it.
Collapse
Affiliation(s)
- Swati Bhat
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Praveen Rishi
- Department of Microbiology, South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Vijayta D Chadha
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
4
|
Pharmacological Profile of Nigella sativa Seeds in Combating COVID-19 through In-Vitro and Molecular Docking Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 infection is associated with elevated oxidative stress, systemic hyper-inflammatory responses, endothelial dysfunction, and red blood cell membrane deformability. Nigella sativa extract is widely used in alternative and complementary medicine systems in a large population, due to its highly therapeutic, economic, natural, and safe nature. The aim of this study was to evaluate the effect of N. sativa extract on oxidative stress, hemolysis, proteolysis, and glycation through in vitro studies, as well as to find out its anti-viral potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using in silico studies. N. sativa seed extract (at 600 µg/mL) displayed 67.33% scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, and 70.28% hydrogen peroxide reducing activity. N. sativa exhibited anti-proteolytic activity by decreasing heat-induced denaturation of bovine serum albumin (BSA) and egg albumin by 63.14% and 57.95%, respectively, and exhibited anti-proteinase potential of 66.28% at 600 μg/mL. In addition, heat-induced hemolysis and hypersalinity-induced hemolysis were inhibited by 57.86% and 61.7%, respectively, by the N. sativa seeds. N. sativa also inhibited browning intensity by 56.38%, and percent aggregation index by 51.38%, amyloid structure by 48.28%, and AGE-specific fluorescence by 52.18%, thereby protecting the native structure of BSA from glycation. The binding interactions between bioactive molecules of N. sativa seed with SARS-CoV-2 spike glycoprotein were proven by using in silico molecular docking tools. The functional amino acids involved in the interactions are Asp467, Thr108, Thr114, Ile468, Asn234, Gln155, Glu465, Arg466, Gly232, and Ile233, indicating the inhibiting property of N. sativa on SARS-CoV-2. Finally, we may infer that phytoconstituents of N. sativa seeds have the potential to protect against the spike protein of SARS-CoV-2. Studies on N. sativa seeds might act as a path to develop a potent alternative therapy against viral infections, especially COVID-19 infection, in the future. However, the limitations linked with the use of natural products are also needed to be considered in this regard.
Collapse
|
5
|
Gerganova A, Assyov Y, Kamenov Z. Stress Hyperglycemia, Diabetes Mellitus and COVID-19 Infection: Risk Factors, Clinical Outcomes and Post-Discharge Implications. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:826006. [PMID: 36992767 PMCID: PMC10012081 DOI: 10.3389/fcdhc.2022.826006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory distress syndrome-coronavirus 2 (SARS-CoV-2) has caused one of the most substantial pandemics that has affected humanity in the last century. At the time of the preparation of this review, it has caused the death of around 5 million people around the globe. There is ample evidence linking higher mortality risk rates from Coronavirus disease-19 (COVID-19) with male gender, advancing age and comorbidities, such as obesity, arterial hypertension, cardiovascular disease, chronic obstructive pulmonary disease, diabetes mellitus, and cancer. Hyperglycemia has been found to be accompanying COVID-19 not only in individuals with overt diabetes. Many authors claim that blood glucose levels should also be monitored in non-diabetic patients; moreover, it has been confirmed that hyperglycemia worsens the prognosis even without pre-existing diabetes. The pathophysiological mechanisms behind this phenomenon are complex, remain controversial, and are poorly understood. Hyperglycemia in the setting of COVID-19 could be a consequence of deterioration in pre-existing diabetes, new-onset diabetes, stress-induced or iatrogenic due to substantial usage of corticosteroids within the context of a severe COVID-19 infection. It is also plausible that it might be a result of adipose tissue dysfunction and insulin resistance. Last but not least, SARS-CoV-2 is also claimed to trigger sporadically direct β-cell destruction and β-cell autoimmunity. Pending further validations with longitudinal data are needed to legitimize COVID-19 as a potential risk factor for the development of diabetes. Hereby, we present an emphasized critical review of the available clinical data in an attempt to unravel the complex mechanisms behind hyperglycemia in COVID-19 infection. The secondary endpoint was to evaluate the bidirectional relationship between COVID-19 and diabetes mellitus. As the worldwide pandemic is still expanding, demand for answering these questions is arising. It will be of immense help for the management of COVID-19 patients, as well as for the implementation of post-discharge policies for patients with a high risk of developing diabetes.
Collapse
Affiliation(s)
- Antonina Gerganova
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Yavor Assyov
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
- *Correspondence: Zdravko Kamenov, orcid.org/0000-0002-4829-9449
| |
Collapse
|
6
|
Gangadharan S, Parker S, Ahmed FW. Chest radiological finding of COVID-19 in patients with and without diabetes mellitus: Differences in imaging finding. World J Radiol 2022; 14:13-18. [PMID: 35126874 PMCID: PMC8788166 DOI: 10.4329/wjr.v14.i1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic of novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diabetes mellitus is a risk factor for developing severe illness and a leading cause of death in patients with COVID-19. Diabetes can precipitate hyperglycaemic emergencies and cause prolonged hospital admissions. Insulin resistance is thought to cause endothelial dysfunction, alveolar capillary micro-angiopathy and interstitial lung fibrosis through pro-inflammatory pathways. Autopsy studies have also demonstrated the presence of microvascular thrombi in affected sections of lung, which may be associated with diabetes. Chest imaging using x-ray (CXR) and computed tomography (CT) of chest is used to diagnose, assess disease progression and severity in COVID-19. This article reviews current literature regarding chest imaging findings in patients with diabetes affected by COVID-19. A literature search was performed on PubMed. Patients with diabetes infected with SARS-CoV-2 are likely to have more severe infective changes on CXR and CT chest imaging. Severity of airspace consolidation on CXR is associated with higher mortality, particularly in the presence of co-morbidities such as ischaemic heart disease. Poorly controlled diabetes is associated with more severe acute lung injury on CT. However, no association has been identified between poorly-controlled diabetes and the incidence of pulmonary thromboembolism in patients with COVID-19.
Collapse
Affiliation(s)
- Sunay Gangadharan
- Department of Radiology, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BE, United Kingdom
| | - Storm Parker
- Department of Radiology, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BE, United Kingdom
| | - Fahad Wali Ahmed
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Madinah 42522, Saudi Arabia
| |
Collapse
|
7
|
Abramczyk U, Nowaczyński M, Słomczyński A, Wojnicz P, Zatyka P, Kuzan A. Consequences of COVID-19 for the Pancreas. Int J Mol Sci 2022; 23:864. [PMID: 35055050 PMCID: PMC8776154 DOI: 10.3390/ijms23020864] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19)-related major health consequences involve the lungs, a growing body of evidence indicates that COVID-19 is not inert to the pancreas either. This review presents a summary of the molecular mechanisms involved in the development of pancreatic dysfunction during the course of COVID-19, the comparison of the effects of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic function, and a summary of how drugs used in COVID-19 treatment may affect this organ. It appears that diabetes is not only a condition that predisposes a patient to suffer from more severe COVID-19, but it may also develop as a consequence of infection with this virus. Some SARS-CoV-2 inpatients experience acute pancreatitis due to direct infection of the tissue with the virus or due to systemic multiple organ dysfunction syndrome (MODS) accompanied by elevated levels of amylase and lipase. There are also reports that reveal a relationship between the development and treatment of pancreatic cancer and SARS-CoV-2 infection. It has been postulated that evaluation of pancreatic function should be increased in post-COVID-19 patients, both adults and children.
Collapse
Affiliation(s)
- Urszula Abramczyk
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Maciej Nowaczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Adam Słomczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Wojnicz
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Zatyka
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
8
|
Anwar S, Raut R, Alsahli MA, Almatroudi A, Alfheeaid H, Alzahrani FM, Khan AA, Allemailem KS, Almatroodi SA, Rahmani AH. Role of Ajwa Date Fruit Pulp and Seed in the Management of Diseases through In Vitro and In Silico Analysis. BIOLOGY 2022; 11:78. [PMID: 35053077 PMCID: PMC8773040 DOI: 10.3390/biology11010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 μg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 μg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Faisal M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| |
Collapse
|
9
|
Bassani D, Ragazzi E, Lapolla A, Sartore G, Moro S. Omicron Variant of SARS-CoV-2 Virus: In Silico Evaluation of the Possible Impact on People Affected by Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:847993. [PMID: 35321335 PMCID: PMC8935058 DOI: 10.3389/fendo.2022.847993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Omicron variant of SARS-CoV-2 (Spike mutant B.1.1.529) carrying more than 30-point mutations in its structure, of which 15 are localized in the receptor-binding domain (RBD), allows to hypothesize a relevant change in interactivity with ACE2. In previous reports we hypothesized that the worse outcome of the COVID-19 disease in diabetes mellitus condition could be related to the non-enzymatic glycation of ACE2 receptor and an in silico evaluation led to the demonstration that the number of interactions is decreased in comparison to the unmodified model, possibly shifting the virus attack through different, multiple alternative entry routes. Given the evidenced features of this variant, we aimed to investigate with a computational approach the characteristics of Omicron SARS-CoV-2 with respect to its binding to human ACE-2 receptor, in a particular population, namely people affected by diabetes mellitus, at risk for unfavorable outcomes of the COVID-19. The computational analysis, considering the case in which all the lysine residues in the system are subjected to non-enzymatic glycation, confirmed that lysine glycation causes a general loss of interactivity between wild-type (WT)-Spike-RBD and ACE2. In the Omicron variant, Lys417 mutates into an asparagine, preventing the possible non-enzymatic glycation of this residue. Therefore, if non-enzymatic glycation seemed to cause a shift in the way in which the virus enters the cell from the ACE2-mediated mechanism to other pathways, in the case of the Omicron variant the ACE2-mediated approach of the virus seems to remain an important event to take into account. Indeed, interaction profile analysis, together with molecular mechanics-generalized Born surface area (MM-GBSA) calculations, suggests that the Omicron-Spike-RBD maintains a higher affinity for ACE2 subsequently to non-enzymatic glycation with respect to WT-Spike-RBD. The finding of the present computational study may suggest a different clinical relevance of the Omicron variant for the diabetes mellitus field, also in the possible direction of a lower severity of the disease.
Collapse
Affiliation(s)
- Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova School of Medicine and Surgery, Padua, Italy
- *Correspondence: Eugenio Ragazzi,
| | - Annunziata Lapolla
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Giovanni Sartore
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Padua, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Padua, Italy
| |
Collapse
|
10
|
Sartore G, Bassani D, Ragazzi E, Traldi P, Lapolla A, Moro S. In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment. Sci Rep 2021; 11:22860. [PMID: 34819560 PMCID: PMC8613179 DOI: 10.1038/s41598-021-02297-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022] Open
Abstract
The worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.
Collapse
Affiliation(s)
- Giovanni Sartore
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Via Giustiniani 2, 35128, Padua, Italy
| | - Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Via Marzolo, 5, 35131, Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova School of Medicine and Surgery, Largo Meneghetti 2, 35131, Padua, Italy.
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Via Giustiniani 2, 35128, Padua, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Via Marzolo, 5, 35131, Padua, Italy
| |
Collapse
|
11
|
Klonoff DC, Messler J, Valk T, Jagannathan R, Pasquel FJ, Umpierrez GE. Clinical Trials of COVID-19 Therapies Should Account for Diabetes and Hyperglycemia. J Diabetes Sci Technol 2021; 15:1181-1187. [PMID: 34159841 PMCID: PMC8442178 DOI: 10.1177/19322968211013369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complications of Coronavirus Disease 2019 (COVID-19) occur with increased frequency in people admitted to the hospital with diabetes or hyperglycemia. The increased risk for COVID-19 infections in the presence of these metabolic conditions is in part due to overlapping pathophysiologic features of COVID-19, diabetes, and glucose control. Various antiviral treatments are being tested in COVID-19 patients. We believe that in these trials, it will be useful to evaluate treatment effect differences in patients stratified according to whether they have diabetes or hyperglycemia. In this way, it will be possible to better facilitate development of antiviral treatments that are most specifically beneficial for the large subset of COVID-19 patients who have diabetes or hyperglycemia.
Collapse
Affiliation(s)
- David C. Klonoff
- Mills-Peninsula Medical Center, San
Mateo, CA, USA
- David C. Klonoff, M.D., FACP, FRCP (Edin),
Fellow AIMBE, Medical Director, Diabetes Research Institute, Mills-Peninsula
Medical Center, 100 South San Mateo Drive, Room 5147, San Mateo, CA 94401, USA.
| | | | - Timothy Valk
- Admetsys Corporation, Research
Division, Winter Park, FL, USA
| | | | | | | |
Collapse
|
12
|
Abramczyk U, Kuzan A. What Every Diabetologist Should Know about SARS-CoV-2: State of Knowledge at the Beginning of 2021. J Clin Med 2021; 10:1022. [PMID: 33801468 PMCID: PMC7958842 DOI: 10.3390/jcm10051022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
For almost a year, the major medical problem has been the pandemic caused by the SARS-CoV-2 virus. People with diabetes who contract COVID-19 are likely to experience more serious symptoms than patients without diabetes. This article presents new research about the epidemiology of COVID-19 in a group of patients with diabetes. It details the mortality and prognosis in such patients, as well as the relationship between COVID-19 and the diseases most often coexisting with diabetes: obesity, atherosclerosis, hypertension, and increased risk for infection. It also details how the virus infects and affects patients with hyperglycemia. The context of glycation and receptors for advanced glycation products (RAGE) seems to be of particular importance here. We also present a hypothesis related to the cause-and-effect axis-it turns out that diabetes can be both the cause of the more difficult course of COVID-19 and the result of SARS-CoV-2 infection. The last part of this article discusses the impact of antihyperglycemic drugs on the development of COVID-19 and other pharmacological implications, including which non-classical antihyperglycemic drugs seem to be effective in both the treatment of coronavirus infection and glucose homeostasis, and what strategies related to RAGE and glycation should be considered.
Collapse
Affiliation(s)
- Urszula Abramczyk
- A. Falkiewicz Specialist Hospital in Wroclaw, 52-114 Wroclaw, Poland;
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
13
|
Liao YH, Zheng JQ, Zheng CM, Lu KC, Chao YC. Novel Molecular Evidence Related to COVID-19 in Patients with Diabetes Mellitus. J Clin Med 2020; 9:E3962. [PMID: 33297431 PMCID: PMC7762278 DOI: 10.3390/jcm9123962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to enter the affected cell. Uncontrolled hyperglycemia-induced glycosylation of ACE2 and the S protein of SARS-CoV-2 could facilitate the binding of S protein to ACE2, enabling viral entry. Downregulation of ACE2 activity secondary to SARS-CoV-2 infection, with consequent accumulation of angiotensin II and metabolites, eventually leads to poor outcomes. The altered binding of ACE2 with SARS-CoV-2 and the compromised innate immunity of patients with DM increase their susceptibility to COVID-19; COVID-19 induces pancreatic β-cell injury and poor glycemic control, which further compromises the immune response and aggravates hyperglycemia and COVID-19 progression, forming a vicious cycle. Sequential cleavage of viral S protein by furin and transmembrane serine protease 2 (TMPRSS2) triggers viral entry to release the viral genome into the target cell. Hence, TMPRSS2 and furin are possible drug targets. As type 1 DM exhibits a Th1-driven autoimmune process, the relatively lower mortality of COVID-19 in type 1 DM compared to type 2 DM might be attributed to an imbalance between Th1 and Th2 immunity. The anti-inflammatory effects of dipeptidyl peptidase-4 inhibitor may benefit patients with DM and COVID-19. The potential protective effects of sodium-glucose cotransporter-2 inhibitor (SGLT2i), including reduction in lactate level, prevention of lowering of cytosolic pH and reduction in pro-inflammatory cytokine levels may justify the provision of SGLT2i to patients with DM and mild or asymptomatic COVID-19. For patients with DM and COVID-19 who require hospitalization, insulin-based treatment is recommended with cessation of metformin and SGLT2i. Further evidence from randomized or case-control clinical trials is necessary to elucidate the effectiveness and pitfalls of different types of medication for DM.
Collapse
Affiliation(s)
- Yu-Huang Liao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - You-Chen Chao
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|