1
|
Abood TW, Shabeeb KM, Alzubaydi AB, Majdi HS, Al-Juboori RA, Alsalhy QF. Effect of MAX Phase Ti 3ALC 2 on the Ultrafiltration Membrane Properties and Performance. MEMBRANES 2023; 13:membranes13050456. [PMID: 37233517 DOI: 10.3390/membranes13050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Membrane fouling remains a major obstacle to ultrafiltration. Due to their effectiveness and minimal energy demand, membranes have been extensively employed in water treatment. To improve the antifouling property of the PVDF membrane, a composite ultrafiltration membrane was created employing the in-situ embedment approach throughout the phase inversion process and utilizing a new 2D material, MAX phase Ti3ALC2. The membranes were described using FTIR (Fourier transform infrared spectroscopy), EDS (energy dispersive spectroscopy), CA (water contact angle), and porosity measurements. Additionally, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) were employed. Standard flux and rejection tests were applied to study the produced membranes' performance. Adding Ti3ALC2 reduced composite membranes' surface roughness and hydrophobicity compared to the pristine membrane. Porosity and membrane pore size increased with the addition up to 0.3% w/v, which decreased as the additive percentage increased. The mixed matric membrane with 0.7% w/v of Ti3ALC2 (M7) had the lowest CA. The alteration in the membranes' properties reflected well on their performance. The membrane with the highest porosity (0.1% w/v of Ti3ALC2, M1) achieved the highest pure water and protein solution fluxes of 182.5 and 148.7. The most hydrophilic membrane (M7) recorded the highest protein rejection and flux recovery ratio of 90.6, which was much higher than that of the pristine membrane, 26.2. MAX phase Ti3ALC2 is a potential material for antifouling membrane modification because of its protein permeability, improved water permeability, and outstanding antifouling characteristics.
Collapse
Affiliation(s)
- Tamara Wahid Abood
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Kadhum M Shabeeb
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Aseel B Alzubaydi
- Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, AlMustaqbal University College, Babylon 51001, Iraq
| | - Raed A Al-Juboori
- NYUAD Water Research Centre, Abu Dhabi Campus, New York University, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| |
Collapse
|
2
|
Hybrid PSf/TNT-SO3H Ultrafiltration Membrane Fouling by Sodium Alginate: Effect of Permeation Flux on Fouling Resistance and Desalination Efficiency. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/2885849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of low fouling UF membranes with boosting water flux for implementations in water purifications is critical. Organic foulants and ionic strength are the main characteristics of surface water which affect the membrane performance for water generation and seawater desalination. Low fouling hybrid ultrafiltration membranes were fabricated from a combination of sulfonic acid functionalized titanium nanotubes (TNTs-SO3H) and polysulfone (PSf) by the nonsolvent-induced phase separation approach. The membrane fouling was explored utilizing a polysaccharide sodium alginate (SA) as a hydrophilic nature organic matter, and the impact of Na+ and Ca2+ ions on alginate membrane fouling were also addressed. The results showed that the membranes’ water permeability and natural organic matter fouling resistances were affected by the proportion of TNTs-SO3H in the membranes. The inclusion of TNTs-SO3H improves the water penetration fluxes (Jw1) and surface hydrophilicity of the manufactured membranes. In the UF of sodium alginate solution, the produced membrane comprising 5% TNTs-SO3H exhibits a higher penetration flux and rejection value than the other membranes. The introduction of Na+ and Ca2+ ions to the SA solution reduces the membrane fouling. Furthermore, the adsorption investigation of sodium alginate solutions at
was lowered as the amount of TNTs-SO3H was increased. After ultrafiltration, the fouled membrane containing 5% TNTs-SO3H is readily removed, and recurrent antifouling experiments indicate a consistent and maximum filtration efficiency.
Collapse
|
3
|
Elgawady Y, Ponnamma D, Hassan MK, Adham S, Karim A, Al‐Maadeed MAA. In situ synthesized amphiphilic polysulfone‐poly(ethylene‐glycol) block copolymer/silver nanocomposite for separating oil/water emulsion. J Appl Polym Sci 2022. [DOI: 10.1002/app.51931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yara Elgawady
- Center for Advanced Materials Qatar University Doha Qatar
| | | | | | - Samer Adham
- ConocoPhilips Global Water Sustainability Center Qatar Science and Technology Park Doha Qatar
| | - Alamgir Karim
- Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| | - Mariam Al Ali Al‐Maadeed
- Center for Advanced Materials Qatar University Doha Qatar
- Materials Science Technology Program College of Arts & Sciences, Qatar University Doha Qatar
| |
Collapse
|
4
|
|
5
|
Wang C, Zhao X, Wu J, Yang X, Cui X, Geng W, Geng Z, Wang X. Solar-driven Ag@NH2-MIL-125/PAES-CF3-COOH tight reactive hybrid ultrafiltration membranes for high self-cleaning efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Synergistic effects of matrix-anchoring and surface-segregation behavior of poly(N-vinylpyrrolidone)-grafted-silica filler for PVDF membrane performance improvement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kallem P, Bharath G, Rambabu K, Srinivasakannan C, Banat F. Improved permeability and antifouling performance of polyethersulfone ultrafiltration membranes tailored by hydroxyapatite/boron nitride nanocomposites. CHEMOSPHERE 2021; 268:129306. [PMID: 33360002 DOI: 10.1016/j.chemosphere.2020.129306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
To extend the use of polyethersulfone (PES) ultrafiltration membranes in water process engineering, the membrane's wettability and anti-fouling properties should be further improved. In this context, hydroxyapatite/boron nitride (HAp/BN) nanocomposites have been prepared and intercalated into PES membranes using a non-solvent-induced phase separation process. High-quality 2D transparent boron nitride nanosheets (BN NSs) were prepared using an environmentally friendly and green-template assisted synthesis method in which 1D hexagonal hydroxyapatite nanosheets (HAp NRs) were uniformly distributed and hydrothermally immobilized at 180 °C. SEM, XRD, and Raman spectroscopy techniques were used to characterize the HAp/BN nanocomposites. PES membranes intercalated with various nanocomposite amounts (0-4 wt %) were also characterized by permeability, porosity, and contact angle measurements. Additional pathways for water molecule transport were promoted by the high surface area of the BN NSs, resulting in high permeability. Membrane wettability and antifouling properties were also improved by the inclusion of negative charge groups (OH- and PO43-) on HAp. Hybrid membranes containing 4 wt% HAp/BN showed the best overall performance with ∼97% increase in water flux, 90% rejection of bovine serum albumin (BSA), high water flux recovery ratio, low irreversible fouling, and high reversible fouling pattern. The intercalation of HAp/BN with the PES matrix therefore opens up a new direction to enhance the PES UF membranes' hydrophilicity, water flux, and antifouling capacity.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - G Bharath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - K Rambabu
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - C Srinivasakannan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Wieczorek J, Ulbricht M. Amphiphilic poly(arylene ether sulfone) multiblock copolymers with quaternary ammonium groups for novel thin-film composite nanofiltration membranes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ji M, Li X, Omidvarkordshouli M, Sigurdardóttir SB, Woodley JM, Daugaard AE, Luo J, Pinelo M. Charge exclusion as a strategy to control retention of small proteins in polyelectrolyte-modified ultrafiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Li J, Cui Z, Tao R, Yang S, Hu M, Matindi C, Gumbi NN, Ma X, Hu Y, Fang K, Li J. Tailoring polyethersulfone/quaternary ammonium polysulfone ultrafiltration membrane with positive charge for dye and salt selective separation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaye Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Ran Tao
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Shuqian Yang
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Mengyang Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Christine Matindi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Nozipho N. Gumbi
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
| | - Kuanjun Fang
- Collaborative Innovation Center for Eco‐Textiles of Shandong Province Qingdao People's Republic of China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes National Center for International Joint Research on Membrane Science and Technology, Tiangong University Tianjin People's Republic of China
- School of Materials Science and Engineering Tiangong University Tianjin People's Republic of China
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology University of South Africa, Science Campus, Florida Johannesburg South Africa
| |
Collapse
|
11
|
Ma Y, Zeng J, Zeng Y, Zhou H, Liu G, Liu Y, Zeng L, Jian J, Yuan Z. Preparation and performance of poly(4-vinylpyridine)-b-polysulfone-b-poly(4-vinylpyridine) triblock copolymer/polysulfone blend membrane for separation of palladium (II) from electroplating wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121277. [PMID: 31581018 DOI: 10.1016/j.jhazmat.2019.121277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
In order to separate palladium (II) from electroplating wastewaters, poly(4-vinylpyridine)-b-polysulfone-b-poly(4-vinylpyridine) (P4VP-PSF-P4VP) / polysulfone blend membranes were fabricated by combining non-solvent induced phase separation, surface segregation and self-assembly of block copolymer. Amphiphilic P4VP-PSF-P4VP was used as the membrane base material, which was synthesized by introducing the functional monomer of 4-vinylpyridine (4-VP), and polysulfone as the additive. Effects of blend ratio and 4-VP content on membrane performance, such as structure, hydrophilicity, pure water flux and adsorption capacity towards Pd (II), were investigated. The membranes exhibited dense surface structure and low roughness due to surface segregation and self-assembly of P4VP-PSF-P4VP. The presence of 4-VP increased hydrophilicity and water flux of membrane, and it also provided good adsorption capacity towards Pd (II) (up to 103.1 ± 5.15 mg/g). Further, the membrane was used to separate Pd (II) from simulated wastewaters during filtration. It showed good rejection ability and high selectivity towards Pd (II) in co-existence of Cu (II) and Ni (II), and selectivity coefficients of Pd/Cu and Pd/Ni are 41.9 ± 1.88 and 97.8 ± 4.32, respectively. In filtration process of actual electroplating wastewater, the membrane also exhibited excellent rejection performance (Pd (II) rejection reached up to 96.8 ± 2.71%). Perhaps it is suitable for future practice applications.
Collapse
Affiliation(s)
- Yichang Ma
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Jianxian Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China.
| | - Yajie Zeng
- School of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Guoqing Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Lingwei Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Jian Jian
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| | - Zhengqiu Yuan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
| |
Collapse
|
12
|
Saki S, Senol‐Arslan D, Uzal N. Fabrication and characterization of silane‐functionalized Na‐bentonite polysulfone/polyethylenimine nanocomposite membranes for dye removal. J Appl Polym Sci 2020. [DOI: 10.1002/app.49057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seda Saki
- Department of Materials Science and Mechanical EngineeringAbdullah Gul University Kayseri Turkey
| | - Dilek Senol‐Arslan
- Department of Material Science and Nanotechnology EngineeringAbdullah Gul University Kayseri Turkey
| | - Nigmet Uzal
- Department of Civil EngineeringAbdullah Gul University Kayseri Turkey
| |
Collapse
|
13
|
Wu Y, Xia Y, Jing X, Cai P, Igalavithana AD, Tang C, Tsang DCW, Ok YS. Recent advances in mitigating membrane biofouling using carbon-based materials. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120976. [PMID: 31454608 DOI: 10.1016/j.jhazmat.2019.120976] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 05/26/2023]
Abstract
Biofouling is the Achilles Heel of membrane processes. The accumulation of organic foulants and growth of microorganisms on the membrane surface reduce the permeability, shorten the membrane life, and increase the energy consumption. Advancements in novel carbon-based materials (CBMs) present significant opportunities in mitigating biofouling of membrane processes. This article provides a comprehensive review of the recent progress in the application of CBMs in antibiofouling membrane. It starts with a detailed summary of the different antibiofouling mechanisms of CBM-containing membrane systems. Next, developments in membrane modification using CBMs, especially carbon nanotubes and graphene family materials, are critically reviewed. Further, the antibiofouling potential of next-generation carbon-based membranes is surveyed. Finally, the current problems and future opportunities of applying CBMs for antibiofouling membranes are discussed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yinfeng Xia
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; College of Water Conservancy & Environmental Engineering, Zhejiang University of Water Resources & Electric Power, Hangzhou, China
| | - Xinxin Jing
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chuyang Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China; School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia; School of Civil and Environmental Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Smirnova NN, Krasil’nikov IV. An Effect of the Nature of Immobilized Components on the Adsorption and Mass Transfer Properties of Ultrafiltration Membranes Based on Sulfonate-containing Сopolyamide. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427219110144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Shen Z, Chen W, Xu H, Yang W, Kong Q, Wang A, Ding M, Shang J. Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234659. [PMID: 31766756 PMCID: PMC6926845 DOI: 10.3390/ijerph16234659] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022]
Abstract
Membrane fouling is still a critical issue for the application of ultrafiltration, which has been widely used in water treatment due to its efficiency and simplicity. In order to improve the antifouling property, a new 2D material MXene was used to fabricate composite ultrafiltration membrane with the approach of in situ embedment during the phase inversion process in this study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), water contact angle, bovine serum albumin rejection and porosity measurements were utilized to characterize the prepared membranes. Due to the hydrophilicity of the MXene, the composite membranes obtained higher hydrophilicity, confirmed by the decreased water contact angle. All the modified membranes had a high bovine serum albumin rejection above 90% while that of the pristine polysulfone membrane was 77.48%. The flux recovery ratio and the reversible fouling ratio of the membranes were also improved along with the increasing content of the MXene. Furthermore, the highest flux recovery ratio could also reach 76.1%. These indicated the good antifouling properties of MXene composite membranes. The enhanced water permeability and protein rejection and excellent antifouling properties make MXene a promising material for antifouling membrane modification.
Collapse
Affiliation(s)
- Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
- Correspondence:
| | - Wen Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Qing Kong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Ao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China; (Z.S.); (W.C.); (W.Y.); (Q.K.); (A.W.); (M.D.)
| | - Juan Shang
- Wanjiang University of Technology, Maanshan 243031, China;
| |
Collapse
|
16
|
Algamdi MS, Alsohaimi IH, Lawler J, Ali HM, Aldawsari AM, Hassan HM. Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.057] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Characterizing the roles of organic and inorganic foulants in RO membrane fouling development: The case of coal chemical wastewater treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Gumbi NN, Hu M, Mamba BB, Li J, Nxumalo EN. Macrovoid-free PES/SPSf/O-MWCNT ultrafiltration membranes with improved mechanical strength, antifouling and antibacterial properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Arunkumar A, Etzel MR. Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes. Foods 2018; 7:E166. [PMID: 30304801 PMCID: PMC6210718 DOI: 10.3390/foods7100166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 11/24/2022] Open
Abstract
Fractionation of the bovine glycomacropeptide (GMP) from the other proteins in cheese whey was examined using ultrafiltration membranes surface modified to contain positively charged polymer brushes made of polyhexamethylene biguanide. By placing a strong positive charge on a 1000 kDa ultrafiltration membrane and adjusting the pH of whey close to the isoelectric point of GMP, a 14-fold increase in selectivity was observed compared to unmodified membranes. A one stage membrane system gave 90% pure GMP and a three-stage rectification system gave 97% pure GMP. The charged membrane was salt-tolerant up to 40 mS cm-1 conductivity, allowing fractionation of GMP directly from cheese whey without first lowering the whey conductivity by water dilution. Thus, similarly sized proteins that differed somewhat in isoelectric points and were 50⁻100 fold smaller than the membrane molecular weight cut-off (MWCO), were cleanly fractionated using charged ultrafiltration membranes without water addition. This is the first study to report on the use of salt-tolerant charged ultrafiltration membranes to produce chromatographically pure protein fractions from whey, making ultrafiltration an attractive alternative to chromatography for dairy protein fractionation.
Collapse
Affiliation(s)
- Abhiram Arunkumar
- Department of Chemical and Biological Engineering, University of Wisconsin, 1605 Linden Dr., Madison, WI 53706, USA.
| | - Mark R Etzel
- Department of Chemical and Biological Engineering, University of Wisconsin, 1605 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
20
|
Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Lin Z, Hu C, Wu X, Zhong W, Chen M, Zhang Q, Zhu A, Liu Q. Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Xu H, Ding M, Chen W, Li Y, Wang K. Nitrogen–doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Huang L, Ye H, Yu T, Zhang X, Zhang Y, Zhao L, Xin Q, Wang S, Ding X, Li H. Similarly sized protein separation of charge-selective ethylene-vinyl alcohol copolymer membrane by grafting dimethylaminoethyl methacrylate. J Appl Polym Sci 2018. [DOI: 10.1002/app.46374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Tengfei Yu
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Xiangyu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| |
Collapse
|
24
|
|
25
|
Zhu K, Zhang S, Luan J, Mu Y, Du Y, Wang G. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Preparation of PVDF/GO SiO2 hybrid microfiltration membrane towards enhanced perm-selectivity and anti-fouling property. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zhu K, Wang G. Fabrication of high-performance ultrafiltration membranes using zwitterionic carbon nanotubes and polyethersulfone. HIGH PERFORM POLYM 2017. [DOI: 10.1177/0954008317711234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kai Zhu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Guibin Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
28
|
Xu H, Ding M, Liu S, Li Y, Shen Z, Wang K. Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO 2 nanocomposites. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Lee J, Jeong S, Ye Y, Chen V, Vigneswaran S, Leiknes T, Liu Z. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ma N, Zhao L, Hu X, Yin Z, Zhang Y, Meng J. Protein Transport Properties of PAN Membranes Grafted with Hyperbranched Polyelectrolytes and Hyperbranched Zwitterions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Ma
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Lianrui Zhao
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xiaoyu Hu
- State Key Laboratory of Membrane Materials and Membrane Applications,
Tianjin Motimo Membrane Technology Co., Ltd., Tianjin 300042, China
| | - Zhen Yin
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yufeng Zhang
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianqiang Meng
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
31
|
Täuber K, Dani A, Yuan J. Covalent Cross-Linking of Porous Poly(ionic liquid) Membrane via a Triazine Network. ACS Macro Lett 2017; 6:1-5. [PMID: 35632869 DOI: 10.1021/acsmacrolett.6b00782] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect pore size and pore size distribution of the membranes and stabilize them toward salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.
Collapse
Affiliation(s)
- Karoline Täuber
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| | - Alessandro Dani
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| | - Jiayin Yuan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, D-14476 Potsdam, Germany
| |
Collapse
|
32
|
Du C, Ma X, Li J, Wu C. Improving the charged and antifouling properties of PVDF ultrafiltration membranes by blending with polymerized ionic liquid copolymer P(MMA-b-MEBIm-Br). J Appl Polym Sci 2017. [DOI: 10.1002/app.44751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Du
- School of Environmental Science and Engineering; Zhejiang GongshangUniversity; Hangzhou 310018 People's Republic of China
| | - Xumin Ma
- School of Environmental Science and Engineering; Zhejiang GongshangUniversity; Hangzhou 310018 People's Republic of China
| | - Jing Li
- School of Environmental Science and Engineering; Zhejiang GongshangUniversity; Hangzhou 310018 People's Republic of China
| | - Chunjin Wu
- School of Environmental Science and Engineering; Zhejiang GongshangUniversity; Hangzhou 310018 People's Republic of China
| |
Collapse
|
33
|
Ye H, Huang L, Li W, Zhang Y, Zhao L, Xin Q, Wang S, Lin L, Ding X. Protein adsorption and desorption behavior of a pH-responsive membrane based on ethylene vinyl alcohol copolymer. RSC Adv 2017. [DOI: 10.1039/c7ra03206d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pH-responsive protein adsorption and desorption of a poly(DMAEMA)-grafted EVAL membrane was observed.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Wenrui Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - YuZhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| |
Collapse
|
34
|
Zhu K, Wang G, Zhang S, Du Y, Lu Y, Na R, Mu Y, Zhang Y. Preparation of organic–inorganic hybrid membranes with superior antifouling property by incorporating polymer-modified multiwall carbon nanotubes. RSC Adv 2017. [DOI: 10.1039/c7ra04248e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Schematic illustration of (a) the polymerization of dopamine, and (b) preparation of the PVP-modified MWCNTs.
Collapse
Affiliation(s)
- Kai Zhu
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Guibin Wang
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Shuling Zhang
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Yinlong Du
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Yaning Lu
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Ruiqi Na
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Yongfeng Mu
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| | - Yunhe Zhang
- College of Chemistry
- Key Laboratory of High Performance Plastics
- Ministry of Education
- Jilin University
- Changchun
| |
Collapse
|
35
|
Bhadra M, Roy S, Mitra S. A Bilayered Structure Comprised of Functionalized Carbon Nanotubes for Desalination by Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19507-19513. [PMID: 27387851 DOI: 10.1021/acsami.6b05644] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of a novel carbon nanotube (CNT) immobilized membrane comprised of a double-layer structure is presented for water desalination by membrane distillation. The bilayered structure is comprised of CNTs functionalized with a hydrophobic octadecyl amine group on the feed side and carboxylated CNTs on the permeate side. The latter is more hydrophilic. The hydrophobic CNTs provide higher water vapor permeation, while the hydrophilic CNTs facilitate the condensation of water vapor. Together, these led to superior performance, and flux in a direct contact membrane distillation mode was found to be as high as 121 kg/m(2)h at 80 °C. The bilayered membrane represented an enhancement of 70% over the unmodified membrane and 37% over a membrane which had a monolayered structure where only the feed side was CNT-modified.
Collapse
Affiliation(s)
- Madhuleena Bhadra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Sagar Roy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| |
Collapse
|
36
|
Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO−TiO2 nanocomposite and polysulfone for humic acid removal. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Chen GE, Xu SJ, Xu ZL, Zhu WW, Wu Q, Sun WG. Preparation and characterization of a novel hydrophilic PVDF/PVA UF membrane modified by carboxylated multiwalled carbon nanotubes. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gui-E Chen
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Sun-Jie Xu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Wei-Wei Zhu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Qiong Wu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| | - Wei-Guang Sun
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 China
| |
Collapse
|
38
|
Wang S, Liang S, Liang P, Zhang X, Sun J, Wu S, Huang X. In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Liu G, Zhang L, Mao S, Rohani S, Ching C, Lu J. Zwitterionic chitosan–silica–PVA hybrid ultrafiltration membranes for protein separation. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kumar R, Ismail AF. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J Appl Polym Sci 2015. [DOI: 10.1002/app.42042] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rajesha Kumar
- Advanced Membrane Technology Research Center; Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| | - A. F. Ismail
- Advanced Membrane Technology Research Center; Universiti Teknologi Malaysia; 81310 UTM Skudai Johor Malaysia
| |
Collapse
|
41
|
Kumar M, McGlade D, Ulbricht M, Lawler J. Quaternized polysulfone and graphene oxide nanosheet derived low fouling novel positively charged hybrid ultrafiltration membranes for protein separation. RSC Adv 2015. [DOI: 10.1039/c5ra06893b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Low fouling positively charged hybrid UF membranes with adjustable charge density fabricated from a blend of PSf/QPSf and GO nanosheets by solution casting and NIPS method. Cross-section SEM image and observed lysozyme transport values at varied pH.
Collapse
Affiliation(s)
- Mahendra Kumar
- Membrane and Environmental Technologies Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Declan McGlade
- Membrane and Environmental Technologies Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45117 Essen
- Germany
| | - Jenny Lawler
- Membrane and Environmental Technologies Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
42
|
Zhu J, Su Y, Zhao X, Li Y, Zhang R, Fan X, Ma Y, Liu Y, Jiang Z. Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Adv 2015. [DOI: 10.1039/c5ra04086h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel zwitterionic membrane surface was constructed which exhibited stable antifouling ability by the formation of multisite anchorage covalent bonds.
Collapse
Affiliation(s)
- Junao Zhu
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanlei Su
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xueting Zhao
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yafei Li
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaochen Fan
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanyan Ma
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yuan Liu
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
43
|
Gritti F, Guiochon G. Separation of peptides and intact proteins by electrostatic repulsion reversed phase liquid chromatography. J Chromatogr A 2014; 1374:112-121. [PMID: 25488252 DOI: 10.1016/j.chroma.2014.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
A new brand of BEH-C18 hybrid particles chemically bonded to a leash carrying an amine group permits the implementation of electrostatic repulsive interactions chromatography. Using columns packed with this material, the influence of the concentration of positive charges bonded to the BEH-C18 surface on the overloaded band profiles of a few positively charged peptides and proteins was investigated in the gradient elution mode. Three columns packed with endcapped BEH-C18 particles bonded with three different surface-charge densities (LOW, MEDIUM and HIGH) were used and compared with those provided by a column packed with non-doped, endcapped BEH-C18 particles. The surface concentrations of fixed charges in the LOW, MEDIUM and HIGH columns were estimated at 0.029, 0.050, and 0.064μmol/m(2), for example, about two orders of magnitude smaller than the surface density of bonded C18 chains (2.1μmol/m(2)). Three different mobile phase additives (0.1% v/v of trifluoro-acetic, phosphoric, and formic acid) were used to optimize the purification levels of proteins under different loading conditions. The weak ion-pairing ions (formate and phosphate) generate smaller retention but broader, more fronting band profiles than those eluted with a stronger ion-pairing ion (trifluoroactate). This effect is worse in the presence of fixed charges at the surface of the BEH-C18 particles. This was explained by an enhanced anti-Langmuirian adsorption behavior of the charged proteins in the presence of fixed surface charges. As the protein concentration increases in the bulk, so does the internal ionic strength, the electrostatic repulsive interactions weaken, and retention increases. Band fronting is mostly eliminated by replacing weak ion-pairing acids with TFA with which the adsorption isotherm remains weakly langmuirian. Faster but still complete gradient separation of insulin and myoglobin were achieved with the HIGH column than with the reference neutral column, despite a measurable loss in selectivity.
Collapse
Affiliation(s)
- Fabrice Gritti
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA.
| | - Georges Guiochon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA.
| |
Collapse
|
44
|
A facile modification approach for polyacrylonitrile-based UF hollow fiber membrane utilizing polyacrylonitrile-g-poly(vinyl alcohol) graft copolymer. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0594-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Zhu J, Su Y, Zhao X, Li Y, Zhao J, Fan X, Jiang Z. Improved Antifouling Properties of Poly(vinyl chloride) Ultrafiltration Membranes via Surface Zwitterionicalization. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5022877] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junao Zhu
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yafei Li
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jiaojiao Zhao
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiaochen Fan
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory
for Green Chemical Technology, School of Chemical Engineering and
Technology and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
46
|
Low fouling negatively charged hybrid ultrafiltration membranes for protein separation from sulfonated poly(arylene ether sulfone) block copolymer and functionalized multiwalled carbon nanotubes. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Tripathi BP, Dubey NC, Simon F, Stamm M. Thermo responsive ultrafiltration membranes of grafted poly(N-isopropyl acrylamide) via polydopamine. RSC Adv 2014. [DOI: 10.1039/c4ra03485f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermoresponsive membranes with good antifouling ability and rejection performance were prepared via mussel inspired PNIPAm grafting.
Collapse
Affiliation(s)
- Bijay P. Tripathi
- Department of Nanostructured Materials
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
| | - Nidhi C. Dubey
- Department of Nanostructured Materials
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
- Technische Universität Dresden
- Department of Chemistry
| | - F. Simon
- Department of Nanostructured Materials
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
| | - M. Stamm
- Department of Nanostructured Materials
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
- Technische Universität Dresden
- Department of Chemistry
| |
Collapse
|
48
|
Kumar M, McGlade D, Lawler J. Functionalized chitosan derived novel positively charged organic–inorganic hybrid ultrafiltration membranes for protein separation. RSC Adv 2014. [DOI: 10.1039/c4ra02576h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Positively charged organic–inorganic hybrid ultrafiltration membranes for selective protein separation were fabricated from blends of PVA, functionalized600 dpi in TIF format)??> chitosan and tetraethylorthosilicate.
Collapse
Affiliation(s)
- Mahendra Kumar
- Membrane Technology Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9, Ireland
| | - Declan McGlade
- Membrane Technology Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9, Ireland
| | - Jenny Lawler
- Membrane Technology Laboratory
- School of Biotechnology
- Dublin City University
- Dublin 9, Ireland
| |
Collapse
|
49
|
|