1
|
Riyanto E. Atomic layer deposition on flexible polymeric materials for lithium-ion batteries. RSC Adv 2025; 15:12382-12401. [PMID: 40248234 PMCID: PMC12004458 DOI: 10.1039/d5ra00652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Polymers have the distinctive qualities of being lightweight, flexible, and inexpensive and possessing good mechanical qualities. Consequently, these materials are employed in a wide range of applications, including lithium-ion batteries (LiBs). Interestingly, a variety of thin film materials can be deposited onto polymer substrates using the atomic layer deposition (ALD) technique. This is because the surface of many polymers has abundant reactive sites that are essential for the initial growth of ALD, such as functional hydroxyl -OH groups and -C[double bond, length as m-dash]O polar groups, aiding the smooth growth of ALD materials. Moreover, the diffusion growth mechanism, which is initiated by the nucleation and infiltration of precursors, can enable the initial growth of ALD materials even if the polymers lack these reactive polar groups. As polymers are composed of several chains, they have microporous characteristics, forming voids between the polymer chains. Because of these characteristics, polymers are considered ideal material substrates for investigating the promising future of the widely used ALD technique. The combination of polymer materials and the ALD method is becoming increasingly important in the advancements of high-performance LiBs. This review focuses on the present understanding of the role of polymer materials in the ALD technique for the fabrication of lithium-ion batteries.
Collapse
Affiliation(s)
- Edy Riyanto
- Research Center for Advanced Material, National Research and Innovation Agency Serpong 15314 Indonesia
| |
Collapse
|
2
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
da Veiga LP, Jeanguenat C, Lisco F, Li HY, Nicolay S, Ballif C, Ingenito A, Leon JJD. Ultrathin ALD Aluminum Oxide Thin Films Suppress the Thermal Shrinkage of Battery Separator Membranes. ACS OMEGA 2022; 7:45582-45589. [PMID: 36530338 PMCID: PMC9753167 DOI: 10.1021/acsomega.2c06318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Thermal runaway is a major safety concern in the applications of Li-ion batteries, especially in the electric vehicle (EV) market. A key component to mitigate this risk is the separator membrane, a porous polymer film that prevents physical contact between the electrodes. Traditional polyolefin-based separators display significant thermal shrinkage (TS) above 100 °C, which increases the risk of battery failure; hence, suppressing the TS up to 180 °C is critical to enhancing the cell's safety. In this article, we deposited thin-film coatings (less than 10 nm) of aluminum oxide by atomic layer deposition (ALD) on three different types of separator membranes. The deposition conditions and the plasma pretreatment were optimized to decrease the number of ALD cycles necessary to suppress TS without hindering the battery performance for all of the studied separators. A dependency on the separator composition and porosity was found. After 100 ALD cycles, the thermal shrinkage of a 15 μm thick polyethylene membrane with 50% porosity was measured to be below 1% at 180 °C, with ionic conductivity >1 mS/cm. Full battery cycling with NMC532 cathodes demonstrates no hindrance to the battery's rate capability or the capacity retention rate compared to that of bare membranes during the first 100 cycles. These results display the potential of separators functionalized by ALD to enhance battery safety and improve battery performance without increasing the separator thickness and hence preserving excellent volumetric energy.
Collapse
Affiliation(s)
- Leonardo Pires da Veiga
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| | - Colin Jeanguenat
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| | - Fabiana Lisco
- Ecole
Polytechnique Fédérale de Lausanne, PV-Lab, NeuchâtelCH-2000, Switzerland
| | - Heng-Yu Li
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| | - Sylvain Nicolay
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| | - Christophe Ballif
- Ecole
Polytechnique Fédérale de Lausanne, PV-Lab, NeuchâtelCH-2000, Switzerland
| | - Andrea Ingenito
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| | - Juan Jose Diaz Leon
- Centre
Suisse d’Electronique et de Microtechnique SA, Sustainable
Energy Center, Neuchâtel2002, Switzerland
| |
Collapse
|
4
|
Xiong S, Qian X, Zhong Z, Wang Y. Atomic layer deposition for membrane modification, functionalization and preparation: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Kamaludin R, Abdul Majid L, Othman MHD, Mansur S, Sheikh Abdul Kadir SH, Wong KY, Khongnakorn W, Puteh MH. Polyvinylidene Difluoride (PVDF) Hollow Fiber Membrane Incorporated with Antibacterial and Anti-Fouling by Zinc Oxide for Water and Wastewater Treatment. MEMBRANES 2022; 12:110. [PMID: 35207032 PMCID: PMC8878803 DOI: 10.3390/membranes12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
The addition of antibacterial material to hollow fiber membranes improves the membrane anti-biofouling characteristics. Antibacterial membranes were fabricated in this study to improve membrane function while also extending membrane lifetime. Neat polyvinylidene difluoride (PVDF) and PVDF hollow fiber membrane with the incorporation of antibacterial agent zinc oxide (ZnO) nanoparticles with various loading (2.5-7.5 wt.%) were fabricated by using dry/wet spinning method. The membrane structure, particle distribution, functional group, hydrophilicity, and pore size of each membrane were all assessed. The result shows that all ZnO/PVDF hollow fiber membranes have the asymmetric structure with even dispersion of ZnO nanoparticles throughout the membranes. The results showed that increased ZnO loadings considerably improved membrane hydrophilicity, and average pore size, in addition to good performance of pure water flux. Antibacterial testing shows that ZnO incorporated in the membrane matrix and membrane surfaces prevents bacteria that cause biofouling from adhering to the membrane. ZnO/PVDF membrane recorded excellent bovine serum albumin (BSA) rejection at 93.4% ± 0.4 with flux recovery rate at 70.9% ± 2.1. These results suggest that antibacterial ZnO/PVDF hollow fiber membranes are promising in relation to reducing biofouling for various water and wastewater treatment.
Collapse
Affiliation(s)
- Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
| | - Lubna Abdul Majid
- School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
- School of Chemical and Energy Engineering (SCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensics (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Keng Yinn Wong
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Watsa Khongnakorn
- Faculty of Engineering, Prince of Songkla University, Hatyai 90110, Songkhla, Thailand;
| | - Mohd Hafiz Puteh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (R.K.); (S.M.); (M.H.P.)
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
7
|
MnO -mineralized oxidized-polypropylene membranes for highly efficient oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
9
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
10
|
Zhuang L, Corkery P, Lee DT, Lee S, Kooshkbaghi M, Xu Z, Dai G, Kevrekidis IG, Tsapatsis M. Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate. AIChE J 2021. [DOI: 10.1002/aic.17305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liwei Zhuang
- School of Chemical Engineering East China University of Science and Technology Shanghai China
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Dennis T. Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
| | - Seungjoon Lee
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Mahdi Kooshkbaghi
- Program in Applied and Computational Mathematics Princeton University Princeton New Jersey USA
| | - Zhen‐liang Xu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Gance Dai
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Institute for NanoBio Technology Johns Hopkins University Baltimore Maryland USA
- Applied Physics Laboratory Johns Hopkins University Laurel Maryland USA
| |
Collapse
|
11
|
Itzhak T, Segev-Mark N, Simon A, Abetz V, Ramon GZ, Segal-Peretz T. Atomic Layer Deposition for Gradient Surface Modification and Controlled Hydrophilization of Ultrafiltration Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15591-15600. [PMID: 33765379 DOI: 10.1021/acsami.0c23084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, atomic layer deposition (ALD) has emerged as a powerful technique for polymeric membrane surface modification. In this research, we study Al2O3 growth via ALD on two polymeric phase-inverted membranes: polyacrylonitrile (PAN) and polyetherimide (PEI). We demonstrate that Al2O3 can easily be grown on both membranes with as little as 10 ALD cycles. We investigate the formation of Al2O3 layer gradient through the depth of the membranes using high-resolution transmission electron microscopy and elemental analysis, showing that at short exposure times, Al2O3 accumulates at the top of the membrane, reducing pore size and creating a strong growth gradient, while at long exposure time, more homogeneous growth occurs. This detailed characterization creates the knowledge necessary for controlling the deposition gradient and achieving an efficient growth with minimum pore clogging. By tuning the Al2O3 exposure time and cycles, we demonstrate control over the Al2O3 depth gradient and membranes' pore size, hydrophilicity, and permeability. The oil antifouling performance of membranes is investigated using in situ confocal imaging during flow. This characterization technique reveals that Al2O3 surface modification reduces oil droplet surface coverage.
Collapse
Affiliation(s)
- Tamar Itzhak
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Naama Segev-Mark
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Simon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
- Institute of Physical Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Guy Z Ramon
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Segal-Peretz
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
|
13
|
Manoharan RK, Ayyaru S, Ahn YH. Auto-cleaning functionalization of the polyvinylidene fluoride membrane by the biocidal oxine/TiO2 nanocomposite for anti-biofouling properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj05300j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The commercial polyvinylidene fluoride (PVDF) polymer was modified with TiO2 nanoparticle-doped oxine to develop an auto-cleaning functionalized hybrid membrane with a long lasting antibiofilm effect.
Collapse
Affiliation(s)
| | - Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan
- Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan
- Republic of Korea
| |
Collapse
|
14
|
Waldman RZ, Mandia DJ, Yanguas-Gil A, Martinson ABF, Elam JW, Darling SB. The chemical physics of sequential infiltration synthesis-A thermodynamic and kinetic perspective. J Chem Phys 2019; 151:190901. [PMID: 31757164 DOI: 10.1063/1.5128108] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sequential infiltration synthesis (SIS) is an emerging materials growth method by which inorganic metal oxides are nucleated and grown within the free volume of polymers in association with chemical functional groups in the polymer. SIS enables the growth of novel polymer-inorganic hybrid materials, porous inorganic materials, and spatially templated nanoscale devices of relevance to a host of technological applications. Although SIS borrows from the precursors and equipment of atomic layer deposition (ALD), the chemistry and physics of SIS differ in important ways. These differences arise from the permeable three-dimensional distribution of functional groups in polymers in SIS, which contrast to the typically impermeable two-dimensional distribution of active sites on solid surfaces in ALD. In SIS, metal-organic vapor-phase precursors dissolve and diffuse into polymers and interact with these functional groups through reversible complex formation and/or irreversible chemical reactions. In this perspective, we describe the thermodynamics and kinetics of SIS and attempt to disentangle the tightly coupled physical and chemical processes that underlie this method. We discuss the various experimental, computational, and theoretical efforts that provide insight into SIS mechanisms and identify approaches that may fill out current gaps in knowledge and expand the utilization of SIS.
Collapse
Affiliation(s)
- Ruben Z Waldman
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - David J Mandia
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Angel Yanguas-Gil
- Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Lemont, Illinois 60439, USA
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Lemont, Illinois 60439, USA
| | - Seth B Darling
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Pinem J, Wardani A, Aryanti P, Khoiruddin K, Wenten IG. Hydrophilic Modification of Polymeric Membrane using Graft Polymerization Method: A Mini Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Jaleh B, Etivand ES, Mohazzab BF, Nasrollahzadeh M, Varma RS. Improving Wettability: Deposition of TiO 2 Nanoparticles on the O 2 Plasma Activated Polypropylene Membrane. Int J Mol Sci 2019; 20:ijms20133309. [PMID: 31284439 PMCID: PMC6651641 DOI: 10.3390/ijms20133309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
Abstract
Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20–120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran.
| | - Ehsan Sabzi Etivand
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | - Bahareh Feizi Mohazzab
- Department of Physics, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
17
|
Wu S, Wang Z, Xiong S, Wang Y. Tailoring TiO2 membranes for nanofiltration and tight ultrafiltration by leveraging molecular layer deposition and crystallization. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Susanto H, Malik IA, Hakim Raharjo S, Nur M. Preparation and Characterization of High Flux Polypropylene Microfiltration Membrane via Non-Solvent Induced Phase Separation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.03.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zhou X, Zhao YY, Kim SR, Elimelech M, Hu S, Kim JH. Controlled TiO 2 Growth on Reverse Osmosis and Nanofiltration Membranes by Atomic Layer Deposition: Mechanisms and Potential Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14311-14320. [PMID: 30516046 DOI: 10.1021/acs.est.8b03967] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Enhancing the chemical and physical properties of the polyamide active layer of thin-film composite (TFC) membranes by surface coating is a goal long-pursued. Atomic layer deposition (ALD) has been proposed as an innovative approach to deposit chemically robust metal oxides onto membrane surfaces due to its unique capability to control coating conformality and thickness with atomic scale precision. This study examined the potential to coat the surface of TFC reverse osmosis (RO) and nanofiltration (NF) membranes via ALD of TiO2. Our results suggest that the optimal ALD conditions, the film growth kinetics, and the depth of deposition are different for RO and NF membranes due to the different diffusive transport of ALD precursors through the membrane pores. The TiO2 coating mainly located at the surface of the RO membrane; in contrast, the TiO2 coating extended to the depth of the NF membrane. The TiO2 coating degraded membrane water permeability and salt rejection beyond 10 cycles of ALD, the condition commonly employed in previous ALD-based membrane modification studies. Instead, this study showed that with fewer than 10 cycles, the TiO2 coating of RO membrane increased the membrane surface charge without negatively impacting water permeability and salt rejection. For the NF membranes, the coating of TiO2 inside their pores led to the tuning of pore sizes and increased the rejection of selected solutes.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT) , Yale University , New Haven , Connecticut 06520 , United States
| | - Yang-Ying Zhao
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Sang-Ryoung Kim
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT) , Yale University , New Haven , Connecticut 06520 , United States
| | - Shu Hu
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06511 , United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT) , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
20
|
Yang HC, Waldman RZ, Chen Z, Darling SB. Atomic layer deposition for membrane interface engineering. NANOSCALE 2018; 10:20505-20513. [PMID: 30397691 DOI: 10.1039/c8nr08114j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In many applications, interfaces govern the performance of membranes. Structure, chemistry, electrostatics, and other properties of interfaces can dominate the selectivity, flux, fouling resistance, and other critical aspects of membrane functionality. Control over membrane interfacial properties, therefore, is a powerful means of tailoring performance. In this Minireview, we discuss the application of atomic layer deposition (ALD) and related techniques in the design of novel membrane interfaces. We discuss recent literature in which ALD is used to (1) modify the surface chemistry and interfacial properties of membranes, (2) tailor the pore sizes and separation characteristics of membranes, and (3) enable novel advanced functional membranes.
Collapse
Affiliation(s)
- Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ruben Z Waldman
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Seth B Darling
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. and Institute for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA and Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
21
|
Preparation and Evaluation of iPP/GO Microfiltration Membrane with Enhanced Antifouling Property. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Jia X, Low Z, Chen H, Xiong S, Wang Y. Atomic layer deposition of Al 2 O 3 on porous polypropylene hollow fibers for enhanced membrane performances. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Porous membranes in secondary battery technologies. Chem Soc Rev 2018; 46:2199-2236. [PMID: 28288217 DOI: 10.1039/c6cs00823b] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary batteries have received huge attention due to their attractive features in applications of large-scale energy storage and portable electronic devices, as well as electrical vehicles. In a secondary battery, a membrane plays the role of separating the anode and cathode to prevent the occurrence of a short circuit, while allowing the transport of charge carriers to achieve a complete circuit. The properties of a membrane will largely determine the performance of a battery. In this article, we review the research and development progress of porous membranes in secondary battery technologies, such as lithium-based batteries together with flow batteries. The preparation methods as well as the required properties of porous membranes in different secondary battery technologies will be elucidated thoroughly and deeply. Most importantly, this review will mainly focus on the optimization and modification of porous membranes in different secondary battery systems. And various modifications on commercial porous membranes along with novel membrane materials are widely discussed and summarized. This review will help to optimize the membrane material for different secondary batteries, and favor the understanding of the preparation-structure-performance relationship of porous membranes in different secondary batteries. Therefore, this review will provide an extensive, comprehensive and professional reference to design and construct high-performance porous membranes.
Collapse
Affiliation(s)
- Wenjing Lu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Li N, Tian Y, Zhao J, Zhang J, Kong L, Zhang J, Zuo W. Static adsorption of protein-polysaccharide hybrids on hydrophilic modified membranes based on atomic layer deposition: Anti-fouling performance and mechanism insight. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Juholin P, Kääriäinen ML, Riihimäki M, Sliz R, Aguirre JL, Pirilä M, Fabritius T, Cameron D, Keiski RL. Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Chen H, Wu S, Jia X, Xiong S, Wang Y. Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water. AIChE J 2018. [DOI: 10.1002/aic.16097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- He Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Shanshan Wu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Xiaojuan Jia
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Sen Xiong
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjing 210009 P.R. China
| |
Collapse
|
28
|
Lin Y, Loh CH, Shi L, Fan Y, Wang R. Preparation of high-performance Al 2 O 3 /PES composite hollow fiber UF membranes via facile in-situ vapor induced hydrolyzation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ariono D, Wardani AK. Modification and Applications of Hydrophilic Polypropylene Membrane. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/214/1/012014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Hydrophilic modification of polyvinylidene fluoride membranes by ZnO atomic layer deposition using nitrogen dioxide/diethylzinc functionalization. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Xiong S, Sheng T, Kong L, Zhong Z, Huang J, Wang Y. Enhanced performances of polypropylene membranes by molecular layer deposition of polyimide. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0112] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.
Collapse
|
34
|
Gancarz I, Bryjak M, Wolska J, Siekierka A, Kujawski W. Membranes with a plasma deposited titanium isopropoxide layer. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2015-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPorous polypropylene membranes were coated with plasma polymerized titanium isopropoxide in a 75 kHz plasma reactor. It was noted that the presence of air in the plasma chamber increased the amount of deposited polymer. Selection of the process parameters enabled obtaining membranes with up to 300 μg cm
Collapse
|
35
|
Ahsani M, Yegani R. Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.06.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.03.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Pan L, Wang H, Wu C, Liao C, Li L. Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16003-16010. [PMID: 26177514 DOI: 10.1021/acsami.5b04245] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To solve the wetting capability issue of commercial polypropylene (PP) separators in lithium-ion batteries (LIBs), we developed a simple dipping surface-coating process based on tannic acid (TA), a natural plant polyphenol. Fourier transform infrared and X-ray photoelectron measurements indicate that the TA is coated successfully on the PP separators. Scanning electron microscopy images show that the TA coating does not destroy the microporous structure of the separators. After being coated with TA, the PP separators become more hydrophilic, which not only enhances the liquid electrolyte retention ability but also increases the ionic conductivity. The battery performance, especially for power capability, is improved after being coated with TA. It indicates that this TA-coating method provides a promising process by which to develop an advanced polymer membrane separator for lithium-ion batteries.
Collapse
Affiliation(s)
- Lei Pan
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Haibin Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chaolumen Wu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chenbo Liao
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Lei Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
38
|
Yan X, Yang L, An Y, Jin W, Li Y, Li B. Surface roughness and hydrophilicity enhancement of polyolefin-based membranes by three kinds of plasma methods. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiangxing Yan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Lingxiao Yang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Yaping An
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Weiping Jin
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Yan Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Bin Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education; Wuhan 430070 China
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| |
Collapse
|
39
|
Dai J, Liu XH, Xiao YJ, Yang JH, Qi PK, Wang J, Wang Y, Zhou ZW. High hydrophilicity and excellent adsorption ability of a stretched polypropylene/graphene oxide composite membrane achieved by plasma assisted surface modification. RSC Adv 2015. [DOI: 10.1039/c5ra10310j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through a plasma treatment, a PP-based composite membrane with a high hydrophilicity and an excellent adsorption ability was developed.
Collapse
Affiliation(s)
- Jian Dai
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Xiao-hao Liu
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Yan-jun Xiao
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jing-hui Yang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Peng-kai Qi
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jin Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Yong Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Zuo-wan Zhou
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| |
Collapse
|
40
|
Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.09.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Chen H, Lin Q, Xu Q, Yang Y, Shao Z, Wang Y. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|