1
|
Yang IH, Wu XY, Chou YN. One-Step Zwitterionic Modification of Polyamide-Polyurethane Mixed Textile through Acidic Catalyzation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8106-8116. [PMID: 40103310 DOI: 10.1021/acs.langmuir.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In this study, a straightforward one-step zwitterionic surface modification technique was developed for polyamide materials and fiber products, providing excellent antibiofouling properties. The surface of polyamide (PA) and polyurethane (PU) was modified using an epoxy-type biomimetic zwitterionic copolymer, poly(glycidyl methacrylate-co-sulfobetaine acrylamide) (PGSA), composed of glycidyl methacrylate and sulfobetaine acrylamide through an acidic-catalyzed one-step dip-coating method. Under acidic conditions, the molecular chains of polyamide were activated, exposing terminal amine groups that facilitated reactivity, enabling the epoxy-type zwitterionic copolymer to undergo ring-opening addition reactions. The optimization of coating parameters, including reaction temperature, solid concentration, copolymer molar ratio, and pH conditions, was conducted to achieve optimal antibiofouling performance. The modified polyamide fabric demonstrated enhanced biocompatibility and antibiofouling capabilities, including a 70% reduction of fibrinogen adsorption, a 93% reduction of whole-blood cell attachment, a 95% reduction of red blood cell attachment, and a 98.2% reduction of bacterial attachment. This simple and cost-effective zwitterionic modification technology for polyamide and polyurethane surfaces holds significant potential for biomedical device modification and functional textile applications.
Collapse
Affiliation(s)
- I-Hsun Yang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Xing-Yu Wu
- Department of Chemical Engineering, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan
| | - Ying-Nien Chou
- Department of Chemical Engineering, National Chung Cheng University, Minhsiung, Chiayi 62102, Taiwan
| |
Collapse
|
2
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Yan M, Shao M, Li J, Jiang N, Hu Y, Zeng W, Huang M. Antifouling forward osmosis membranes by ε-polylysine mediated molecular grafting for printing and dyeing wastewater: Preparation, characterization, and performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
5
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
6
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Yin Y, Kalam S, Livingston JL, Minjarez R, Lee J, Lin S, Tong T. The use of anti-scalants in gypsum scaling mitigation: Comparison with membrane surface modification and efficiency in combined reverse osmosis and membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Suwaileh W, Zargar M, Abdala A, Siddiqui F, Khiadani M, Abdel-Wahab A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Sgouros AP, Knippenberg S, Guillaume M, Theodorou DN. Multiscale simulations of polyzwitterions in aqueous bulk solutions and brush array configurations. SOFT MATTER 2021; 17:10873-10890. [PMID: 34807216 DOI: 10.1039/d1sm01255j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic polymers are very promising candidates for antifouling materials that exhibit high chemical stability as compared to polyethylene glycol-based systems. A number of simulation and experimental studies have emerged over recent years for the investigation of sulfobetaine-based zwitterionic polymers. Investigating the structural and thermodynamic properties of such polymers requires access to broad time and length regimes, thus necessitating the development of multiscale simulation strategies. The present article advocates a mesoscopic dissipative particle dynamics (DPD) model capable of addressing a wide range of time and length scales. The mesoscopic force field was developed hand-in-hand with atomistic simulations based on the OPLS force field through a bottom-up parameterization procedure that matches the atomistically calculated strand-length, strand-angle and pair distribution functions. The DPD model is validated against atomistic simulations conducted in this work, and against relevant atomistic simulation studies, theoretical predictions and experimental correlations from the literature. Properties examined include the conformations of SPE polymers in dilute bulk aqueous solution, the density profile and thickness of brush arrays as functions of the grafting density and chain length. In addition, we compute the potential of mean force of an approaching hydrophilic or hydrophobic foulant via umbrella sampling as a function of its position relative to the poly-zwitterion-covered surface. The aforementioned observables lead to important insights regarding the conformational tendencies of grafted polyzwitterions and their antifouling properties.
Collapse
Affiliation(s)
- Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Stefan Knippenberg
- Solid State Battery Applicability Laboratory, Solvay SA, 310 Rue de Ransbeek, B-1120 Brussels, Belgium.
| | - Maxime Guillaume
- Solid State Battery Applicability Laboratory, Solvay SA, 310 Rue de Ransbeek, B-1120 Brussels, Belgium.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| |
Collapse
|
10
|
Polybetaines in Biomedical Applications. Int J Mol Sci 2021; 22:ijms22179321. [PMID: 34502230 PMCID: PMC8430529 DOI: 10.3390/ijms22179321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.
Collapse
|
11
|
|
12
|
Lee WJ, Goh PS, Lau WJ, Ismail AF, Hilal N. Green Approaches for Sustainable Development of Liquid Separation Membrane. MEMBRANES 2021; 11:235. [PMID: 33806115 PMCID: PMC8064480 DOI: 10.3390/membranes11040235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Water constitutes one of the basic necessities of life. Around 71% of the Earth is covered by water, however, not all of it is readily available as fresh water for daily consumption. Fresh water scarcity is a chronic issue which poses a threat to all living things on Earth. Seawater, as a natural resource abundantly available all around the world, is a potential water source to fulfil the increasing water demand. Climate-independent seawater desalination has been touted as a crucial alternative to provide fresh water. While the membrane-based desalination process continues to dominate the global desalination market, the currently employed membrane fabrication materials and processes inevitably bring adverse impacts to the environment. This review aims to elucidate and provide a comprehensive outlook of the recent efforts based on greener approaches used for desalination membrane fabrication, which paves the way towards achieving sustainable and eco-friendly processes. Membrane fabrication using green chemistry effectively minimizes the generation of hazardous compounds during membrane preparation. The future trends and recommendations which could potentially be beneficial for researchers in this field are also highlighted.
Collapse
Affiliation(s)
- Wei Jie Lee
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johore, Malaysia; (W.J.L.); (W.J.L.); (A.F.I.)
| | - Nidal Hilal
- Water Research Centre, New York University Abu Dhabi (NYUAD), Saadiyat Marina District, Abu Dhabi PO Box 129188, United Arab Emirates
| |
Collapse
|
13
|
Jaramillo H, Boo C, Hashmi SM, Elimelech M. Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118568] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Shen X, Liu P, He C, Xia S, Liu J, Cheng F, Suo H, Zhao Y, Chen L. Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Le NL, Duong PH, Pulido BA, Nunes SP. Zwitterionic Triamine Monomer for the Fabrication of Thin-Film Composite Membranes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ngoc Lieu Le
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
- School of Biotechnology, International University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phuoc H.H. Duong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Bruno A. Pulido
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Shen X, Liu T, Xia S, Liu J, Liu P, Cheng F, He C. Polyzwitterions Grafted onto Polyacrylonitrile Membranes by Thiol–Ene Click Chemistry for Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiang Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shubiao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jianjun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Peng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chixian He
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
17
|
Pejman M, Firouzjaei MD, Aktij SA, Das P, Zolghadr E, Jafarian H, Shamsabadi AA, Elliott M, Esfahani MR, Sangermano M, Sadrzadeh M, Wujcik EK, Rahimpour A, Tiraferri A. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118352] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liu M, He Q, Zhang K, Guo Z, Lü Z, Yu S, Gao C. Carbodiimide-assisted zwitterionic modification of poly(piperazine amide) thin-film composite membrane for enhanced separation and anti-depositing performances to cationic/anionic dye aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122582. [PMID: 32334289 DOI: 10.1016/j.jhazmat.2020.122582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel method of carbodiimide-assisted zwitterionic modification was proposed and implemented to incorporate zwitterionic moieties onto poly(piperazine amide) membrane for improved water permeability and anti-depositing property, which are crucial for highly efficient nanofiltration of dye-contained effluents. Carboxyl groups of polyamide layer were firstly transferred into N-acylurea using excess l-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide. Zwitterions were then incorporated through ring-opening reaction between tertiary amine groups of N-acylurea and 1, 4-butanesultone. Carbodiimide-assisted zwitterionic modification was verified by ATR-IR and XPS analyses and was found to not affect membrane pore size but significantly enhance membrane's permeation and anti-dye-deposition performances. Compared with those of virgin membrane, water permeabilities of the desired zwitterionic membrane to pure water, Congo red aqueous solution and Victoria blue B aqueous solution were higher by 42.9, 62.3 and 95.2 %, respectively, hydraulic resistances from irreversible deposition of Congo red and Victoria blue B molecules were dramatically lowered by 68.4 and 91.8 %, respectively. Furthermore, the perm-selectivity performance of the desired zwitterionic membrane in terms of molecular weight cut-off and pure water permeability was better than most of the reported zwitterionic membranes, and the separation and anti-depositing performances to both anionic and cationic dye aqueous solutions were better than commercial membrane NF270.
Collapse
Affiliation(s)
- Meihong Liu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qingyuan He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Kaifei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhongwei Guo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhenhua Lü
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Sanchuan Yu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Congjie Gao
- The Development Center of Water Treatment Technology, SOA, Hangzhou 310012, People's Republic of China
| |
Collapse
|
19
|
Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S, Das P, Zolghadr E, Jafarian H, Arabi Shamsabadi A, Elliott M, Sadrzadeh M, Sangermano M, Rahimpour A, Tiraferri A. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36287-36300. [PMID: 32677425 PMCID: PMC8009475 DOI: 10.1021/acsami.0c12141] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.
Collapse
Affiliation(s)
- Mehdi Pejman
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mostafa Dadashi Firouzjaei
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Parnab Das
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ehsan Zolghadr
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Hesam Jafarian
- Department of Mining and Metallurgical
Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Elliott
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marco Sangermano
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Ahmad Rahimpour
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Department of Chemical
Engineering, Babol Noshirvani University
of Technology, Shariati Avenue, Babol Mazandaran, 4714871167, Iran
| | - Alberto Tiraferri
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
20
|
Tang N, Li Y, Ge J, Si Y, Yu J, Yin X, Ding B. Ultrathin Cellulose Voronoi-Nanonet Membranes Enable High-Flux and Energy-Saving Water Purification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31852-31862. [PMID: 32589397 DOI: 10.1021/acsami.0c08504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Creating a desirable porous membrane with high-flux and energy-saving properties for the purification of water containing submicron-sized contaminants, especially pathogenic microbes, is of great significance, yet a great challenge. Herein, we demonstrate a facile methodology to construct an innovative membrane with continuous cellulose Voronoi-nanonet structures via nonsolvent-induced phase separation. This approach enables cellulose Voronoi nanonets to tightly weld with electrospun nanofibrous substrates by controlling the solvent-nonsolvent mutual diffusion process. The resultant membranes exhibit integrated properties of small pore size (0.23 μm), high porosity (90.7%), good interconnectivity, and ultrathin thickness (∼600 nm, 2 orders of magnitude thinner than the conventional microfiltration membrane). As a result, the prepared membranes can effectively intercept submicron particles (∼0.3 μm) with robust rejection efficiency (>99.80%) and ultrahigh permeation flux (maximum of 8834 L m-2 h-1) under an extremely low driving pressure (≤20 kPa). More importantly, prominent bacterial rejection efficiency with a log reduction value (LRV) of 8.0 (overcoming the previous limitation of LRV <7) and outstanding antifouling function are also achieved for the membranes. The successful fabrication of such a versatile membrane may provide new insights into the development of next-generation high-performance separation materials for various applications.
Collapse
Affiliation(s)
- Ning Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianlong Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
21
|
Xiang Y, Xu RG, Leng Y. Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7648-7657. [PMID: 32506917 DOI: 10.1021/acs.langmuir.0c01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyzwitterions (PZs) are promising materials for the antifouling in reverse osmosis and nanofiltration membrane technology for water treatment. Fundamental understanding of the structure and molecular interactions involving zwitterions is crucial to the optimal design of antifouling in membrane separation. Here we employ the umbrella sampling and molecular dynamics simulations to investigate molecular interactions between sulfobetaine/carboxybetaine zwitterions and different metal ions (Na+, K+, and Ca2+) in an aqueous solution. The simulation results show that these ions can form stable or metastable contact ionic/solvent-shared-ionic pairs with zwitterions. Simulations at different grafting densities of PZ brush arrays reveal complex competitive association mechanisms, which are attributed to nonbonded electrostatic and van der Waals interactions among zwitterions, water molecules, and different metal ions in an aqueous environment. While the high-grafting density of the PZ brush array leads to a strong branch association between different zwitterions in water, this association is decreased at intermediate- and low-grafting densities due to strong zwitterion-water interactions. More importantly, adding ions into water at intermediate- and low-grafting densities further breaks down the zwitterion branch association, resulting in a randomly oriented and dispersed branch configuration with significant swelling of the polymers. The degree of swelling depends on the type of ions, which further changes the surface electrostatic potential of PZ coatings.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
22
|
O'Harra KE, Kammakakam I, Noll DM, Turflinger EM, Dennis GP, Jackson EM, Bara JE. Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes. MEMBRANES 2020; 10:E51. [PMID: 32235739 PMCID: PMC7143725 DOI: 10.3390/membranes10030051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages.
Collapse
Affiliation(s)
- Kathryn E O'Harra
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Irshad Kammakakam
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Danielle M Noll
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Erika M Turflinger
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Grayson P Dennis
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | | | - Jason E Bara
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, AL 35487-0203, USA
| |
Collapse
|
23
|
Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117604] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Zhang Y, Yang L, Pramoda KP, Gai W, Zhang S. Highly permeable and fouling-resistant hollow fiber membranes for reverse osmosis. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Jiang Y, Zhang Y, Chen B, Zhu X. Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Hou S, Wang X, Dong X, Zheng J, Li S. Renewable antibacterial and antifouling polysulfone membranes incorporating a PEO-grafted amphiphilic polymer and N-chloramine functional groups. J Colloid Interface Sci 2019; 554:658-667. [DOI: 10.1016/j.jcis.2019.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
|
28
|
Ly QV, Hu Y, Li J, Cho J, Hur J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. ENVIRONMENT INTERNATIONAL 2019; 129:164-184. [PMID: 31128437 DOI: 10.1016/j.envint.2019.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Wastewater reuse is considered one of the most promising practices for the achievement of sustainable water management on a global scale. In the context of the safe reuse of water, membrane filtration is a competitive technique due to its superior efficiency in several processes. However, membrane fouling by organics is an inevitable challenge that is encountered during the practical application of membrane processes. The resolution of the membrane fouling challenge requires an in-depth understanding of many complex interactions between organic foulants and the membrane. In the last few decades, the forward osmosis (FO) membrane process, which exploits osmosis as a driving force, has emerged as an effective technology for water production with low energy consumption, thus leveraging the water-energy nexus. However, their successful application is severely hampered by membrane fouling, which is caused by such complex fouling mechanisms as cake enhanced osmotic pressure (CEOP), reverse salt diffusion (RSD), internal, and external concentration polarization as well as by the traditional fouling processes encompassing colloids, microbial (biofouling), inorganic, and organic fouling. Of these fouling types, the fouling potential of organic matter in FO has not been given sufficient attention, in particular, when FO is applied to wastewater treatment. This paper aims to provide a comprehensive overview of FO membrane fouling for wastewater applications with a special focus on the identification of the major factors that lead to the unique properties of organic fouling in this filtration process. Based on the critical assessment of organic fouling formation and the governing mechanisms, proposals were advanced for future research aimed at the mitigation of FO membrane fouling to enhance process efficiency in wastewater applications.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
29
|
Segev-Mark N, Vu A, Chen N, Qian X, Wickramasinghe SR, Ramon GZ. Colloidal deposition on polymer-brush-coated NF membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Yang Q, Lau CH, Ge Q. Novel Ionic Grafts That Enhance Arsenic Removal via Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17828-17835. [PMID: 31002227 DOI: 10.1021/acsami.9b03991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current forward osmosis (FO) membranes are unsuitable for arsenic removal from water because of their poor arsenic selectivity. In this study, we designed and synthesized a series of novel imidazolium-based ionic liquids via one-step quaternization reactions and grafted these novel compounds on to conventional thin-film composite FO membranes for treatment of arsenic-containing water. The newly developed ionic membranes contained a functionalized selective polyamide layer grafted with either carboxylic acid/carboxylate or sulfonate groups that drastically enhanced membrane hydrophilicity and thus FO water permeation. Ionic membranes modified with sodium 1-ethanesulfonate-3-(3-aminopropyl) imidazolium bromide (NH2-IM-(CH2)2-SO3Na) outperformed pristine membranes with higher water recovery efficiency. Exceptional performance was achieved with this ionic membrane in FO arsenic removal with a water flux of 11.0 LMH and a rejection higher than 99.5% when 1000 ppm arsenic (HAsO42-) as the feed with a dilute NaCl solution (0.5 M) as the draw solution under the FO mode. Ionic membranes developed in this work facilitated FO for the treatment of arsenic-containing water while demonstrating its superiority over incumbent technologies with more efficient arsenic removal.
Collapse
Affiliation(s)
- Qiaoli Yang
- College of Environment and Resources , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Cher Hon Lau
- School of Engineering , The University of Edinburgh , Robert Stevenson Road, The King's Buildings , Edinburgh , EH9 3FB Scotland , U.K
| | - Qingchun Ge
- College of Environment and Resources , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
31
|
Sun J, Hu X, Huang Y, Peng R, Luo Y, Yu P. 1,3‐Diamino‐2‐propanol or 2‐aminoethanethiol modified active layer of thin‐film composite forward osmosis membrane. J Appl Polym Sci 2019. [DOI: 10.1002/app.47923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajin Sun
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xuhui Hu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yangbo Huang
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ruichao Peng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yunbai Luo
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| | - Ping Yu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
32
|
Enhanced filtration performance and anti-biofouling properties of antibacterial polyethersulfone membrane for fermentation broth concentration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Ding L, Gao J, Chung TS. Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Iqbal Z, Kim S, Moyer J, Moses W, Abada E, Wright N, Kim EJ, Park J, Fissell WH, Vartanian S, Roy S. In vitro and in vivo hemocompatibility assessment of ultrathin sulfobetaine polymer coatings for silicon-based implants. J Biomater Appl 2019; 34:297-312. [PMID: 30862226 DOI: 10.1177/0885328219831044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zohora Iqbal
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Steven Kim
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Jarrett Moyer
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Willieford Moses
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Emily Abada
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Nathan Wright
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Eun Jung Kim
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Jaehyun Park
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | | | - Shant Vartanian
- 3 Division of Vascular & Endovascular Surgery, University of California, San Francisco, USA
| | - Shuvo Roy
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| |
Collapse
|
35
|
Liu M, Yu C, Dong Z, Jiang P, Lü Z, Yu S, Gao C. Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Liu M, Yu C, Wu Y, Lü Z, Yu S, Gao C. In situ modification of polyamide reverse osmosis membrane module for improved fouling resistance. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Zhang X, Gao S, Tian J, Shan S, Takagi R, Cui F, Bai L, Matsuyama H. Investigation of Cleaning Strategies for an Antifouling Thin-Film Composite Forward Osmosis Membrane for Treatment of Polymer-Flooding Produced Water. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b05194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xinyu Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6578501, Japan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shanshan Gao
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiayu Tian
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Sujie Shan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ryosuke Takagi
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6578501, Japan
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6578501, Japan
| |
Collapse
|
38
|
Huang Y, Dan N, Dan W, Zhao W, Bai Z, Chen Y, Yang C. Bilayered Antimicrobial Nanofiber Membranes for Wound Dressings via in Situ Cross-Linking Polymerization and Electrospinning. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanping Huang
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Weihua Dan
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongxiang Bai
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yining Chen
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Changkai Yang
- College of Light Industry & Textile & Food Engineering, Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
Zhao Y, Dai L, Zhang Q, Zhang S. Surface modification of polyamide reverses osmosis membrane by phosphonic acid group with improved performance. J Appl Polym Sci 2018. [DOI: 10.1002/app.46931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yali Zhao
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
- University of Science and Technology of China; Hefei 230026 China
| | - Lei Dai
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
| | - Qifeng Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
| | - Suobo Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing China
| |
Collapse
|
40
|
Zhang Y, Li JL, Cai T, Cheng ZL, Li X, Chung TS. Sulfonated hyperbranched polyglycerol grafted membranes with antifouling properties for sustainable osmotic power generation using municipal wastewater. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: oil/water separation and cationic dyes removal. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Han G, Liu JT, Lu KJ, Chung TS. Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6686-6694. [PMID: 29741369 DOI: 10.1021/acs.est.7b05933] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A facile and versatile approach was demonstrated for the fabrication of low-fouling pressure retarded osmosis (PRO) membranes for osmotic power generation from highly polluted wastewater. A water-soluble zwitterionic random copolymer with superior hydrophilicity and unique chemistry was molecularly designed and synthesized via a single-step free-radical polymerization between 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate hydrochloride (AEMA). The P[MPC- co-AEMA] copolymer was then chemically grafted onto the surface of PES/Torlon hollow fibers via amino groups coupling of poly(AEMA) with the polyimide structures of Torlon, leaving the zwitterions of poly(MPC) in the feed solution. Because of the outstanding hydrophilicity, unique cationic and anionic groups, and electrical neutrality of the zwitterionic brush, the newly developed membrane showed great resistances to both inorganic scaling and organic fouling in PRO operations. When using a real wastewater brine comprising multifoulants as the feed, the P[MPC- co-AEMA] modified membrane exhibits a much lower flux decline of 37% at Δ P = 0 bar after 24-h tests and a smaller power density decrease of 28% at Δ P = 15 bar within 12-h tests, compared to 61% and 42% respectively for the unmodified one. In addition to the low fouling tendency, the modified membrane shows outstanding performance stability and fouling reversibility, where the flux is almost fully recovered by physical backwash of water at 15 bar for 0.5 h. This study provides valuable insights and strategies for the design and fabrication of effective antifouling materials and membranes for PRO osmotic power generation.
Collapse
Affiliation(s)
- Gang Han
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Jiang Tao Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Kang Jia Lu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| |
Collapse
|
43
|
Xu W, Ge Q. Novel functionalized forward osmosis (FO) membranes for FO desalination: Improved process performance and fouling resistance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
He Y, Liu J, Han G, Chung TS. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.055] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Lei H, Cheng N, Zhao J. Interaction between membrane and organic compounds studied by atomic force microscopy with a tip modification. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Rahimpour A, Seyedpour SF, Aghapour Aktij S, Dadashi Firouzjaei M, Zirehpour A, Arabi Shamsabadi A, Khoshhal Salestan S, Jabbari M, Soroush M. Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5246-5258. [PMID: 29589940 DOI: 10.1021/acs.est.8b00804] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.
Collapse
Affiliation(s)
- Ahmad Rahimpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - S Fatemeh Seyedpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Sadegh Aghapour Aktij
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Dadashi Firouzjaei
- Department of Chemical & Biological Engineering , University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Alireza Zirehpour
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Saeed Khoshhal Salestan
- Department of Chemical Engineering , Babol Noushirvani University of Technology , Shariati Avenue , Babol , Mazandaran 4714871167 , Iran
| | - Mostafa Jabbari
- Swedish Centre for Resource Recovery , University of Borås , S-50190 Borås , Sweden
| | - Masoud Soroush
- Department of Chemical and Biological Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
47
|
Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C, Jiang Z. Antifouling membrane surface construction: Chemistry plays a critical role. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.039] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Mustafa G, Wyns K, Janssens S, Buekenhoudt A, Meynen V. Evaluation of the fouling resistance of methyl grafted ceramic membranes for inorganic foulants and co-effects of organic foulants. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Zhang X, Wang Z, Tang CY, Ma J, Liu M, Ping M, Chen M, Wu Z. Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Rietzler B, Bechtold T, Pham T. Controlled Surface Modification of Polyamide 6.6 Fibres Using CaCl2/H2O/EtOH Solutions. Polymers (Basel) 2018; 10:polym10020207. [PMID: 30966243 PMCID: PMC6415128 DOI: 10.3390/polym10020207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022] Open
Abstract
Polyamide 6.6 is one of the most widely used polymers in the textile industry due to its durability; however, it has rather limited modification potential. In this work, the controlled surface modification of polyamide 6.6 fibres using the solvent system CaCl2/H2O/EtOH was studied. The effects of solvent composition (relative proportions of the three components) and treatment time on fibre properties were studied both in situ (with fibres in solvent) and ex situ (after the solvent was washed off). The fibres swell and/or dissolve in the solvent depending on its composition and the treatment time. We believe that the fibre⁻solvent interaction is through complex formation between the fibre carbonyl groups and the CaCl2. On washing, there is decomplexation and precipitation of the polymer. The treated fibres exhibit greater diameters and surface roughness, structural difference between an outer shell and an inner core is observable, and water retention is higher. The solvent system is more benign than current alternatives, and through suitable tailoring of the treatment conditions, e.g., composition and time, it may be used in the design of advanced materials for storage and release of active substances.
Collapse
Affiliation(s)
- Barbara Rietzler
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens University Innsbruck, Höchsterstraße 73, 6850 Dornbirn, Austria.
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens University Innsbruck, Höchsterstraße 73, 6850 Dornbirn, Austria.
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics, Leopold-Franzens University Innsbruck, Höchsterstraße 73, 6850 Dornbirn, Austria.
| |
Collapse
|