1
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
2
|
Pore engineering of MOFs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Facile synthesis of porphyrin-based PAF membrane for hydrogen purification. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wang D, Wang Q, Zheng W, Dai Y, Ruan X, Li X, He G. Regulating Cutoff Size of Metal–Organic Frameworks by In Situ Anchoring of Poly(ethylene glycol) to Boost CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongyue Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Qiuchen Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wenji Zheng
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Yan Dai
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| |
Collapse
|
5
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Lai WH, Wang DK, Tseng HH, Wey MY. Photo-induced poly(styrene-[C1mim][Tf2N])-supported hollow fiber ionic liquid membranes to enhance CO2 separation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Kwon TG, Jun Kim B, Hyeon Jo O, Kang BG, Wook Kang S. Synthesis of surface-tuned polyacrylonitrile particles and its applications to CO2 separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Genduso G, Missinne A, Ali Z, Ogieglo W, Van der Bruggen B, Pinnau I. Hydrophobic polydimethylsiloxane thin-film composite membranes for the efficient pervaporative desalination of seawater and brines. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Wang Q, Dai Y, Ruan X, Zheng W, Yan X, Li X, He G. ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kamali M, Gharibi F, Sharif A. A systematic study on the effects of synthesis conditions of polyamide selective layer on the
CO
2
/
N
2
separation of thin film composite polyamide membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mahsa Kamali
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Fatemeh Gharibi
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Alireza Sharif
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| |
Collapse
|
11
|
Grylewicz A, Szymański K, Darowna D, Mozia S. Influence of Polymer Solvents on the Properties of Halloysite-Modified Polyethersulfone Membranes Prepared by Wet Phase Inversion. Molecules 2021; 26:2768. [PMID: 34066689 PMCID: PMC8125839 DOI: 10.3390/molecules26092768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Ultrafiltration polyethersulfone (PES) membranes were prepared by wet phase inversion. Commercial halloysite nanotubes (HNTs) in the quantities of 0.5 wt% vs. PES (15 wt%) were introduced into the casting solution containing the polymer and different solvents: N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), or 1-methyl-2-pyrrolidinone (NMP). The type of solvent influenced the membranes' morphology and topography, as well as permeability, separation characteristics, and antifouling and antibacterial properties. The membranes prepared using DMA exhibited the loosest cross-section structure with the thinnest skin and the roughest surface, while the densest and smoothest were the DMF-based membranes. The advanced contact angles were visibly lower in the case of the membranes prepared using DMF compared to the other solvents. The highest water permeability was observed for the DMA-based membranes, however, the most significant effect of the modification with HNTs was found for the NMP-based series. Regardless of the solvent, the introduction of HNTs resulted in an improvement of the separation properties of membranes. A noticeable enhancement of antifouling performance upon application of HNTs was found only in the case of DMF-based membranes. The study of the antibacterial properties showed that the increase in surface roughness had a positive effect on the inhibition of E. coli growth.
Collapse
Affiliation(s)
| | | | | | - Sylwia Mozia
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland; (A.G.); (K.S.); (D.D.)
| |
Collapse
|
12
|
Binger ZM, O'Toole G, Achilli A. Evidence of solution-diffusion-with-defects in an engineering-scale pressure retarded osmosis system. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Li G, Knozowska K, Kujawa J, Tonkonogovas A, Stankevičius A, Kujawski W. Fabrication of Polydimethysiloxane (PDMS) Dense Layer on Polyetherimide (PEI) Hollow Fiber Support for the Efficient CO 2/N 2 Separation Membranes. Polymers (Basel) 2021; 13:polym13050756. [PMID: 33670985 PMCID: PMC7957718 DOI: 10.3390/polym13050756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
The development of thin layer on hollow-fiber substrate has drawn great attention in the gas-separation process. In this work, polydimethysiloxane (PDMS)/polyetherimide (PEI) hollow-fiber membranes were prepared by using the dip-coating method. The prepared membranes were characterized by Scanning Electron Microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and gas permeance measurements. The concentration of PDMS solution and coating time revealed an important influence on the gas permeance and the thickness of the PDMS layer. It was confirmed from the SEM and EDX results that the PDMS layer’s thickness and the atomic content of silicon in the selective layer increased with the growth in coating time and the concentration of PDMS solution. The composite hollow-fiber membrane prepared from 15 wt% PDMS solution at 10 min coating time showed the best gas-separation performance with CO2 permeance of 51 GPU and CO2/N2 ideal selectivity of 21.
Collapse
Affiliation(s)
- Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
| | - Andrius Tonkonogovas
- Lithuanian Energy Institute, 3, Breslaujos Street, LT-44403 Kaunas, Lithuania; (A.T.); (A.S.)
| | - Arūnas Stankevičius
- Lithuanian Energy Institute, 3, Breslaujos Street, LT-44403 Kaunas, Lithuania; (A.T.); (A.S.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Toruń, Poland; (G.L.); (K.K.); (J.K.)
- National Research Nuclear University MEPhI, 31, Kashira Hwy, 115409 Moscow, Russia
- Correspondence: ; Tel.: +48-566-114-517
| |
Collapse
|
14
|
Ali Z, Wang Y, Ogieglo W, Pacheco F, Vovusha H, Han Y, Pinnau I. Gas separation and water desalination performance of defect-free interfacially polymerized para-linked polyamide thin-film composite membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118572] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Nafti Mateur M, Gonzalez Ortiz D, Jellouli Ennigrou D, Horchani-Naifer K, Bechelany M, Miele P, Pochat-Bohatier C. Porous Gelatin Membranes Obtained from Pickering Emulsions Stabilized with h-BNNS: Application for Polyelectrolyte-Enhanced Ultrafiltration. MEMBRANES 2020; 10:membranes10070144. [PMID: 32646064 PMCID: PMC7408420 DOI: 10.3390/membranes10070144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
In recent years, numerous studies have been conducted to develop biopolymer-based membranes, highlighting the challenges to prepare porous structures with control porosity. In this paper an innovative method that relies on the generation of Pickering emulsions was developed to prepare porous membranes from gelatin for filtration purpose. Hexagonal boron nitride nanosheets (h-BNNS) were used to stabilize micro-droplets of castor oil in a continuous homogeneous gelatin solution. Two steps in the membrane preparation process strongly influenced the porous structure. Specifically, the duration of the drying time after emulsion casting and the duration of the cross-linking step affected membrane pore size, hydrophobicity, water swelling, and water permeability. By controlling these two steps, membranes could be designed with pore size between 0.39 and 1.60 μm and display pure water permeability between 150 and 506 L h−1 m−2 bar−1. These membranes have been tested for complexation–ultrafiltration experiments in which iron ions were removed from aqueous solutions with/without poly (acrylic acid) (PAA). Without PAA, the removal of free iron (II) ions was low (not more than 14%). The addition of PAA (200 ppm) allowed obtaining high removal rates (97%) at pH ≥ 5 with 3 bars of transmembrane pressure.
Collapse
Affiliation(s)
- Molka Nafti Mateur
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France; (M.N.M.); (D.G.O.); (M.B.); (P.M.)
- Physico-Chemical Laboratory of Mineral Materials and their Applications, National Center for Research in Materials Sciences, BP 73, 8027 Soliman, Tunisia; (D.J.E.); (K.H.-N.)
| | - Danae Gonzalez Ortiz
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France; (M.N.M.); (D.G.O.); (M.B.); (P.M.)
| | - Dorra Jellouli Ennigrou
- Physico-Chemical Laboratory of Mineral Materials and their Applications, National Center for Research in Materials Sciences, BP 73, 8027 Soliman, Tunisia; (D.J.E.); (K.H.-N.)
| | - Karima Horchani-Naifer
- Physico-Chemical Laboratory of Mineral Materials and their Applications, National Center for Research in Materials Sciences, BP 73, 8027 Soliman, Tunisia; (D.J.E.); (K.H.-N.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France; (M.N.M.); (D.G.O.); (M.B.); (P.M.)
| | - Philippe Miele
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France; (M.N.M.); (D.G.O.); (M.B.); (P.M.)
- Institut Universitaire de France, IUF, 1 Rue Descartes, CEDEX 5, 75231 Paris, France
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes, IEM UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France; (M.N.M.); (D.G.O.); (M.B.); (P.M.)
- Correspondence: ; Tel.: +33-467-143-327
| |
Collapse
|
17
|
A review on thermally stable membranes for water treatment: Material, fabrication, and application. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhao R, Wu H, Yang L, Ren Y, Liu Y, Qu Z, Wu Y, Cao L, Chen Z, Jiang Z. Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117841] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Liu M, Zhao LB, Yu LY, Wei YM, Xu ZL. Structure and Properties of PSf Hollow Fiber Membranes with Different Molecular Weight Hyperbranched Polyester Using Pentaerythritol as Core. Polymers (Basel) 2020; 12:E383. [PMID: 32046341 PMCID: PMC7077391 DOI: 10.3390/polym12020383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022] Open
Abstract
A homologous series of hyperbranched polyesters (HBPEs) was successfully synthesized via an esterification reaction of 2,2-bis(methylol)propionic acid (bis-MPA) with pentaerythritol. The molecular weights of the HBPEs were 2160, 2660, 4150 and 5840 g/mol, respectively. These HBPEs were used as additives to prepare polysulfone (PSf) hollow fiber membranes via non-solvent induced phase separation. The characteristic behaviors of the casting solution were investigated, as well as the morphologies, hydrophilicity and mechanical properties of the PSf membranes. The results showed that the initial viscosities of the casting solutions were increased, and the shear-thinning phenomenon became increasingly obvious. The demixing rate first increased and then decreased when increasing the HBPE molecular weight, and the turning point was 2660 g/mol. The PSf hollow fiber membranes with different molecular weights of HBPEs had a co-existing morphology of double finger-like and sponge-like structures. The starting pure water contact angle decreased obviously, and the mechanical properties improved.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Long-Bao Zhao
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| | - Li-Yun Yu
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark;
| | - Yong-Ming Wei
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| | - Zhen-Liang Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, ECUST, 130 Meilong Road, Shanghai 200237, China; (L.-B.Z.); (Y.-M.W.)
| |
Collapse
|
21
|
Development of Polymeric Membranes Based on Quaternized Polysulfones for AMFC Applications. Polymers (Basel) 2020; 12:polym12020283. [PMID: 32024096 PMCID: PMC7077470 DOI: 10.3390/polym12020283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
A series of quaternary ammonium-functionalized polysulfones were successfully synthesized using a chloromethylation two-step method. In particular, triethylammonium and trimethylammonium polysulfone derivatives with different functionalization degrees from 60% to 150% were investigated. NMR spectroscopic techniques were used to determine the degree of functionalization of the polymers. The possibility to predict the functionalization degree by a reaction tool based on a linear regression was highlighted. Anionic membranes with a good homogeneity of thickness were prepared using a doctor-blade casting method of functionalized polymers. The chemical–physical data showed that ion exchange capacity, water content, and wettability increase with the increase of functionalization degree. A higher wettability was found for membranes prepared by the trimethylamine (TMA) quaternary ammonium group. A degree of functionalization of 100% was chosen for an electrochemical test as the best compromise between chemical–physical properties and mechanical stability. From anionic conductivity measurement a better stability was found for the triethylamine (TEA)-based membrane due to a lower swelling effect. A power density of about 300 mW/cm2 for the TEA-based sample at 60 °C in a H2/O2 fuel cell was found.
Collapse
|
22
|
Fabrication of Hybrid Membranes Containing Nylon-11 and Organic Semiconductor Particles with Potential Applications in Molecular Electronics. Polymers (Basel) 2019; 12:polym12010009. [PMID: 31861628 PMCID: PMC7023623 DOI: 10.3390/polym12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023] Open
Abstract
Chemical degradation is a major disadvantage in the development of organic semiconductors. This work proposes the manufacture and characterization of organic semiconductor membranes in order to prevent semiconductor properties decreasing. Semiconductor membranes consisting of Nylon-11 and particles of π-conjugated molecular semiconductors were manufactured by high-vacuum evaporation followed by thermal relaxation. Initially, and with the aim of obtaining semiconductor particles, bulk heterojunction (BHJ) was carried out using green chemistry techniques between the zinc phthalocyanine (ZnPc) and the zinc hexadecafluoro-phthalocyanine (F16ZnPc) as n-type molecular semiconductors with the p-type molecular semiconductor dibenzotetrathiafulvalene (DBTTF). Consequently, the π-conjugated semiconductors particles were embedded in a Nylon-11 matrix and characterized, both structurally and considering their optical and electrical properties. Thin films of these materials were manufactured in order to comparatively study the membranes and precursor semiconductor particles. The membranes presented bandgap (Eg) values that were lower than those obtained in the films, which is an indicator of an improvement in their semiconductor capacity. Finally, the membranes were subjected to accelerated lighting conditions, to determine the stability of the polymer and the operating capacity of the membrane. After fatigue conditions, the electrical behavior of the proposed semiconductor membranes remained practically unaltered; therefore, they could have potential applications in molecular electronics. The chemical stability of membranes, which did not degrade in their polymer compound, nor in the semiconductor, was monitored by IR spectroscopy.
Collapse
|
23
|
Tang Q, Li N, Lu Q, Wang X, Zhu Y. Study on Preparation and Separation and Adsorption Performance of Knitted Tube Composite β-Cyclodextrin/Chitosan Porous Membrane. Polymers (Basel) 2019; 11:polym11111737. [PMID: 31652903 PMCID: PMC6918326 DOI: 10.3390/polym11111737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
In order to obtain membranes with both organic separation and adsorption functions, knitted tube composite β-cyclodextrin/chitosan (β-CD/CS) porous membranes were prepared by the non-solvent induced phase separation (NIPS) method using CS and β-CD as a membrane-forming matrix, glutaraldehyde as crosslinking agent to improve water stability, and knitted tube as reinforcement to enhance the mechanical properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, water flux, bovine serum albumin (BSA) rejection and tensile test were carried out. The FTIR demonstrated that the β-CD and CS had been successfully crosslinked. With the crosslinking time increased, the membrane structure became denser, the contact angle and the rejection rate increased, while the water flux decreased. The strength and elongation at a break were 236 and 1.7 times higher than these of bare β-CD/CS porous membranes, respectively. The strength of crosslinking membranes increased further. The adsorption performance of composite membranes was investigated for the removal of phenolphthalein (PP) from aqueous solution. The adsorption process followed the Langmuir isotherm model, and the kinetic behavior was accorded with the Double constant equation and the Elovich equation. The adsorption mechanism could be explained by the synergistic effect of host-guest interaction from β-cyclodextrin, non-uniform diffusion and porous network capture.
Collapse
Affiliation(s)
- Qian Tang
- School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xi Road, Xiqing District, Tianjin 300387, China.
| | - Nana Li
- School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xi Road, Xiqing District, Tianjin 300387, China.
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Qingchen Lu
- School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xi Road, Xiqing District, Tianjin 300387, China.
| | - Xue Wang
- School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xi Road, Xiqing District, Tianjin 300387, China.
| | - Yaotian Zhu
- School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xi Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
24
|
Fauzan NAB, Mannan HA, Nasir R, Mohshim DFB, Mukhtar H. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO
2
Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nur Aqilah Bt Fauzan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering 23890 Jeddah Saudi Arabia
| | - Dzeti Farhah Bt Mohshim
- Universiti Teknologi PETRONASPetroleum Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hilmi Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| |
Collapse
|
25
|
Nagasawa H, Murata M, Kanezashi M, Tsuru T. Effect of Sintering Temperature on Sol–Gel Synthesis of Porous Polymeric Membrane Supported Layered Hybrid Organosilica Membranes and Their Vapor Permeation Property. KAGAKU KOGAKU RONBUN 2019. [DOI: 10.1252/kakoronbunshu.45.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mamoru Murata
- Department of Chemical Engineering, Hiroshima University
| | | | | |
Collapse
|
26
|
An QF, Ang MBMY, Huang YH, Huang SH, Chiao YH, Lai CL, Tsai HA, Hung WS, Hu CC, Wu YP, Lee KR. Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Shi SJ, Pan YH, Wang SF, Dai ZW, Gu L, Wu QY. Aluminosilicate Nanotubes Embedded Polyamide Thin Film Nanocomposite Forward Osmosis Membranes with Simultaneous Enhancement of Water Permeability and Selectivity. Polymers (Basel) 2019; 11:E879. [PMID: 31091763 PMCID: PMC6572521 DOI: 10.3390/polym11050879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Nanocomposite membranes are strongly desired to break a trade-off between permeability and selectivity. This work reports new thin film nanocomposite (TFN) forward osmosis (FO) membranes by embedding aluminosilicate nanotubes (ANTs) into a polyamide (PA) rejection layer. The surface morphology and structure of the TFN FO membranes were carefully characterized by FTIR, XPS, FESEM and AFM. The ANTs incorporated PA rejection layers exhibited many open and broad "leaf-like" folds with "ridge-and-valley" structures, high surface roughness and relatively low cross-linking degree. Compared with thin film composite (TFC) membrane without ANTs, the TFN membrane with only 0.2 w/v% ANTs loading presented significantly improved FO water permeability, selectivity and reduced structural parameters. This promising performance can be mainly contributed to the special ANTs embedded PA rejection layer, where water molecules preferentially transport through the nanochannels of ANTs. Molecular dynamic simulation further proved that water molecules have much larger flux through the nanotubes of ANTs than sodium and chloride ions, which are attributed to the intrinsic hydrophilicity of ANTs and low external force for water transport. This work shows that these TFN FO membranes with ANTs decorated PA layer are promising in desalination applications due to their simultaneously enhanced permeability and selectivity.
Collapse
Affiliation(s)
- She-Ji Shi
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ye-Han Pan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shao-Fei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zheng-Wei Dai
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201; China.
| | - Qing-Yun Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
28
|
Ali Z, Al Sunbul Y, Pacheco F, Ogieglo W, Wang Y, Genduso G, Pinnau I. Defect-free highly selective polyamide thin-film composite membranes for desalination and boron removal. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Mozia S, Grylewicz A, Zgrzebnicki M, Darowna D, Czyżewski A. Investigations on the Properties and Performance of Mixed-Matrix Polyethersulfone Membranes Modified with Halloysite Nanotubes. Polymers (Basel) 2019; 11:polym11040671. [PMID: 30979086 PMCID: PMC6523960 DOI: 10.3390/polym11040671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrafiltration (UF) polyethersulfone (PES) membranes were prepared by wet phase inversion method. Commercial halloysite nanotubes (HNTs) in the amount of 0.5–4 wt % vs PES (15 wt %) were introduced into the casting solution containing the polymer and N,N-dimethylformamide as a solvent. The morphology, physicochemical properties and performance of the membranes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), zeta potential, porosity and contact angle analyses, as well as permeability measurements. Moreover, the antifouling properties of the membranes were evaluated during UF of a model solution of bovine serum albumin (BSA). The research revealed a positive influence of modification with HNTs on hydrophilicity, water permeability and antifouling properties of the PES membranes. The most significant improvement of permeability was obtained in case of the membrane containing 2 wt % of HNTs, whereas the highest fouling resistance was observed for 0.5 wt % HNTs content. It was found that a good dispersion of HNTs can be obtained only at loadings below 2 wt %. Based on the results a relation between severity of membrane fouling and surface roughness was proved. Moreover, an increase of the roughness of the modified membranes was found to be accompanied by an increase of isoelectric point values.
Collapse
Affiliation(s)
| | - Amanda Grylewicz
- Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.
| | | | | | | |
Collapse
|
30
|
Ahmad N, Leo C, Ahmad A, Nur Izwanne M. Swelling reduction of polyvinylidenefluoride hollow fiber membrane incorporated with silicoaluminophosphate-34 zeotype filler for membrane gas absorption. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Kammakakam I, O'Harra KE, Dennis GP, Jackson EM, Bara JE. Self‐healing imidazolium‐based ionene‐polyamide membranes: an experimental study on physical and gas transport properties. POLYM INT 2019. [DOI: 10.1002/pi.5802] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irshad Kammakakam
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Kathryn E O'Harra
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Grayson P Dennis
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | | | - Jason E Bara
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| |
Collapse
|
33
|
Lee JY, Kim KJ. MEG Effects on Hydrolysis of Polyamide 66/Glass Fiber Composites and Mechanical Property Changes. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24040755. [PMID: 30791517 PMCID: PMC6412885 DOI: 10.3390/molecules24040755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 11/16/2022]
Abstract
Polyamide66 (PA66) hydrolysis affects the mechanical properties of Polyamide66/glass fiber (PA66/GF) composites. We investigated the effects of monoethylene glycol (MEG) on the degree of hydrolysis and mechanical properties of four different commercial PA66/glass fiber composites. Using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS), we identified the byproducts of PA66 composite hydrolysis: carboxylic acid and alkylamine substances. The degree of hydrolysis increased as the immersion time in MEG increased. However, the tensile and flexural properties decreased due to hydrolysis. The tensile strength decreased by 42⁻45%; however, elongation increased by 23⁻63%. When PA66 absorbs MEG at 130 °C, the materials molecular chains' bonding force decreased, resulting in increased elongation.
Collapse
Affiliation(s)
- Jong-Young Lee
- DTR Co., 103, Sanmakgongdan buk 11-gil, Yangsan-si, Gyeongsangnam-do 626-120, Korea.
| | - Kwang-Jea Kim
- DTR Co., 103, Sanmakgongdan buk 11-gil, Yangsan-si, Gyeongsangnam-do 626-120, Korea.
| |
Collapse
|
34
|
Liu M, Ladegaard Skov A, Liu SH, Yu LY, Xu ZL. A Facile Way to Prepare Hydrophilic Homogeneous PES Hollow Fiber Membrane via Non-Solvent Assisted Reverse Thermally Induced Phase Separation (RTIPS) Method. Polymers (Basel) 2019; 11:E269. [PMID: 30960253 PMCID: PMC6419047 DOI: 10.3390/polym11020269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
Sulfonated polyethersulfone (SPES) was used as an additive to prepare hydrophilic poly(ethersulfone) (PES) hollow fiber membranes via non-solvent assisted reverse thermally induced phase separation (RTIPS) process. The PES/SPES/N,N-dimethylacetamide (DMAc)/ polyethylene glycol 200 (PEG200) casting solutions are lower critical solution temperature (LCST) membrane forming systems. The LCST and phase separation rate increased with the increase of SPES concentrations, while the casting solutions showed shear thinning. When the membrane forming temperature was higher than the LCST, membrane formation mechanism was controlled by non-solvent assisted RTIPS process and the also membranes presented a more porous structure on the surface and a bi-continuous structure on the cross section. The membranes prepared by applying SPES present higher pure water flux than that of the pure PES membrane. The advantages of the SPES additive are reflected by the relatively high flux, good hydrophilicity and excellent mechanical properties at 0.5 wt.% SPES content.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China.
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.
| | - Anne Ladegaard Skov
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.
| | - Sheng-Hui Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China.
| | - Li-Yun Yu
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.
| | - Zhen-Liang Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China.
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
35
|
Otitoju T, Saari R, Ahmad A. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Bhavsar RS, Mitra T, Adams DJ, Cooper AI, Budd PM. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Ahmad MZ, Pelletier H, Martin-Gil V, Castro-Muñoz R, Fila V. Chemical Crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for Improved CO₂/CH₄ Separation. MEMBRANES 2018; 8:membranes8030067. [PMID: 30127269 PMCID: PMC6161149 DOI: 10.3390/membranes8030067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022]
Abstract
Chemical grafting or crosslinking of polyimide chains are known to be feasible approaches to increase polymer gas-pair selectivity and specific gas permeance. Different co-polyimides; 6FDA-ODA and 6FDA-ODA:DABA were synthesized using a two-step condensation method. Six different cross-linkers were used: (i) m-xylylene diamine; (ii) n-ethylamine; and (iii) n-butylamine, by reacting with 6FDA-ODA’s imide groups in a solid state crosslinking; while (iv) ethylene glycol monosalicylate (EGmSal); (v) ethylene glycol anhydrous (EGAn); and (vi) thermally labile iron (III) acetylacetonate (FeAc), by reacting with DABA carboxyl groups in 6FDA-ODA:DABA. The gas separation performances were evaluated by feeding an equimolar CO2 and CH4 binary mixture, at a constant feed pressure of 5 bar, at 25 °C. Fractional free volume (FFV) was calculated using Bondi’s contribution method by considering the membrane solid density property, measured by pycnometer. Other characterization techniques: thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) were performed accordingly. Depending on the type of amine, the CO2/CH4 selectivity of 6FDA-ODA increased between 25 to 100% at the expense of CO2 permeance. We observed the similar trend for 6FDA-ODA:DABA EGmSal-crosslinked with 143% selectivity enhancement. FeAc-crosslinked membranes showed an increment in both selectivity and CO2 permeability by 126% and 29% respectively. Interestingly, FeAc acted as both cross-linker which reduces chain mobility; consequently improving the selectivity and as micro-pore former; thus increases the gas permeability. The separation stability was further evaluated using 25–75% CO2 in the feed with CH4 as the remaining, between 2 and 8 bar at 25 °C. We also observed no CO2-induced plasticization to the measured pressure with high CO2 content (max. 75%).
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Henri Pelletier
- École Nationale Supérieure des Industries Chimique, 1 Rue Grandville-BP 20451, 54001 Nancy, France.
| | - Violeta Martin-Gil
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roberto Castro-Muñoz
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Fila
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
39
|
Chrzanowska E, Gierszewska M, Kujawa J, Raszkowska-Kaczor A, Kujawski W. Development and Characterization of Polyamide-Supported Chitosan Nanocomposite Membranes for Hydrophilic Pervaporation. Polymers (Basel) 2018; 10:polym10080868. [PMID: 30960793 PMCID: PMC6403665 DOI: 10.3390/polym10080868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
An experimental protocol of preparation of homogeneous and nanocomposite chitosan (Ch) based membranes supported on polyamide-6 (PA6) films was developed and described in detail. Montmorillonite (MMT) and Cloisite 30B (C30B) nanoclays were used as nanofillers to improve mechanical properties of chitosan films. The surface, mechanical, and transport properties of PA6 supported Ch, Ch/MMT and Ch/C30B membranes were studied and compared with a pristine, non-supported chitosan membrane. Implementation of advanced analytical techniques e.g., SEM reveal the clays nanoparticles are well dispersed in the chitosan matrix. According to AFM images, composite chitosan/nanoclay membranes possess higher roughness compared with unfilled ones. On the other hand, an incorporation of clay particles insignificantly changed the mechanical and thermal properties of the membranes. It was also found that all membranes are hydrophilic and water is preferentially removed from EtOH/H₂O and iPrOH/H₂O mixtures by pervaporation. Supporting of chitosan and chitosan/nanoclay thin films onto PA6 porous substrate enhanced permeate flux and pervaporation separation index, in comparison to the pristine Ch membrane. Concerning separation factor (β), the highest value equal to 4500 has been found for a chitosan composite membrane containing Cloisite 30B contacting 85/15 wt % iPrOH/H₂O mixture. The mentioned membrane was characterized by the normalized flux of 0.5 μm·kg·m-2·h-1. Based on the established data, it was possible to conclude that chitosan membranes are meaningful material in dehydration of azeotropic mixtures. Nevertheless, to boost up the membrane efficiency, the further modification process is required.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Magdalena Gierszewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Aneta Raszkowska-Kaczor
- Institute for Engineering of Polymer Materials and Dyes, 55 Marii Skłodowskiej-Curie Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
40
|
Hollow Fiber Membranes of Blends of Polyethersulfone and Sulfonated Polymers. MEMBRANES 2018; 8:membranes8030054. [PMID: 30072657 PMCID: PMC6161186 DOI: 10.3390/membranes8030054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
Hollow fiber membranes (HFM) are fabricated from blend solutions of a polyethersulfone (PESU) with a sulfonated PESU (sPESU) or a sulfonated polyphenylenesulfone (sPPSU). The influence of different additives in the dope solution and different bore fluids on the HFM are studied. The addition of poly(sodium 4-styrene sulfonate) (PSSNa)/ethylene glycol (EG) to the dope solution results in an increased water flux of the HFM compared to its counterparts without this additive system. The morphology of the hollow fibers is examined by scanning electron microscopy (SEM). The inner surface of the hollow fibers is studied by X-ray photoelectron spectroscopy (XPS), and it is found that water permeation through the hollow fiber membranes is facilitated due to the change in morphology upon the addition of the PSSNa/EG additive system, but not by the presence of hydrophilic sulfonic acid groups on the membrane surface.
Collapse
|
41
|
Zhang Y, Shen Y, Hou J, Zhang Y, Fam W, Liu J, Bennett TD, Chen V. Ultraselective Pebax Membranes Enabled by Templated Microphase Separation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20006-20013. [PMID: 29786417 DOI: 10.1021/acsami.8b03787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Block copolymer materials have been considered as promising candidates to fabricate gas separation membranes. This microphase separation affects the polymer chain packing density and molecular separation efficiency. Here, we demonstrate a method to template microphase separation within a thin composite Pebax membrane, through the controllable self-assembly of one-dimensional halloysite nanotubes (HNTs) within the thin film via the solution-casting technique. Crystallization of the polyamide component is induced at the HNT surface, guiding subsequent crystal growth around the tubular structure. The resultant composite membrane possesses an ultrahigh selectivity (up to 290) for the CO2/N2 gas pair, together with a moderate CO2 permeability (80.4 barrer), being the highest selectivity recorded for Pebax-based membranes, and it easily surpasses the Robeson upper bound. The templated microphase separation concept is further demonstrated with the nanocomposite hollow fiber gas separation membranes, showing its effectiveness of promoting gas selectivity.
Collapse
Affiliation(s)
- Yatao Zhang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Yijia Shen
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Jingwei Hou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering , University of New South Wales , Sydney 2052 , Australia
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , U.K
| | - Yiming Zhang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Winny Fam
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering , University of New South Wales , Sydney 2052 , Australia
| | - Jindun Liu
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Thomas Douglas Bennett
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , U.K
| | - Vicki Chen
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering , University of New South Wales , Sydney 2052 , Australia
| |
Collapse
|
42
|
"Modified" Liquid⁻Liquid Displacement Porometry and Its Applications in Pd-Based Composite Membranes. MEMBRANES 2018; 8:membranes8020029. [PMID: 29890715 PMCID: PMC6027535 DOI: 10.3390/membranes8020029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
Abstract
For H₂ separation by Pd-based composite membranes, the pore mouth size distribution of the porous support immediately affects the quality of the deposited layer, including continuity and defect/pinhole formation. However, there is a lack of convenient and effective methods for characterization of pore mouth size of porous supports as well as of defect distribution of dense Pd-based composite membranes. Here we introduce a novel method by modifying conventional liquid⁻liquid displacement porometry. When the pore tunnels are filled with Liquid B and the outer surface is occupied by Liquid A, the reopening of the pore mouth depends on the pressure of Liquid B and the interfacial tension at the position of the pore mouth, from which the pore mouth size can be determined according to the Young⁻Laplace equation. Our experimental tests using this method with model samples show promising results, which are well supported by those obtained using FESEM (fild emission scanning electron microscope), AFM (atomic force microscope), and conventional liquid⁻liquid displacement porometry. This novel method can provide useful information for not only surface coatings on porous substrates but also for modification of dense membrane defects; thus, broad utilizations of this technique can be expected in future study.
Collapse
|
43
|
Jin X, Li L, Xu R, Liu Q, Ding L, Pan Y, Wang C, Hung W, Lee K, Wang T. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile. Polymers (Basel) 2018; 10:polym10050539. [PMID: 30966573 PMCID: PMC6415382 DOI: 10.3390/polym10050539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN) were used to fabricate the cross-linking asymmetric (CLA) PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), thermogravimetic analysis (TGA) and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Lin Li
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Ruisong Xu
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Qiao Liu
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Linghua Ding
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yanqiu Pan
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Chunlei Wang
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Weisong Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, 200 Chung Pei Road, Taoyuan 32023, Taiwan.
| | - Kueirrarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, 200 Chung Pei Road, Taoyuan 32023, Taiwan.
| | - Tonghua Wang
- State Key Laboratory of Fine Chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
44
|
Dong X, Al-Jumaily A, Escobar IC. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. MEMBRANES 2018; 8:membranes8020023. [PMID: 29735925 PMCID: PMC6026890 DOI: 10.3390/membranes8020023] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/29/2022]
Abstract
Organic solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc), have been traditionally used to fabricate polymeric membranes. These solvents may have a negative impact on the environment and human health; therefore, using renewable solvents derived from biomass is of great interest to make membrane fabrication sustainable. Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv PolarClean) is a bio-derived, biodegradable, nonflammable and nonvolatile solvent. Polysulfone is a commonly used polymer to fabricate membranes due to its thermal stability, strong mechanical strength and good chemical resistance. From cloud point curves, PolarClean showed potential to be a solvent for polysulfone. Membranes prepared with PolarClean were investigated in terms of their morphology, porosity, water permeability and protein rejection, and were compared to membranes prepared with traditional solvents. The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes displayed higher water flux values (176.0 ± 8.8 LMH) along with slightly higher solute rejection (99.0 ± 0.51%). On the other hand, PSf/DMAc membrane pores were finger-like with lower water flux (63.1 ± 12.4 LMH) and slightly lower solute rejection (96 ± 2.00%) when compared to PSf/PolarClean membranes.
Collapse
Affiliation(s)
- Xiaobo Dong
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Amna Al-Jumaily
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Isabel C Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
45
|
Gong J, Hosaka E, Sakai K, Ito H, Shibata Y, Sato K, Nakanishi D, Ishihara S, Hamada K. Processing and Thermal Response of Temperature-Sensitive-Gel(TSG)/Polymer Composites. Polymers (Basel) 2018; 10:E486. [PMID: 30966520 PMCID: PMC6415423 DOI: 10.3390/polym10050486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 11/26/2022] Open
Abstract
Temperature-sensitive gels (TSGs) are generally used in the fields of medical, robotics, MEMS, and also in daily life. In this paper, we synthesized a novel TSG with good thermal durability and a lower melting temperature below 60 °C. We discussed the physical properties of he TSG and found it provided excellent thermal expansion. Therefore, we proposed the usage of TSG to develop a strategic breathable film with controllable gas permeability. The TSG particles were prepared firstly and then blended with linear low-density polyethylene/calcium carbonate (LLDPE/CaCO₃) composite to develop microporous TSG/LLDPE/CaCO₃ films. We investigated the morphology, thermal, and mechanical properties of TSG/LLDPE/CaCO₃ composite films. The film characterization was conducted by gas permeability testing and demonstration temperature control experiments. The uniformly porous structure and the pore size in the range of 5⁻40 μm for the TSG/LLDPE/CaCO₃ composite films were indicated by SEM micrographs. The demonstration temperature control experiments clearly proved the effect of the controllable gas permeability of the TSG and, more promisingly, the great practical value and application prospects of this strategic effect for the temperature-sensitive breathable film was proved.
Collapse
Affiliation(s)
- Jin Gong
- Department of Polymer Science & Engineering, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Eiichi Hosaka
- Department of Polymer Science & Engineering, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Kohei Sakai
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Hiroshi Ito
- Department of Polymer Science & Engineering, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Yoshikazu Shibata
- Kohjin Film & Chemicals Co., Ltd., 1-1 Koukokumachi, Yatsushiro, Kumamoto 866-8686, Japan.
| | - Kosei Sato
- Kohjin Film & Chemicals Co., Ltd., 1-1 Koukokumachi, Yatsushiro, Kumamoto 866-8686, Japan.
| | - Dai Nakanishi
- Kohjin Film & Chemicals Co., Ltd., 1-1 Koukokumachi, Yatsushiro, Kumamoto 866-8686, Japan.
| | - Shinichiro Ishihara
- Kohjin Film & Chemicals Co., Ltd., 1-1 Koukokumachi, Yatsushiro, Kumamoto 866-8686, Japan.
| | - Kazuhiro Hamada
- Kohjin Film & Chemicals Co., Ltd., 1-1 Koukokumachi, Yatsushiro, Kumamoto 866-8686, Japan.
| |
Collapse
|
46
|
Preparation and Characterization of TiO₂/g-C₃N₄/PVDF Composite Membrane with Enhanced Physical Properties. MEMBRANES 2018; 8:membranes8010014. [PMID: 29510556 PMCID: PMC5872196 DOI: 10.3390/membranes8010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/25/2023]
Abstract
TiO₂/g-C₃N₄/PVDF composite membranes were prepared by a phase inversion method. A comparison of the performance and morphology was carried out among pure PVDF, g-C₃N₄/PVDF, TiO₂/PVDF and TiO₂/g-C₃N₄/PVDF composite membranes. The results of permeability and instrumental analysis indicated that TiO₂ and g-C₃N₄ organic-inorganic composites obviously changed the performance and structure of the PVDF membranes. The porosity and water content of 0.75TiO₂/0.25g-C₃N₄/PVDF composite membranes were 97.3 and 188.3 L/(m²·h), respectively. The porosity and water content of the 0.75TiO₂/0.25g-C₃N₄ membranes were increased by 20.8% and 27.4%, respectively, compared with that of pure PVDF membranes. This suggested that the combination of organic-inorganic composite with PVDF could remarkably improve UTS, membrane porosity and water content.
Collapse
|
47
|
Rynkowska E, Fatyeyeva K, Kujawa J, Dzieszkowski K, Wolan A, Kujawski W. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes. Polymers (Basel) 2018; 10:polym10010086. [PMID: 30966119 PMCID: PMC6415109 DOI: 10.3390/polym10010086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL) (3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-methyl-1H-imidazol-3-ium) was used to prepare novel dense cellulose acetate propionate (CAP) based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC) and acetyl tributyl citrate (ATBC). Thermogravimetric analysis (TGA) testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water).
Collapse
Affiliation(s)
- Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Synthex Technologies Sp. z o.o., 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| |
Collapse
|
48
|
New Development of Membrane Base Optoelectronic Devices. Polymers (Basel) 2017; 10:polym10010016. [PMID: 30966051 PMCID: PMC6415192 DOI: 10.3390/polym10010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022] Open
Abstract
It is known that one factor that affects the operation of optoelectronic devices is the effective protection of the semiconductor materials against environmental conditions. The permeation of atmospheric oxygen and water molecules into the device structure induces degradation of the electrodes and the semiconductor. As a result, in this communication we report the fabrication of semiconductor membranes consisting of Magnesium Phthalocyanine-allene (MgPc-allene) particles dispersed in Nylon 11 films. These membranes combine polymer properties with organic semiconductors properties and also provide a barrier effect for the atmospheric gas molecules. They were prepared by high vacuum evaporation and followed by thermal relaxation technique. For the characterization of the obtained membranes, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to determine the chemical and microstructural properties. UV-ViS, null ellipsometry, and visible photoluminescence (PL) at room temperature were used to characterize the optoelectronic properties. These results were compared with those obtained for the organic semiconductors: MgPc-allene thin films. Additionally, semiconductor membranes devices have been prepared, and a study of the device electronic transport properties was conducted by measuring electrical current density-voltage (J-V) characteristics by four point probes with different wavelengths. The resistance properties against different environmental molecules are enhanced, maintaining their semiconductor functionality that makes them candidates for optoelectronic applications.
Collapse
|
49
|
Dutournié P, Limousy L, Anquetil J, Déon S. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment. MEMBRANES 2017; 7:E65. [PMID: 29160802 PMCID: PMC5746824 DOI: 10.3390/membranes7040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na₂SO₄ remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude) with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.
Collapse
Affiliation(s)
- Patrick Dutournié
- IS2M (UMR CNRS 7228), Université de Haute Alsace, 3 bis rue A. Werner, 68093 Mulhouse CEDEX, France.
| | - Lionel Limousy
- IS2M (UMR CNRS 7228), Université de Haute Alsace, 3 bis rue A. Werner, 68093 Mulhouse CEDEX, France.
| | - Jérôme Anquetil
- TAMI-Industries, Z.A. Les Laurons CS65, 26111 Nyons CEDEX, France.
| | - Sébastien Déon
- Institut UTINAM Besançon (UMR CNRS 6213), Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon CEDEX, France.
| |
Collapse
|
50
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|