1
|
Ajalli N, Rezaie F, Kamalinahad S, Azamat J. Borophene based quasi planar nanocluster for ethanol, isobutanol, and acetone sensing: A first principle study. J Mol Graph Model 2025; 136:108951. [PMID: 39809121 DOI: 10.1016/j.jmgm.2025.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
In this study, the need for efficient detection of volatile organic compounds (VOCs) in environmental monitoring, industrial safety, is addressed by investigating borophene-based B36 nanoclusters as gas sensors. Density functional theory (DFT) calculations were employed to examine the adsorption behavior of ethanol, isobutanol, and acetone on B36 surfaces, with a focus on vibrational modes, reactivity, and adsorption energies. It was found that acetone exhibits the strongest interaction with pristine B36, indicating its potential for robust sensing applications. To further enhance sensor performance, the effects of doping B36 with nickel (Ni) and iron (Fe) atoms were explored. The electronic structure was significantly modified in Fe@B36, showing strong chemisorption properties, while Ni@B36 showed less impact, serving as a counterexample. Additionally, conductivity, recovery time, and global reactivity parameters were analyzed, providing insights into the sensor's functionality. It is suggested that B36 nanoclusters, particularly Fe-doped systems, offer promising prospects for future gas sensor development and VOC detection.
Collapse
Affiliation(s)
- Nima Ajalli
- Department of Chemical Engineering, Babol Noshiravani University of Technology, Babol, Iran
| | - Forough Rezaie
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, 6135783151, Ahvaz, Iran
| | - Saeedeh Kamalinahad
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
2
|
Grushevenko E, Chechenov I, Rokhmanka T, Anokhina T, Bazhenov S, Borisov I. Effect of Side Substituent on Comb-like Polysiloxane Membrane Pervaporation Properties During Recovery of Alcohols C2-C4 from Water. Polymers (Basel) 2024; 16:3530. [PMID: 39771382 PMCID: PMC11678792 DOI: 10.3390/polym16243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The pervaporation properties of membranes based on comb-like polysiloxanes when C2-C4 alcohols are removed from water were studied for the first time. It was established that membranes based on comb-like polysiloxanes with linear aliphatic and organosilicon substituents have increased permeability selectivity for C3+ alcohols. The obtained results were interpreted from the point of view of the solubility of the components of the separated mixture in polysiloxanes. It was shown that membranes based on polysiloxanes with linear substituents have increased butanol/water permeability selectivity (2.5-3.7). The achieved selectivity values correspond to the level of highly selective zeolite membranes, which allows for a reduction in energy consumption for the pervaporation removal of butanol by more than two times.
Collapse
Affiliation(s)
- Evgenia Grushevenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Islam Chechenov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Tatyana Rokhmanka
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Tatiana Anokhina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Stepan Bazhenov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Ilya Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo St. 2/31, 420111 Kazan, Tatarstan, Russia
| |
Collapse
|
3
|
Rothammer M, Zollfrank C. Photocrosslinkable Cellulose Derivatives for the Manufacturing of All-Cellulose-Based Architectures. Polymers (Basel) 2023; 16:9. [PMID: 38201673 PMCID: PMC10781059 DOI: 10.3390/polym16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via UV irradiation (λ = 254 nm and λ = 365 nm) were developed. These biogenic polymers enable the manufacturing of sustainable coatings, even with imprinted microstructures, and cellulose-based bulk materials. Thus, herein, cellulose was functionalized with organic compounds containing carbon double bonds to introduce photocrosslinkable side groups directly onto the cellulose backbone. Therefore, unsaturated anhydrides such as methacrylic acid anhydride and unsaturated and polyunsaturated carboxylic acids such as linoleic acid were utilized. Additionally, these cellulose derivatives were modified with acetate or tosylate groups to generate cellulose-based polymers, which are soluble in organic solvents, making them suitable for multiple processing methods, such as casting, printing and coating. The photocurable resist was basically composed of the UV-crosslinkable biopolymer, an appropriate solvent and, if necessary, a photoinitiator. Moreover, these bio-based photoresists were UV-crosslinkable in the liquid and solid states after the removal of the solvent. Further, the manufactured cellulose-based architectures, even the bulk structures, could be entirely regenerated into pure cellulose devices via a sodium methoxide treatment.
Collapse
Affiliation(s)
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany;
| |
Collapse
|
4
|
Zhang Y, Zhao Z, Yu R, Yang X, Zhao X, Huang W. Self-Assembly of Multiwalled Carbon Nanotubes on a Silicone Rubber Foam Skeleton for Durable Piezoresistive Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44248-44258. [PMID: 37672639 DOI: 10.1021/acsami.3c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Conductive nanomaterial/flexible polymer composite foams are of great interest in the field of flexible and wearable piezoresistive pressure sensors. However, the existing composite foam sensors are faced with stability issues from conductive nanomaterials, which tends to decrease their long-term durability. Herein, we developed a solvent evaporation-induced self-assembly strategy, which could significantly improve the stability of multiwalled carbon nanotubes (MWCNTs) on a silicone rubber foam skeleton. The process for self-assembly of MWCNTs was straightforward. Aqueous MWCNT dispersion droplets were first hierarchically enclosed in silicone rubber via water-in-oil (W/O) Pickering high internal phase emulsions (HIPEs). Then, the high pressure generated by fast evaporation of the solvent from the droplets could break the thinnest pore walls to form interconnected pores. As a result, very dense and firm MWCNT layers were self-assembled on the pore wall surface. Due to the excellent stability of MWCNTs and tetramodal interconnected porosity, our MWCNTs/silicone rubber composite foam showed the following "super" properties: low density of 0.26 g/mL, high porosity of 76%, and excellent mechanical strength (the maximum stress loss of 8.3% at 80% strain after 100 compression cycles). In addition, excellent piezoresistive performance, including superior discernibility for different amplitudes of compressive strain (up to 80%), rapid response time (150 ms), and high sensitivity (gauge factor of 1.44), was demonstrated for such foams, together with prominent durability (39,000 compression cycles at 60% strain in air) and excellent stability of resistance response in water and organic solvents (5000 compression cycles at 30% strain in water and ethanol). Regarding its application, a wearable piezoresistive sensor, which was assembled from the as-prepared conductive silicone rubber composite foam, could capture various movements from tiptoeing and finger bending to small deformations resulting from human pulse.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zehua Zhao
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ran Yu
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Yang
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiaojuan Zhao
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wei Huang
- Key Laboratory of Science and Technology on Hightech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
5
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation. MEMBRANES 2022; 12:membranes12101007. [PMID: 36295765 PMCID: PMC9610642 DOI: 10.3390/membranes12101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/02/2023]
Abstract
The growing interest in the production of biofuels has motivated numerous studies on separation techniques that allow the separation/concentration of organics produced by fermentation, improving productivity and performance. In this work, the preparation and characterization of new butanol-selective membranes was reported. The prepared membranes had a hollow fiber configuration and consisted of two dense selective layers: a first layer of PEBA and a second (outer) layer of PDMS. The membranes were tested to evaluate their separation performance in the selective removal of organics from a synthetic ABE solution. Membranes with various thicknesses were prepared in order to evaluate the effect of the PDMS protective layer on permeant fluxes and membrane selectivity. The mass transport phenomena in the pervaporation process were characterized using a resistances-in-series model. The experimental results showed that PEBA as the material of the dense separating layer is the most favorable in terms of selectivity towards butanol with respect to the other components of the feed stream. The addition of a protective layer of PDMS allows the sealing of possible pinholes; however, its thickness should be kept as small as possible since permeation fluxes decrease with increasing thickness of PDMS and this material also has greater selectivity towards acetone compared to other feed components.
Collapse
|
6
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Mutto A, Mahawer K, Shukla A, Gupta SK. Understanding butanol recovery and coupling effects in pervaporation of Acetone-Butanol-Ethanol (ABE) solutions: A modelling and experimental study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Golubev GS, Balynin AV, Borisov IL, Volkov AV. Thermopervaporation with a Porous Condenser for Triethylene Glycol Dehydration. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Golubev G, Sokolov S, Rokhmanka T, Makaev S, Borisov I, Khashirova S, Volkov A. High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater. Polymers (Basel) 2022; 14:polym14142944. [PMID: 35890720 PMCID: PMC9321245 DOI: 10.3390/polym14142944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m2∙h) in pervaporation separation of binary solutions.
Collapse
Affiliation(s)
- Georgy Golubev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 2-02)
| | - Stepan Sokolov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Tatyana Rokhmanka
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Sergey Makaev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Ilya Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Svetlana Khashirova
- Department of Organic Chemistry and Macromolecular Compounds, Kabardino-Balkar State University named after H.M. Berbekov, 173 Chernyshevsky St., 360004 Nalchik, Kabardino-Balkarian Republic, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| |
Collapse
|
10
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
11
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Pan Y, Zhu C, Fu P, Zeng W, Chen C, Xu B. Optimization of Operation Conditions for Zeolitic Imidazolate Framework/Polydimethylsiloxane Hybrid Pervaporation Membranes. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Yong Pan
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| | - Chen Zhu
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| | - Pei Fu
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| | - Wenbin Zeng
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| | - Chi Chen
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| | - Baoming Xu
- Hubei University of Technology Hubei Provincial Key Laboratory of Green Materials for Light Industry Nanli Road, Hongshan District 430068 Wuhan China
- Hubei University of Technology Collaborative Innovation Center of Green Light Weight Materials and Processing Nanli Road, Hongshan District 430068 Wuhan China
| |
Collapse
|
13
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhou T, Dong W, Qiu Y, Chen S, Wang X, Xie C, Zeng D. Selectivity of a ZnO@ZIF-71@PDMS Nanorod Array Gas Sensor Enhanced by Coating a Polymer Selective Separation Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54589-54596. [PMID: 34747600 DOI: 10.1021/acsami.1c16637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is important for noninvasive diagnosis of diabetes to develop acetone gas sensors with high selectivity. ZnO@ZIF-71 has been reported as a highly sensitive and selective gas sensor on acetone detection. However, it is difficult to exclude the interference with similar molecular sizes gas in the gas-sensing process, like ethanol. To solve this problem, polydimethylsiloxane (PDMS) was synthesized on the surface of ZnO@ZIF-71 to form a ZnO@ZIF-71@PDMS sensor by vapor deposition. The new sensor shows inert response to ethanol and effective response to acetone simultaneously. The PDMS membrane acts as a molecular sieve, which shows the acetone selectivity performance and can totally eliminate the response to low concentration ethanol at low temperature. Theory calculations and solubility test are also employed to prove the role PDMS plays in this process. It demonstrated that the acetone selectivity performance comes from the hydrogen bond interaction between the ethanol gas molecules and PDMS, which increases difficulty for ethanol gas molecules to penetrate the PDMS membrane. Further, this work provides a new method for enhancing gas-sensing selectivity and promoting for miniaturization of gas sensors.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wenbo Dong
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yue Qiu
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Shiyu Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaoxia Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Changsheng Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Dawen Zeng
- State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
15
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Insight of organic molecule dissolution and diffusion in cross-linked polydimethylsiloxane using molecular simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:10. [PMID: 33413629 PMCID: PMC7791809 DOI: 10.1186/s13068-020-01857-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. RESULTS This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. CONCLUSIONS Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future.
Collapse
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
- Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, 150040, China.
| | - Lun Liang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Kemeng Jia
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
18
|
Bermudez Jaimes JH, Torres Alvarez ME, Bannwart de Moraes E, Wolf Maciel MR, Maciel Filho R. Separation and Semi-Empiric Modeling of Ethanol-Water Solutions by Pervaporation Using PDMS Membrane. Polymers (Basel) 2020; 13:E93. [PMID: 33383641 PMCID: PMC7795344 DOI: 10.3390/polym13010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
High energy demand, competitive fuel prices and the need for environmentally friendly processes have led to the constant development of the alcohol industry. Pervaporation is seen as a separation process, with low energy consumption, which has a high potential for application in the fermentation and dehydration of ethanol. This work presents the experimental ethanol recovery by pervaporation and the semi-empirical model of partial fluxes. Total permeate fluxes between 15.6-68.6 mol m-2 h-1 (289-1565 g m-2 h-1), separation factor between 3.4-6.4 and ethanol molar fraction between 16-171 mM (4-35 wt%) were obtained using ethanol feed concentrations between 4-37 mM (1-9 wt%), temperature between 34-50 ∘C and commercial polydimethylsiloxane (PDMS) membrane. From the experimental data a semi-empirical model describing the behavior of partial-permeate fluxes was developed considering the effect of both the temperature and the composition of the feed, and the behavior of the apparent activation energy. Therefore, the model obtained shows a modified Arrhenius-type behavior that calculates with high precision the partial-permeate fluxes. Furthermore, the versatility of the model was demonstrated in process such as ethanol recovery and both ethanol and butanol dehydration.
Collapse
Affiliation(s)
- John Hervin Bermudez Jaimes
- School of Chemical Engineering, Separation Process Development Laboratory, State University of Campinas, Albert Einstein 500, Campinas 13083-582, Brazil; (M.E.T.A.); (E.B.d.M.); (M.R.W.M.); (R.M.F.)
| | | | | | | | | |
Collapse
|
19
|
High Selective Composite Polyalkylmethylsiloxane Membranes for Pervaporative Removal of MTBE from Water: Effect of Polymer Side-chain. Polymers (Basel) 2020; 12:polym12061213. [PMID: 32466559 PMCID: PMC7362244 DOI: 10.3390/polym12061213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
For the first time, the effect of the side-chain in polyalkylmethylsiloxane towards pervaporative removal of methyl tert-butyl ether (MTBE) from water was studied. The noticeable enhancement of separation factor during the pervaporation of 1 wt.% MTBE solution in water through the dense film (40–50 µm) can be achieved by substitution of a methyl group (separation factor 111) for heptyl (161), octyl (169) or decyl (180) one in polyalkylmethylsiloxane. Composite membrane with the selective layer (~8 µm) made of polydecylmethylsiloxane (M10) on top of microfiltration support (MFFK membrane) demonstrated MTBE/water separation factor of 310, which was 72% greater than for the dense film (180). A high separation factor together with an overall flux of 0.82 kg·m−2·h−1 allowed this M10/MFFK composite membrane to outperform the commercial composite membranes. The analysis of the concentration polarization modulus and the boundary layer thickness revealed that the feed flow velocity should be gradually increased from 5 cm·s−1 for an initial solution (1 wt.% of MTBE in water) to 13 cm·s−1 for a depleted solution (0.2 wt.% of MTBE in water) to overcome the concentration polarization phenomena in case of composite membrane M10/MFFK (Texp = 50 °C).
Collapse
|
20
|
Knozowska K, Li G, Kujawski W, Kujawa J. Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Davoodi E, Montazerian H, Haghniaz R, Rashidi A, Ahadian S, Sheikhi A, Chen J, Khademhosseini A, Milani AS, Hoorfar M, Toyserkani E. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS NANO 2020; 14:1520-1532. [PMID: 31904931 DOI: 10.1021/acsnano.9b06283] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Three-dimensional flexible porous conductors have significantly advanced wearable sensors and stretchable devices because of their specific high surface area. Dip coating of porous polymers with graphene is a facile, low cost, and scalable approach to integrate conductive layers with the flexible polymer substrate platforms; however, the products often suffer from nanoparticle delamination and overtime decay. Here, a fabrication scheme based on accessible methods and safe materials is introduced to surface-dope porous silicone sensors with graphene nanoplatelets. The sensors are internally shaped with ordered, interconnected, and tortuous internal geometries (i.e., triply periodic minimal surfaces) using fused deposition modeling (FDM) 3D-printed sacrificial molds. The molds were dip coated to transfer-embed graphene onto the silicone rubber (SR) surface. The presented procedure exhibited a stable coating on the porous silicone samples with long-term electrical resistance durability over ∼12 months period and high resistance against harsh conditions (exposure to organic solvents). Besides, the sensors retained conductivity upon severe compressive deformations (over 75% compressive strain) with high strain-recoverability and behaved robustly in response to cyclic deformations (over 400 cycles), temperature, and humidity. The sensors exhibited a gauge factor as high as 10 within the compressive strain range of 2-10%. Given the tunable sensitivity, the engineered biocompatible and flexible devices captured movements as rigorous as walking and running to the small deformations resulted by human pulse.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Hossein Montazerian
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
- Advanced Thermo-fluidic Laboratory (ATFL), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Reihaneh Haghniaz
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Armin Rashidi
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Samad Ahadian
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Amir Sheikhi
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Department of Chemical Engineering , The Pennsylvania State University , 106 Greenberg Building , University Park , Pennsylvania 16802 , United States
| | - Jun Chen
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Abbas S Milani
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Mina Hoorfar
- Advanced Thermo-fluidic Laboratory (ATFL), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
23
|
Golubev GS, Borisov IL, Volkov VV, Volkov AV. High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Grushevenko EA, Podtynnikov IA, Borisov IL. High-Selectivity Pervaporation Membranes for 1-Butanol Removal from Wastewater. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427219110168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Fast, facile and scalable fabrication of novel microporous silicalite-1/PDMS mixed matrix membranes for efficient ethanol separation by pervaporation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Hietaharju J, Kangas J, Tanskanen J. Analysis of the permeation behavior of ethanol/water mixtures through a polydimethylsiloxane (PDMS) membrane in pervaporation and vapor permeation conditions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115738] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ji Y, Chen G, Liu G, Zhao J, Liu G, Gu X, Jin W. Ultrathin Membranes with a Polymer/Nanofiber Interpenetrated Structure for High-Efficiency Liquid Separations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36717-36726. [PMID: 31509377 DOI: 10.1021/acsami.9b12445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrathin-film composite membranes comprising an ultrathin polymeric active layer have been extensively explored in gas separation applications benefiting from their extraordinary permeation flux for high-throughput separation. However, the practical realization of an ultrathin active layer in liquid separations is still impeded by the trade-off effect between the membrane thickness (permeation flux) and structural stability (separation factor). Herein, we report a general multiple and alternate spin-coating strategy, collaborating with the interface-decoration layer of copper hydroxide nanofibers (CHNs), to obtain ultrathin and robust polymer-based membranes for high-performance liquid separations. The structural stability arises from the poly(dimethylsiloxane) (PDMS)/CHN interpenetrated structure, which confers the synergistic effect between PDMS and CHNs to concurrently resist PDMS swelling and avoid CHNs from collapsing, while the ultrathin thickness is enabled by the sub-10 nm pore size of the CHN layer, the rapid cross-linking reaction during spin-coating, and the small thickness of the CHN layer. As a result, the as-prepared membrane possesses an exceptional butanol/water separation performance with a flux of 6.18 kg/(m2 h) and a separation factor of 31, far exceeding the state-of-the-art polymer membranes. The strategy delineated in this work provides a straightforward method for the design of ultrathin and structurally stable polymer membranes, holding great potential for the practical application of high-efficiency separations.
Collapse
Affiliation(s)
- Yufan Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211800 , P. R. China
| |
Collapse
|
28
|
Golubev GS, Borisov IL, Volkov AV, Volkov VV. Poly(trimethylsilylpropyne) Membranes for Removal of Alcohol Fermentation Products by Thermopervaporation with a Porous Condenser. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619050032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Waters L, Jesney H, Molinari M, Shahzad Y. Quantification of the adsorption of benzoates on poly(dimethylsiloxane) membrane. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Raut AN, Dhobe AR, Gedam PS, Dhamole PB. Determination of solubilization isotherm in micelles of non-ionic surfactant L62 for butanol extraction. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Lin YF, Ho JC, Andrew Lin KY, Tung KL, Chung TW, Lee CC. A drying-free and one-step process for the preparation of siloxane/CS mixed-matrix membranes with outstanding ethanol dehydration performances. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Li Y, Yan D, Wu Y. Ionic liquid-modified MCM-41-polymer mixed matrix membrane for butanol pervaporation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190291. [PMID: 31417733 PMCID: PMC6689585 DOI: 10.1098/rsos.190291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/01/2019] [Indexed: 06/02/2023]
Abstract
Because of the preferential butanol selectivity of some ionic liquids (ILs), an increasing amount of research has appeared regarding their application in butanol separation. In this research, two ionic liquids, namely, 1-ethyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EVIM][Tf2N], IL1) and N-octyl-pyridinium bis[(trifluoromethyl)sulfonyl]imide ([OMPY][Tf2N], IL2), were applied to modify a mesoporous molecular sieve MCM-41. The IL-modified MCM-41 samples were characterized by XPS, BET, XRD, SEM and TEM. The ionic liquid-modified MCM-41 was incorporated into the polymer PEBA to prepare mixed matrix membranes to study the influences of the filling of IL-modified MCM-41 and operating conditions on the performance of the mixed matrix membrane for butanol pervaporation. The results indicated that the pervaporation performance of the PEBA membrane was enhanced by the incorporation of IL-modified MCM-41. When the temperature of the feeding liquid was 35°C and the mass fraction of butanol was 2.5 wt%, the 5% MCM-41-IL2-PEBA membrane showed a permeation flux of 421.7 g m-2 h-1 and a separation factor of 25.4. The permeation flux and the separation factor of the membrane increased as the temperature of the feeding liquid increased. The results of the long-period experiment suggested that the 5% MCM-41-IL2-PEBA membrane exhibited high stability within 100 h of operation.
Collapse
Affiliation(s)
- Yifang Li
- Shanghai Shenglan Petrochemical Engineering Technology Co. Ltd, Shanghai 201200, People's Republic of China
| | - Dandan Yan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yanhui Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
33
|
Tang W, Lou H, Li Y, Kong X, Wu Y, Gu X. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Katayama Y, Bentz KC, Cohen SM. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13029-13037. [PMID: 30855936 DOI: 10.1021/acsami.9b02539] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalized UiO-66 metal-organic frameworks (MOF) particles were covalently grafted with hydride-terminated poly(dimethylsiloxane) (PDMS) via postsynthetic modification. These PDMS-coated MOF particles (termed here "corona-MOF") were used in the preparation of mixed-matrix membranes (MMMs). Defect-free MMMs with weight loadings of 50% were achieved with corona-MOF particles, attributed to the improved dispersibility of the corona-MOF particles and covalent linkages between the corona-MOF particles and the polymer matrix. The PDMS MMMs showed distinct separation features in single gas permeation tests, displaying much higher CO2 gas permeation with no decrease in selectivity when compared to MMMs prepared with unmodified UiO-66 particles. Single gas separation tests with CO2, N2, and propane were performed to probe the separation mechanism of the corona-MOF MMMs, demonstrating that these MMMs avoid nonideal "sieve-in-a-cage" and "plugged sieves" scenarios. Additionally, due to covalent bond formation between both the MOF and the polymer matrix in corona-MOF MMMs, particle aggregation is negligible during film curing, allowing for the formation of flexible, self-standing MMMs of <1 μm in thickness. Low quantities of polymer covalently attached to the MOF surface (<5 wt %) are sufficient to fabricate thin, defect-free, high MOF-loading MMMs.
Collapse
Affiliation(s)
- Yuji Katayama
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
- Asahi Kasei Corporation , 2-1 Samejima , Fuji , Shizuoka 416-8501 , Japan
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| |
Collapse
|
36
|
Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:399-404. [PMID: 30421840 DOI: 10.1002/rcm.8347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE The molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas-phase modifiers on biomolecules characterized using ion mobility techniques. METHODS The effect of solution additives and gas-phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100-500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time-of-flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. RESULTS Changes in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas-phase modifiers (i.e., N2 doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas-modifier mass and size and changes in the relative abundances and number of IMS bands are observed. CONCLUSIONS We attribute the observed changes in the mobility profiles in the presence of gas-phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Jaroslava Miksovska
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | | | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
37
|
Modified Silica Incorporating into PDMS Polymeric Membranes for Bioethanol Selection. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/5610282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, polydimethylsiloxane (PDMS) polymeric membranes were fabricated by incorporating fumed silica nanoparticles which were functionalized with two silane coupling agents—NH2(CH2)3Si(OC2H5)3(APTS) and NH2(CH2)2NH(CH2)3Si(OC2H5)3(TSED)—for selective removal of ethanol from aqueous solutions via pervaporation. It was demonstrated that large agglomerates were not observed indicating the uniform distribution of modified silica throughout the PDMS matrices. It is noted that the ethanol diffusivity and the water contact angles were both increased remarkably, being beneficial to the preferential permeation of ethanol through the membranes. The pervaporation results showed that the addition of the two types of modified silica nanoparticles dramatically enhanced both the permeability and selectivity of hybrid membranes. Compared to APTS, silica modified by TSED at the concentration of 4 wt. % resulted in the optimum pervaporation membranes with the maximum separation factor of 12.09 and the corresponding permeation flux of approximately 234.0 g·m−2·h−1in a binary aqueous mixture at 40°C containing 10 wt. % ethanol. The observation will benefit the choice of coupling agents to improve the compatibility between hydrophilic fillers and hydrophobic polymers in preparing mixed matrix membranes.
Collapse
|
38
|
León JA, Fontalvo J. PDMS modified membranes by 1-dodecanol and its effect on ethanol removal by pervaporation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Golubev GS, Borisov IL, Volkov VV. Performance of Commercial and Laboratory Membranes for Recovering Bioethanol from Fermentation Broth by Thermopervaporation. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218080177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Hu MZ, Engtrakul C, Bischoff BL, Lu M, Alemseghed M. Surface-Engineered Inorganic Nanoporous Membranes for Vapor and Pervaporative Separations of Water⁻Ethanol Mixtures. MEMBRANES 2018; 8:membranes8040095. [PMID: 30322060 PMCID: PMC6316381 DOI: 10.3390/membranes8040095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 11/25/2022]
Abstract
Surface wettability-tailored porous ceramic/metallic membranes (in the tubular and planar disc form) were prepared and studied for both vapor-phase separation and liquid pervaporative separations of water-ethanol mixtures. Superhydrophobic nanoceramic membranes demonstrated more selective permeation of ethanol (relative to water) by cross-flow pervaporation of liquid ethanol–water mixture (10 wt % ethanol feed at 80 °C). In addition, both superhydrophilic and superhydrophobic membranes were tested for the vapor-phase separations of water–ethanol mixtures. Porous inorganic membranes having relatively large nanopores (up to 8-nm) demonstrated good separation selectivity with higher permeation flux through a non-molecular-sieving mechanism. Due to surface-enhanced separation selectivity, larger nanopore-sized membranes (~5–100 nm) can be employed for both pervaporation and vapor phase separations to obtain higher selectivity (e.g., permselectivity for ethanol of 13.9 during pervaporation and a vapor phase separation factor of 1.6), with higher flux due to larger nanopores than the traditional size-exclusion membranes (e.g., inorganic zeolite-based membranes having sub-nanometer pores). The prepared superhydrophobic porous inorganic membranes in this work showed good thermal stability (i.e., the large contact angle remains the same after 300 °C for 4 h) and chemical stability to ethanol, while the silica-textured superhydrophilic surfaced membranes can tolerate even higher temperatures. These surface-engineered metallic/ceramic nanoporous membranes should have better high-temperature tolerance for hot vapor processing than those reported for polymeric membranes.
Collapse
Affiliation(s)
- Michael Z Hu
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | - Mi Lu
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
41
|
Influence of feed flow rate, temperature and feed concentration on concentration polarization effects during separation of water-methyl acetate solutions with high permeable hydrophobic pervaporation PDMS membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Knozowska K, Kujawski W, Zatorska P, Kujawa J. Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Lan Y, Peng P. Preparation of polymer of intrinsic microporosity composite membranes and their applications for butanol recovery. J Appl Polym Sci 2018. [DOI: 10.1002/app.46912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yongqiang Lan
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering, Sanming University; Sanming Fujian 365004 China
- Science and Technology; Sanming Institute of the Fluorochemical Industry; Sanming Fujian 365004 China
| | - Ping Peng
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering, Sanming University; Sanming Fujian 365004 China
| |
Collapse
|
44
|
|
45
|
Chen C, Cai D, Qin P, Chen B, Wang Z, Tan T. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99-125. BIORESOURCE TECHNOLOGY 2018; 257:217-222. [PMID: 29505980 DOI: 10.1016/j.biortech.2018.02.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Hybrid process that integrated fermentation, pervaporation and esterification was established aiming to improve the economic feasibility of the conventional acetone-butanol-ethanol (ABE) fermentation process. Candida sp 99-125 cells were used as full-cell catalyst. The feasibility of batch and fed-batch esterification using the ABE permeate of pervaporation (ranging from 286.9 g/L to 402.9 g/L) as substrate were compared. Valuable butyl oleate was produced along with ethyl oleate. For the batch esterification, due to severe inhibition of substrate to lipase, the yield of butyl oleate and ethyl oleate were only 24.9% and 3.3%, respectively. In contrast, 75% and 11.8% of butyl oleate and ethyl oleate were obtained, respectively, at the end of the fed-batch esterification. The novel integration process provides a promising strategy for in situ upgrading ABE products.
Collapse
Affiliation(s)
- Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Biqiang Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
46
|
Kang BG, Kim DG, Register RA. Vinyl Addition Copolymers of Norbornylnorbornene and Hydroxyhexafluoroisopropylnorbornene for Efficient Recovery of n-Butanol from Dilute Aqueous Solution via Pervaporation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beom-Goo Kang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Dong-Gyun Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Richard A. Register
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
47
|
Zhu C, Chen L, Xue C, Bai F. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:128. [PMID: 29755587 PMCID: PMC5934881 DOI: 10.1186/s13068-018-1129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/23/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Butanol derived from renewable resources by microbial fermentation is considered as one of not only valuable platform chemicals but alternative advanced biofuels. However, due to low butanol concentration in fermentation broth, butanol production is restricted by high energy consumption for product recovery. For in situ butanol recovery techniques, such as gas stripping and pervaporation, the common problem is their low efficiency in harvesting and concentrating butanol. Therefore, there is a necessity to develop an advanced butanol recovery technique for cost-effective biobutanol production. RESULTS A close-circulating vapor stripping-vapor permeation (VSVP) process was developed with temperature-difference control for single-stage butanol recovery. In the best scenario, the highest butanol separation factor of 142.7 reported to date could be achieved with commonly used polydimethylsiloxane membrane, when temperatures of feed solution and membrane surroundings were 70 and 0 °C, respectively. Additionally, more ABE (31.2 vs. 17.7 g/L) were produced in the integrated VSVP process, with a higher butanol yield (0.21 vs. 0.17 g/g) due to the mitigation of butanol inhibition. The integrated VSVP process generated a highly concentrated permeate containing 212.7 g/L butanol (339.3 g/L ABE), with the reduced energy consumption of 19.6 kJ/g-butanol. CONCLUSIONS Therefore, the present study demonstrated a well-designed energy-efficient technique named by vapor stripping-vapor permeation for single-stage butanol removal. The butanol separation factor was multiplied by the temperature-difference control strategy which could double butanol recovery performance. This advanced VSVP process can completely eliminate membrane fouling risk for fermentative butanol separation, which is superior to other techniques.
Collapse
Affiliation(s)
- Chao Zhu
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Lijie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024 China
| |
Collapse
|
48
|
|
49
|
|
50
|
Synthesis of mesoporous SiO 2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|