1
|
Baniamerian H, Shokrollahzadeh S, Safavi M, Ashori A, Angelidaki I. Visible-light-activated Fe 2O 3-TiO 2 nanoparticles enhance biofouling resistance of polyethersulfone ultrafiltration membranes against marine algae Chlorella vulgaris. Sci Rep 2024; 14:24831. [PMID: 39438624 PMCID: PMC11496830 DOI: 10.1038/s41598-024-76201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigated the modification of polyethersulfone (PES) ultrafiltration membranes with TiO2 and Fe2O3-TiO2 nanoparticles to enhance their hydrophilicity and biofouling resistance against the marine microalgae Chlorella vulgaris. It is a common freshwater and marine microalga that readily forms biofilms on membrane surfaces, leading to significant flux decline and increased operational costs in ultrafiltration processes. The microalgae cells and their extracellular polymeric substances (EPS) adhere to the membrane surface, creating a dense fouling layer that impedes water permeation. The modified membranes were characterized using contact angle measurements, scanning electron microscopy, and pure water flux/resistance tests. Short-term ultrafiltration experiments evaluated the membranes' antifouling performance by measuring flux decline, flux recovery ratio, and relative flux reduction during C. vulgaris filtration. The TiO2 membrane showed improved hydrophilicity and antifouling over the pristine PES membrane, while the Fe2O3-TiO2 nanocomposite membrane exhibited the best performance. It reduced the water contact angle and showed only a 5% relative flux reduction compared to 60% for the pristine membrane. SEM images confirmed reduced microalgal deposition on the nanocomposite surface. Long-term tests with microalgal cells under dark and visible light conditions in saline water further assessed the membranes' biofouling resistance. The Fe2O3-TiO2 membrane maintained 59 L/m2 h water flux under visible light after immersion in the microalgal solution, outperforming the pristine (38 L/m2 h) and TiO2 (52 L/m2 h) membranes. This superior antifouling was attributed to photocatalytic generation of reactive oxygen species inhibiting microalgal adhesion. This study demonstrates a promising strategy for mitigating biofouling in membrane-based water treatment and desalination processes.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Hu J, Mao Z, Lu Y, Chen Q, Xia J, Deng H, Chen H. PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr 4+: Multivalent peptide enhancing target capture efficiency and antifouling performance. Biosens Bioelectron 2023; 235:115379. [PMID: 37207581 DOI: 10.1016/j.bios.2023.115379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Programmed death ligand 1 (PD-L1) exosomes are important biomarkers of immune activation in the initial stages of treatment and can predict clinical responses to PD-1 blockade in various cancer patients. However, traditional PD-L1 exosome bioassays face challenges such as high interface fouling in complex detection environments, limited detection specificity, and poor clinical serum applicability. Inspired by the multi-branched structure of trees, a biomimetic tree-like multifunctional antifouling peptide (TMAP)-assisted electrochemical sensor was developed for high-sensitivity exosomes detection. Multivalent interaction of TMAP significantly enhances the binding affinity of PD-L1 exosomes, thanks to the designed branch antifouling sequence, TMAPs antifouling performance is further improved. The addition of Zr4+ forms coordination bonds with the exosome's lipid bilayer phosphate groups to achieve highly selective and stable binding without interference from protein activity. The specific coordination between AgNCs and Zr4+ contributes to a dramatic change in the electrochemical signals, and lowing detection limit. The designed electrochemical sensor exhibited excellent selectivity and a wide dynamic response within the PD-L1 exosome concentration range from 78 to 7.8 × 107 particles/mL. Overall, the multivalent binding ability of TMAP and the signal amplification characteristics of AgNCs have a certain driving role in achieving clinical detection of exosomes.
Collapse
Affiliation(s)
- Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yongkai Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junjie Xia
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Behboudi A, Mohammadi T, Ulbricht M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
5
|
Zainol Abidin MN, Nasef MM, Matsuura T. Fouling Prevention in Polymeric Membranes by Radiation Induced Graft Copolymerization. Polymers (Basel) 2022; 14:197. [PMID: 35012218 PMCID: PMC8747411 DOI: 10.3390/polym14010197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
The application of membrane processes in various fields has now undergone accelerated developments, despite the presence of some hurdles impacting the process efficiency. Fouling is arguably the main hindrance for a wider implementation of polymeric membranes, particularly in pressure-driven membrane processes, causing higher costs of energy, operation, and maintenance. Radiation induced graft copolymerization (RIGC) is a powerful versatile technique for covalently imparting selected chemical functionalities to membranes' surfaces, providing a potential solution to fouling problems. This article aims to systematically review the progress in modifications of polymeric membranes by RIGC of polar monomers onto membranes using various low- and high-energy radiation sources (UV, plasma, γ-rays, and electron beam) for fouling prevention. The feasibility of the modification method with respect to physico-chemical and antifouling properties of the membrane is discussed. Furthermore, the major challenges to the modified membranes in terms of sustainability are outlined and the future research directions are also highlighted. It is expected that this review would attract the attention of membrane developers, users, researchers, and scientists to appreciate the merits of using RIGC for modifying polymeric membranes to mitigate the fouling issue, increase membrane lifespan, and enhance the membrane system efficiency.
Collapse
Affiliation(s)
- Muhammad Nidzhom Zainol Abidin
- Chemical and Environmental Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Mohamed Mahmoud Nasef
- Chemical and Environmental Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
6
|
Akamatsu K, Saito T, Ohashi H, Wang XL, Nakao SI. Plasma Graft Polymerization and Surface-Initiated Atom Transfer Radical Polymerization: Characteristics of Low-Fouling Membranes Obtained by Surface Modification with Poly(2-methoxyethyl Acrylate). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Tatsuru Saito
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Hidenori Ohashi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Xiao-lin Wang
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shin-ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| |
Collapse
|
7
|
Tiruneh Adugna A. Development in nanomembrane-based filtration of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, the concentration of emerging contaminants is increasing in drinking water sources, industrial wastewater, and reclaimed water. It is not possible to remove the emerging contaminants using conventional methods, and the interest to use nanomembrane-based filtration is getting attention. A nanomembrane-based filtration can be manipulated without the use of any special equipment. Different research findings reported better removal of emerging contaminants has been achieved using nanomembrane-based filtration. Moreover, new developments have been examined and implemented at different levels and are expected to continue. Therefore, this chapter provides a brief overview of recent developments on nanomembrane-based filtration processes in the removal of emerging contaminants from drinking water sources, industrial wastewater, and reclaimed water.
Collapse
Affiliation(s)
- Amare Tiruneh Adugna
- Department of Environmental Engineering , Addis Ababa Science and Technology University, College of Biological and Chemical Engineering , Addis Ababa , Ethiopia
| |
Collapse
|
8
|
Castro-Muñoz R, González-Melgoza LL, García-Depraect O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. CHEMOSPHERE 2021; 270:129421. [PMID: 33401070 DOI: 10.1016/j.chemosphere.2020.129421] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Membranes, as the primary separation element of membrane-based processes, have greatly attracted the attention of researchers in several water treatment applications, including wastewater treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy metals, among others. Today, the removal of heavy metals from water has become challenging, in which chemical engineers are approaching new materials in membrane technologies. Therefore, the current review elucidates the progress of using different concepts of membranes and potential novel materials for such separations, identifying that polymeric membranes can exhibit a removal efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the concluding remarks, future perspectives, and strategies for new researchers in the field are given according to the recent findings of this comprehensive review.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process, Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | | | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| |
Collapse
|
9
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
10
|
Bai Z, Wang L, Liu C, Yang C, Lin G, Liu S, Jia K, Liu X. Interfacial coordination mediated surface segregation of halloysite nanotubes to construct a high-flux antifouling membrane for oil-water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118828] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
|
12
|
Wang H, Song L, Jiang R, Fan Y, Zhao J, Ren L. Super-repellent photodynamic bactericidal hybrid membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Gaxela NN, Nomngongo PN, Moutloali RM. Effect of the Zwitterion, p(MAO-DMPA), on the Internal Structure, Fouling Characteristics, and Dye Rejection Mechanism of PVDF Membranes. MEMBRANES 2020; 10:membranes10110323. [PMID: 33142710 PMCID: PMC7693441 DOI: 10.3390/membranes10110323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes. The effect of the zwitterionization content on membrane performance indicators such as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the membranes showed that the increase in the zwitterion amount led to a general decrease in pore size with a concomitant increase in the number of membrane surface pores. The surface roughness was not particularly affected by the amount of the additive; however, the internal structure was greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the other hand, the wettability of the membranes initially decreased with increasing content to a certain point and then increased as the membrane homogeneity changed at higher zwitterion percentages. Flux and fouling properties were enhanced through the addition of zwitterion compared to the pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum content whereby membrane homogeneity was compromised, leading to poor performance at its higher loading.
Collapse
Affiliation(s)
- Nelisa Ncumisa Gaxela
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/NRF SARChI: Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Richard Motlhaletsi Moutloali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; (N.N.G.); (P.N.N.)
- DSI/Mintek Nanotechnology Innovation Centre, Water Research Node P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
14
|
Peng S, Chen Y, Jin X, Lu W, Gou M, Wei X, Xie J. Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Development and Characterization of Membranes with PVA Containing Silver Particles: A Study of the Addition and Stability. Polymers (Basel) 2020; 12:polym12091937. [PMID: 32867143 PMCID: PMC7565032 DOI: 10.3390/polym12091937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Developing technologies for the reduction of biofouling and enhancement of membrane functionality and durability are challenging but critical for the advancement of water purification processes. Silver (Ag) is often used in the process of purification due to its anti-fouling properties; however, the leaching of this metal from a filtration membrane significantly reduces its effectiveness. Our study was designed to integrate the positive characteristics of poly vinyl alcohol (PVA) with the controlled incorporation of nano-scale silver ions across the membrane. This approach was designed with three goals in mind: (1) to improve antifouling activity; (2) to prevent leaching of the metal; and (3) to extend the durability of the functionalized membrane. The fabrication method we used was a modified version of manual coating in combination with sufficient pressure to ensure impregnation and proper blending of PVA with cellulose acetate. We then used the spin coater to enhance the cross-linking reaction, which improved membrane durability. Our results indicate that PVA acts as a reducing agent of Ag+ to Ag0 using X-ray photoelectron spectroscopy analysis and demonstrate that the metal retention was increased by more than 90% using PVA in combination with ultraviolet-photo-irradiated Ag+ reduced to Ag0. The Ag+ ions have sp hybrid orbitals, which accept lone pairs of electrons from a hydroxyl oxygen atom, and the covalent binding of silver to the hydroxyl groups of PVA enhanced retention. In fact, membranes with reduced Ag displayed a more effective attachment of Ag and a more efficient eradication of E. coli growth. Compared to pristine membranes, bovine serum albumin (BSA) flux increased by 8% after the initial addition of Ag and by 17% following ultraviolet irradiation and reduction of Ag, whereas BSA rejection increased by 10% and 11%, respectively. The implementation of this hybrid method for modifying commercial membranes could lead to significant savings due to increased metal retention and membrane effectiveness. These enhancements would ultimately increase the membrane’s longevity and reduce the cost/benefit ratio.
Collapse
|
16
|
Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG. Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118212] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Pan F, Zhang Y. A new strategy to simultaneously improve the permeability and antifouling properties of EVAL membranes via surface segregation of macrocyclic supra-amphiphiles. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Design and Construction of Ag@MOFs Immobilized PVDF Ultrafiltration Membranes with Anti-bacterial and Antifouling Properties. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/5456707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, Ag nanoparticle loading Mg(C10H16O4)2(H2O)2(Ag@MOF) composite material was successfully prepared by a facile strategy, and subsequently Ag-MOFs were used to modify the PVDF ultrafiltration membranes to obtain fouling resistance and higher water flux. The as-prepared PVDF membranes were systematically characterized by a series of analytical techniques such as Water Contact Angle (CA), Scanning Electron Microscopy (SEM), and SEM-mapping. Furthermore, the performance of membranes on antibacterial properties, the pure water flux, and fouling resistance was investigated in detail. Those results showed that the membrane modified by Ag@MOFs containing 30% Ag had the higher anti-bacterial performance, and the clear zone could be increased to 10 mm in comparison with that of blank membrane. Meanwhile, the pure water flux of Ag@MOF membranes increased from 85 L/m2 h to 157 L/m2 h, and the maximum membrane flux recovery rate (FRR) of 95.7% was obtained using SA as pollutant, which is attributed to the introduction of Ag@MOF composite material. Based on the above experimental results, it can be found that the Ag-MOF membranes displayed the excellent antibacterial activity, high water flux, and fine fouling resistance. This work provides a facile strategy to fabricate the Ag@MOFs modified membranes, and it shows an excellent anti-bacterial and water flux performance.
Collapse
|
19
|
Effect of Temperature Exposition of Casting Solution on Properties of Polysulfone Hollow Fiber Membranes. FIBERS 2019. [DOI: 10.3390/fib7120110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It was shown for the first time that the conditions of thermal treatment of the casting solution significantly affect the morphology and transport properties of porous, flat, and hollow fiber polysulfone (PSf) membranes. It is ascertained that the main solution components that are subjected to thermo-oxidative destruction are the pore-forming agent polyethylene glycol (PEG) and solvent N-methyl-2-pyrrolidone (NMP). It is proved that hydroxyl groups of PEG actively react in the process of the casting solution thermo-oxidative destruction. It is shown that despite the chemical conversion taking place in the casting solution, their stability towards coagulation virtually does not change. The differences in the membrane morphology associated with the increase of thermal treatment time at 120 °C are not connected to the thermodynamic properties of the casting solutions, but with the kinetics of the phase separation. It is revealed that the change of morphology and transport properties of membranes is connected with the increase of the casting solution viscosity. The rise of solution viscosity resulted in the slowdown of the phase separation and formation of a more densely packed membrane structure with less pronounced macropores. It is determined experimentally that with the increase of casting solution thermal treatment time, the membrane selective layer thickness increases. This leads to the decrease of gas permeance and the rise of the He/CO2 selectivity for flat and hollow fiber membranes. In the case of hollow fibers, the fall of gas permeance is also connected with the appearance of the sponge-like layer at the outer surface of membranes. The increase of selectivity and decline of permeance indicates the reduction of selective layer pore size and its densification, which agrees well with the calculation results of the average membrane density. The results obtained are relevant to any polymeric casting solution containing NMP and/or PEG and treated at temperatures above 60 °C.
Collapse
|
20
|
Hou S, Wang X, Dong X, Zheng J, Li S. Renewable antibacterial and antifouling polysulfone membranes incorporating a PEO-grafted amphiphilic polymer and N-chloramine functional groups. J Colloid Interface Sci 2019; 554:658-667. [DOI: 10.1016/j.jcis.2019.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
|
21
|
Xu A, Wang W, Azhar U, Wang X, Guo L, Huo Z, Zhang S. Synthesis and characterization of hydrophilicity-controlled poly(arylene ether sulfone) copolymers with phenolphthalein-based carboxylic acid groups for separation membrane applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1649601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| | - Wenmin Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xianting Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Lingmin Guo
- Marine Chemical Research Institute Co., Ltd., Qingdao, China
| | - Zhiyuan Huo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- Shandong Engineering Research Center for Fluorinated Material, University of Jinan, Jinan, China
| |
Collapse
|
22
|
Le HQ, Sowe A, Chen SS, Duong CC, Ray SS, Cao TND, Nguyen NC. Exploring Nanosilver-Coated Hollow Fiber Microfiltration to Mitigate Biofouling for High Loading Membrane Bioreactor. Molecules 2019; 24:E2345. [PMID: 31242707 PMCID: PMC6631756 DOI: 10.3390/molecules24122345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
For the first time, a nanosilver-coated hollow fiber microfiltration (MF) was fabricated by a simple chemical reduction method, then tested for membrane biofouling mitigation study under extreme high mixed liquor suspended solid (MLSS) concentration for long term. This study presents a simple and novel technique to modify a commercially available MF membrane using silver nanoparticles (AgNPs) followed by an investigation of mitigating membrane biofouling potentials using this modified membrane to compare with an unmodified membrane for 60-day operation period. The modified membranes showed that AgNPs was attached to the MF-membrane successfully with a high density of 119.85 ± 5.42 mg/m2. After long-term testing of 60 days in membrane bioreactor with a MLSS concentration of 11,000 mg/L, specific flux of the AgNPs coated MF (AgNPs-MF) decreased 59.7%, while the specific flux of the unmodified membrane dropped 81.8%, resulted from the increase of transmembrane vacuum pressure for the AgNPs-MF was lower than that of the unmodified one. The resistance-in-series model was used to calculate the resistance coefficients of membrane modules, and the result showed that the cake layer resistance coefficient of the unmodified membrane was 2.7 times higher than that of the AgNPs-MF after the 60-day operation, confirming that AgNPs displayed great antimicrobial properties to mitigate membrane biofouling under such high MLSS.
Collapse
Affiliation(s)
- Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
- Faculty of Environment and Natural Resources, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City 66000, Vietnam;
| | - Alieu Sowe
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
| | - Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City 700000, Vietnam
| | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
| | - Thanh Ngoc-Dan Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd. Taipei 10608, Taiwan; (H.Q.L.); (A.S.); (C.C.D.); (S.S.R.); (T.N.-D.C.)
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Cong Nguyen
- Faculty of Environment and Natural Resources, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City 66000, Vietnam;
| |
Collapse
|
23
|
Ariadi Lusiana R, A. Sangkota VD, Andre Sasongko N, Juari Santosa S, Dzarfan Othman MH. Chitosan based modified polymers designed to enhance membrane permeation capability. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/509/1/012122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Wang F, He M, Gao K, Su Y, Zhang R, Liu Y, Shen J, Jiang Z, Kasher R. Constructing membrane surface with synergistic passive antifouling and active antibacterial strategies through organic-inorganic composite modifier. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Yavuz FNS, Sengur Tasdemir R, Turken T, Urper GM, Koyuncu I. Improvement of anti-biofouling properties of hollow fiber membranes with bismuth-BAL chelates (BisBAL). ENVIRONMENTAL TECHNOLOGY 2019; 40:19-28. [PMID: 28880121 DOI: 10.1080/09593330.2017.1377292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
In this study, hollow fiber membranes with and without bismuth dimercaptopropanol (Bis-BAL) additive were fabricated. Membranes were characterized in terms of permeability, surface properties, anti-biofouling and antibacterial properties. Membranes were operated in a lab-scale submerged membrane bioreactor (MBR). During the MBR operation, flux, chemical oxygen demand, volatile suspended solids and suspended solids were calculated for 30 days. Results showed that extracellular polymeric substance and soluble microbial product amounts were decreased in BisBAL-containing membranes. BisBAL-added membranes had the ability to inhibit the growth of Escherichia coli. BisBAL as an additive for membranes was found to be an effective, cheap alternative for enhancing anti-biofouling properties of the membranes.
Collapse
Affiliation(s)
- F N S Yavuz
- a Department of Environmental Engineering , Istanbul Technical University , Istanbul , Turkey
- b National Research Center on Membrane Technologies , Istanbul Technical University , Istanbul , Turkey
| | - R Sengur Tasdemir
- b National Research Center on Membrane Technologies , Istanbul Technical University , Istanbul , Turkey
- c Department of Nanoscience and Nanoengineering , Istanbul Technical University , Istanbul , Turkey
| | - T Turken
- a Department of Environmental Engineering , Istanbul Technical University , Istanbul , Turkey
- b National Research Center on Membrane Technologies , Istanbul Technical University , Istanbul , Turkey
| | - G M Urper
- a Department of Environmental Engineering , Istanbul Technical University , Istanbul , Turkey
- b National Research Center on Membrane Technologies , Istanbul Technical University , Istanbul , Turkey
| | - I Koyuncu
- a Department of Environmental Engineering , Istanbul Technical University , Istanbul , Turkey
- b National Research Center on Membrane Technologies , Istanbul Technical University , Istanbul , Turkey
- c Department of Nanoscience and Nanoengineering , Istanbul Technical University , Istanbul , Turkey
| |
Collapse
|
26
|
Sathish Kumar R, Arthanareeswaran G. Nano-curcumin incorporated polyethersulfone membranes for enhanced anti-biofouling in treatment of sewage plant effluent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:258-269. [DOI: 10.1016/j.msec.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
|
27
|
Díez B, Amariei G, Rosal R. Electrospun Composite Membranes for Fouling and Biofouling Control. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta Díez
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
28
|
Liu Z, Mi Z, Jin S, Wang C, Wang D, Zhao X, Zhou H, Chen C. The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Rana S, Nazar U, Ali J, Ali QUA, Ahmad NM, Sarwar F, Waseem H, Jamil SUU. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes. ENVIRONMENTAL TECHNOLOGY 2018; 39:1413-1421. [PMID: 28504053 DOI: 10.1080/09593330.2017.1330900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (106 CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.
Collapse
Affiliation(s)
- Sidra Rana
- a Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering , National University of Sciences and Technology , Islamabad , Pakistan
| | - Umair Nazar
- b Department of Earth and Environmental Sciences , Bahria University , Islamabad , Pakistan
| | - Jafar Ali
- c Laboratory of Environmental Nanomaterials, Research Centre for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Qurat Ul Ain Ali
- b Department of Earth and Environmental Sciences , Bahria University , Islamabad , Pakistan
| | - Nasir M Ahmad
- d School of Chemical and Materials Engineering , National University of Science and Technology , Islamabad , Pakistan
| | - Fiza Sarwar
- b Department of Earth and Environmental Sciences , Bahria University , Islamabad , Pakistan
| | - Hassan Waseem
- e Department of Civil and Environmental Engineering , Michigan State University , East Lansing , MI , USA
| | - Syed Umair Ullah Jamil
- b Department of Earth and Environmental Sciences , Bahria University , Islamabad , Pakistan
| |
Collapse
|
30
|
Lin HT, Venault A, Huang HQ, Lee KR, Chang Y. Introducing a PEGylated diblock copolymer into PVDF hollow-fibers for reducing their fouling propensity. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. MEMBRANES 2018; 8:E18. [PMID: 29614045 PMCID: PMC6027241 DOI: 10.3390/membranes8020018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.
Collapse
Affiliation(s)
- Claudia Ursino
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Roberto Castro-Muñoz
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Albeirutty
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
- Mechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Alberto Figoli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| |
Collapse
|
32
|
Cerium oxide nanoparticles embedded thin-film nanocomposite nanofiltration membrane for water treatment. Sci Rep 2018; 8:4976. [PMID: 29563519 PMCID: PMC5862962 DOI: 10.1038/s41598-018-23188-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 03/07/2018] [Indexed: 11/20/2022] Open
Abstract
In this paper, a new approach to synthesize thin-film nanocomposite membranes using cerium oxide (CeO2) nanoparticles (NPs) by pre-seeding interfacial polymerization method was reported. Prepared membranes were examined using contact angle, molecular weight cut-off (MWCO), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and scanning probe microscopy (SPM) to observe its hydrophilicity, pore size, morphology, surface chemistry, and roughness, respectively. Surface charges of the prepared membranes were also qualitatively calculated with the help of contact angle measurements by using the Grahame equation. MWCO studies revealed >90% polyethylene glycol (M.W. 1500 Da) rejection, which was fitted in the range of nanofiltration. By increasing the concentration of CeO2 NPs, flux (33.12 to 41.28 L/m2h), hydrophilicity (77.3 to 51.1°) and surface charges (−7.58 to −13.39 mC/m2) of the membranes was successfully improved, and also showed the high (>90%) salt rejections. The CeO2 embedded membrane was also found out in successful prevention from the attack of bacteria (Escherichia coli) compared to pure polyamide (PA) membrane and confirmed through SEM and viable cell count method. The membrane performances were also evaluated using seawater for fouling study and found that CeO2 embedded surface increased the rejection of hydrophobic contaminants, and notably reduced the fouling.
Collapse
|
33
|
Gao K, Su Y, Zhou L, He M, Zhang R, Liu Y, Jiang Z. Creation of active-passive integrated mechanisms on membrane surfaces for superior antifouling and antibacterial properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2018; 45:5888-5924. [PMID: 27494001 DOI: 10.1039/c5cs00579e] [Citation(s) in RCA: 629] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Collapse
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Mingrui He
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
35
|
Lakhotia SR, Mukhopadhyay M, Kumari P. Surface-Modified Nanocomposite Membranes. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1386681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sonia R. Lakhotia
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat, India
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Premlata Kumari
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
36
|
|
37
|
Amouamouha M, Badalians Gholikandi G. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study. MEMBRANES 2017; 7:membranes7040064. [PMID: 29137142 PMCID: PMC5746823 DOI: 10.3390/membranes7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.
Collapse
Affiliation(s)
- Maryam Amouamouha
- Faculty of Civil, Water and Environmental Engineering, A.C., Shahid Beheshti University, Tehran 1658953571, Iran.
| | - Gagik Badalians Gholikandi
- Faculty of Civil, Water and Environmental Engineering, A.C., Shahid Beheshti University, Tehran 1658953571, Iran.
| |
Collapse
|
38
|
Hou S, Xing J, Dong X, Zheng J, Li S. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups. J Colloid Interface Sci 2017; 500:333-340. [DOI: 10.1016/j.jcis.2017.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
|
39
|
Hou S, Dong X, Zhu J, Zheng J, Bi W, Li S, Zhang S. Preparation and characterization of an antibacterial ultrafiltration membrane with N-chloramine functional groups. J Colloid Interface Sci 2017; 496:391-400. [DOI: 10.1016/j.jcis.2017.01.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
40
|
Vanangamudi A, Dumée LF, Duke MC, Yang X. Nanofiber Composite Membrane with Intrinsic Janus Surface for Reversed-Protein-Fouling Ultrafiltration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18328-18337. [PMID: 28485956 DOI: 10.1021/acsami.7b02382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Janus nanofiber based composite ultrafiltration (UF) membranes were fabricated via a two-step method, i.e., consecutive electrospinning of hydrophilic nylon-6,6/chitosan nanofiber blend and conventional casting of hydrophobic poly(vinylidene difluoride) (PVDF) dope solution. The as-developed PVDF/nylon-6,6/chitosan membranes were investigated for its morphology using Scanning Electron Microscopy (SEM) by which 18 wt % PVDF was chosen as the optimum base polymer concentration due to optimal degree of integration of cast and nanofiber layers. This membrane was benchmarked against the pure PVDF and PVDF/nylon-6,6 membranes in terms of surface properties, permeability, and its ability to reverse protein fouling. The improved hydrophilicity of the PVDF/nylon-6,6/chitosan membrane was revealed from the 72% reduction in the initial water contact angle compared to the pure PVDF benchmark, due to the incorporation of intrinsic hydrophilic hydroxyl and amine functional groups on the membrane surface confirmed by FTIR. The integration of the nanofiber and cast layers has led to altered pore arrangements offering about 93% rejection of bovine serum albumin (BSA) proteins with a permeance of 393 L·m-2·h-1·bar-1 in cross-flow filtration experiments; while the PVDF benchmark only had a BSA rejection of 67% and a permeance of 288 L·m-2·h-1·bar-1. The PVDF/nylon-6,6/chitosan membrane exhibited high fouling propensity with 2.2 times higher reversible fouling and 78% decrease in the irreversible fouling compared to the PVDF benchmark after 4 h of filtration with BSA foulants.
Collapse
Affiliation(s)
- Anbharasi Vanangamudi
- Institute for Sustainability and Innovation (ISI), College of Engineering and Science, Victoria University , Melbourne, Victoria 8001, Australia
- Deakin University , Waurn Ponds Institute for Frontier Materials, Burwood, Victoria 3216, Australia
| | - Ludovic F Dumée
- Deakin University , Waurn Ponds Institute for Frontier Materials, Burwood, Victoria 3216, Australia
| | - Mikel C Duke
- Institute for Sustainability and Innovation (ISI), College of Engineering and Science, Victoria University , Melbourne, Victoria 8001, Australia
| | - Xing Yang
- Institute for Sustainability and Innovation (ISI), College of Engineering and Science, Victoria University , Melbourne, Victoria 8001, Australia
| |
Collapse
|
41
|
Díez B, Roldán N, Martín A, Sotto A, Perdigón-Melón JA, Arsuaga J, Rosal R. Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Prince JA, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo KVK, Singh G. Ultra-wetting graphene-based PES ultrafiltration membrane - A novel approach for successful oil-water separation. WATER RESEARCH 2016; 103:311-318. [PMID: 27475120 DOI: 10.1016/j.watres.2016.07.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Oil pollution in water and separation of oil from water are receiving much attention in recent years due to the growing environmental concerns. Membrane technology is one of the emerging solutions for oil-water separation. However, there is a limitation in using polymeric membrane for oil water separation due to its surface properties (wetting behaviour), thermal and mechanical properties. Here, we have shown a simple method to increase the hydrophilicity of the polyethersulfone (PES) hollow fibre ultrafiltration (UF) membrane by using carboxyl, hydroxyl and amine modified graphene attached poly acrylonitrile-co-maleimide (G-PANCMI). The prepared membranes were characterized for its morphology, water and oil contact angle, liquid entry pressure of oil (LEPoil), water permeability and finally subjected to a continuous 8 h filtration test of oil emulsion in water. The experimental data indicates that the G-PANCMI play an important role in enhancing the hydrophilicity, permeability and selectivity of the PES membrane. The water contact angle (CAw) of the PES membrane is reduced from 63.7 ± 3.8° to 22.6 ± 2.5° which is 64.5% reduction while, the oil contact angle was increased from 43.6 ± 3.5° to 112.5 ± 3.2° which is 158% higher compared to that of the PES membrane. Similarly, the LEPoil increased 350% from 50 ± 10 kPa of the control PES membrane to 175 ± 25 kPa of PES-G-PANCMI membrane. More importantly, the water permeability increased by 43% with >99% selectivity. Based on our findings we believe that the development of PES-G-PANCMI membrane will open up a solution for successful oil-water separation.
Collapse
Affiliation(s)
- J A Prince
- Environmental & Water Technology, Centre of Innovation, Ngee Ann Polytechnic, Singapore, 599489, Singapore; School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - S Bhuvana
- Environmental & Water Technology, Centre of Innovation, Ngee Ann Polytechnic, Singapore, 599489, Singapore
| | - V Anbharasi
- Environmental & Water Technology, Centre of Innovation, Ngee Ann Polytechnic, Singapore, 599489, Singapore
| | - N Ayyanar
- Environmental & Water Technology, Centre of Innovation, Ngee Ann Polytechnic, Singapore, 599489, Singapore
| | - K V K Boodhoo
- School of Chemical Engineering and Advanced Materials, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - G Singh
- Environmental & Water Technology, Centre of Innovation, Ngee Ann Polytechnic, Singapore, 599489, Singapore
| |
Collapse
|
44
|
Zhang DY, Liu J, Shi YS, Wang Y, Liu HF, Hu QL, Su L, Zhu J. Antifouling polyimide membrane with surface-bound silver particles. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Jin J, Zhang K, Du X, Yang J. Synthesis of polydopamine-mediated PP hollow fibrous membranes with good hydrophilicity and antifouling properties. J Appl Polym Sci 2016. [DOI: 10.1002/app.44430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinbo Jin
- Guizhou Materials Industry Technology Research Institute; Guiyang 550014 China
| | - Kaizhou Zhang
- Guizhou Materials Industry Technology Research Institute; Guiyang 550014 China
| | - Xilan Du
- Guizhou Materials Industry Technology Research Institute; Guiyang 550014 China
| | - Jingkui Yang
- Guizhou Materials Industry Technology Research Institute; Guiyang 550014 China
| |
Collapse
|
46
|
Venault A, Ye CC, Lin YC, Tsai CW, Jhong JF, Ruaan RC, Higuchi A, Chinnathambi A, Ho HT, Chang Y. Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomater 2016; 40:130-141. [PMID: 26826530 DOI: 10.1016/j.actbio.2016.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED The present study serves three main functions. First, it presents a novel random copolymer, made of octadecyl acrylate hydrophobic blocks and 2-(dimethylamino)ethyl methacrylate hydrophilic groups, and it zwitterionic form. Second, random copolymer and zwitterionic random copolymer, OmDn and Z-OmDn, are used to modify polypropylene membranes by evaporation coating. Our investigations unveil that this method leads to sufficiently stable self-assembling provided a minimum number of hydrophobic repeat units of 77, which also corresponds to a hydrophobic degree of 74%. Third, antifouling and hemocompatible properties of membranes are thoroughly investigated using all types of blood cells separately, as well as challenging membranes against whole blood in static and dynamic conditions. Membranes modified with zwitterionic copolymer containing 26% of zwitterionic groups are shown to be highly antifouling and hemocompatible, for a coating density as low as 0.2mg/cm(2). Their application in a specially designed blood filtration module enabled to almost totally inhibit blood cells interactions with membrane material, as well as to importantly reduce platelet activation in the permeate (2.5-fold reduction). STATEMENT OF SIGNIFICANCE The design of new zwitterionic copolymer material is proposed and demonstrated in this study. It was showed that hydrophobicoctadecyl acrylate segments can be introduced in the zwitterioniccarboxybetaine polymer chain with a well-controlled random sequence. Stable, efficient, and effective surface zwitterionization of hydrophobic polypropylene are obtained via grafting onto approach by evaporation-induced self-assembling coating. In the perspective of potential application, hemocompatible blood filtration was demonstrated with the excellent results of non-activated platelets obtained. SUMMARY OF IMPACTS DESIGN New zwitterionicmaterial, amphiphatic carboxybetaine copolymers. DEVELOPMENT Evaporation-induced self-assembling grafting. APPLICATION Hemocompatible blood filtration.
Collapse
|
47
|
Jo YJ, Choi EY, Choi NW, Kim CK. Antibacterial and Hydrophilic Characteristics of Poly(ether sulfone) Composite Membranes Containing Zinc Oxide Nanoparticles Grafted with Hydrophilic Polymers. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01510] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y. J. Jo
- School of Chemical Engineering & Materials Science, Chung-Ang University, 221, Huksuk-Dong, Dongjak-Gu, Seoul 156-756, Korea
| | - E. Y. Choi
- School of Chemical Engineering & Materials Science, Chung-Ang University, 221, Huksuk-Dong, Dongjak-Gu, Seoul 156-756, Korea
| | - N. W. Choi
- School of Chemical Engineering & Materials Science, Chung-Ang University, 221, Huksuk-Dong, Dongjak-Gu, Seoul 156-756, Korea
| | - C. K. Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, 221, Huksuk-Dong, Dongjak-Gu, Seoul 156-756, Korea
| |
Collapse
|
48
|
Khulbe KC, Matsuura T. Recent progress in polymeric hollow-fibre membrane preparation and applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s0958-2118(16)30149-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Jo YJ, Choi EY, Kim SW, Kim C. Fabrication and characterization of a novel polyethersulfone/aminated polyethersulfone ultrafiltration membrane assembled with zinc oxide nanoparticles. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Prince J, Bhuvana S, Anbharasi V, Ayyanar N, Boodhoo K, Singh G. Ultra-wetting graphene-based membrane. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|