1
|
Gandhi CD, Sappidi P. Molecular Understanding of Polyaniline in Imidazolium-Based Ionic Liquid and Water Mixtures: A Molecular Dynamics Simulation Study. Chemphyschem 2025:e2500068. [PMID: 40343399 DOI: 10.1002/cphc.202500068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Monitoring interactive influence of cations and anions is inevitable for the development of conductive membranes using polyaniline (PANI). Herein, emeraldine base (EB) and emeraldine salt (ES) forms of PANI structural properties are understood in different imidazolium ionic liquid-water mixtures using molecular dynamics (MD) simulations. The conformational and structural properties of PANI using the combinations of two cations (1-ethyl-3-methylimidazolium [EMIM]+ and 1-butyl-3-methylimidazolium [BMIM]+) and five anions (acetate [ACT]-, formate [FRM]-, trifluoromethyl-sulfonate [TFS]-, benzoate [BEZ]-, and nitrate [NO3]-) are calculated. Based on various structural properties, it is understood that the anions play a dominant interaction with EB or ES compared to cations. Interestingly, it is observed that the radius of gyration shows an increase with [BMIM]+ and a decrease with [EMIM]+ with respect to the increasing size of the anion. There is a decrease in van der Waals interaction for ES due to the elongation of the chain when compared to EB. The excess molar volume shows more solvation behavior for ES than EB. Nevertheless, an increase in anion size leads to the favorable solvation of EB and ES. These observations help in the selection of the best combination of ILs for the sustainable designing of polymer membranes and their applications.
Collapse
Affiliation(s)
| | - Praveenkumar Sappidi
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| |
Collapse
|
2
|
Gandhi CD, Sappidi P. Molecular Dynamics Simulation Study on the Structural and Thermodynamic Analysis of Oxidized and Unoxidized Forms of Polyaniline. J Phys Chem B 2024; 128:10735-10748. [PMID: 39440927 DOI: 10.1021/acs.jpcb.4c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The conducting polymer polyaniline (PANI) has shown significant interest for the development of electrified membranes (EMs) with superior antifouling characteristics. However, the blending and doping of PANI with other polymers and nanomaterials highly influence the properties of the membrane surface. PANI exists in two forms: oxidized, known as emeraldine salt (ES), and unoxidized, referred to as emeraldine base (EB). Therefore, understanding the different forms of PANI and the variations between the oxidized and unoxidized forms along the length of the polymer chain is intriguing. In this paper, we present the design of a novel copolymer consisting of EB and ES monomers with varying charge densities and different segmental arrangements. We present various intra- and intermolecular structural properties of the PANI chains using all-atom molecular dynamics (MD) simulations. Herein, we present a detailed conformational free energy analysis to understand the conformational transitions of the PANI chains. Our results show increased radius of gyration (Rg) values with increased charge density. Furthermore, we also present the H-bonding, free energy analysis, reduced density gradient (RDG), and solvent-accessible surface area (SASA) values for the observed conformational transitions of PANI. Therefore, these observations are crucial in understanding the complex behavior of chains for designing target-specific polymeric materials.
Collapse
Affiliation(s)
| | - Praveenkumar Sappidi
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
3
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
4
|
Mushtaq A, Cho H, Batool A, Fazal MT, Aslam M, Rehman MSU, Lam JCH, Han JI. Optimizing electroactive membrane performance for microalgae harvesting: A response surface methodology study of membrane formulation and operating parameters for electro filtration. CHEMOSPHERE 2024; 349:140967. [PMID: 38122939 DOI: 10.1016/j.chemosphere.2023.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Developing electroactive membranes for filtration has gained importance owing to their effectiveness in mitigating the long-lasting issue of fouling faced with traditional membranes. Here, we developed thin electroactive metallic films on to stainless steel mesh (SSM) using electrodeposition method and evaluated their performance for microalgae harvesting via electro filtration. The effect of electrodeposition parameters on membrane formulation and operating parameters for electro filtration, both in continuous and intermittent modes, were evaluated and optimum values were obtained using response surface methodology (RSM). The optimal combination of electrodeposition parameters is 1000 μA/cm2 and 5 min for deposition current density and time, respectively. Whereas the electric field strength of 20 V/mm with an application time of 1 min is suggested to be the optimal combination of electro filtration parameters for maximized flux recovery and corresponding experimental rejection efficiency of more than 90%. Overall, this research contributes to a better understanding of the parameters governing electro-filtration and offers insights for improving the performance of membrane-based microalgae harvesting systems.
Collapse
Affiliation(s)
- Azeem Mushtaq
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hoon Cho
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Asma Batool
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong
| | - Muhammad Tahir Fazal
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Gandhi CD, Sappidi P. Structure and Conformational Properties of a Short Polyaniline Chain in a Mixture of Water and Ionic Liquid [1-Ethyl-3-methyl-imidazolium][bistriflimide] Investigated by All-Atom Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8019-8031. [PMID: 37683285 DOI: 10.1021/acs.jpcb.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Development of antifouling membranes for water treatment using conducting polymers and their composites is a fundamental strategy to mitigate the fouling. This manuscript presents an all-atom molecular dynamics simulations of a conducting polymer, polyaniline (PANI), immersed in an ionic liquids (ILs)-water mixtures. We have considered the ionic liquid 1-ethyl-3-methyl imidazolium bistriflimide, [EMIM]+[BIS]-. The two forms of polyaniline, emeraldine base (EB) and emeraldine salt (ES), were considered. Various intra- and intermolecular structural properties of PANI were analyzed, such as polymer chain radius of gyration Rg, radial distribution functions, and torsional angle distributions. The Rg of EB shows an increase, while the Rg of ES shows a decrease with an increase in the IL concentration. The backbone torsional angle probability distributions show a significant trans state for EB, while a combination of trans and gauche states was observed for ES. Similar supportive distributions were seen in the backbone angular distributions. Radial distribution functions between the carbon atoms at ortho and meta positions of the benzene ring on both ES and EB, as well as the amine group attached between two benzene rings, show an enhanced interaction with the ionic liquid compared to water. Anions have a dominant interaction with the polymer chain when compared to cations. The solvent accessible surface area (SASA) calculations were in accordance with the EB and ES structural properties. The SASA values are more favorable for ES than for EB. H-bond analysis shows a decrease in the number of H-bonds with water as the IL concentration increases.
Collapse
Affiliation(s)
| | - Praveenkumar Sappidi
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
6
|
Li X, Lu S, Zhang G. Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130524. [PMID: 36502722 DOI: 10.1016/j.jhazmat.2022.130524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Considering the growing need in decentralized water treatment, the application of electrocatalytic processes (EP) to achieve organic wastewater purification will be dominant in the near future due to high efficiency, small reactor assembly as well as the flexibility of operation and management. The catalytic performance of electrode materials determines the development of this technology. Among them, the unique three-dimensional (3D) structure electrode shows better performance than two-dimensional (2D) electrode in increasing mass transfer, enhancing adsorption and exposing more active sites. Hence, this review starts with the introduction of definition, classification, advantages and disadvantages of 3D electrode materials. Then a critical discussion on the design and construction of 3D electrode materials for organic wastewater purification application is provided. Next, the removal mechanism of organic pollutants on the surface of 3D electrode, the role of 3D structure, the design of reactor with 3D electrode, the conversion and toxicity of degradation products, electrode energy efficiency, stability and cost, are comprehensively reviewed. At last, current challenges and future perspectives for the development of 3D electrode materials are addressed. We deem that this review will provide a valuable insight into the design and application of 3D electrodes in environmental water purification.
Collapse
Affiliation(s)
- Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Shang C, Zhang T, Lee JY, Zhang S. Salt rejection and scaling on non-conductive membranes in direct- and alternating-current electric fields. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
8
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
9
|
Rastgar M, Fleck J, Graessner R, Taghipour A, Sadrzadeh M. Smart harvesting and in-situ application of piezoelectricity in membrane filtration systems. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
11
|
Liu B, Xia Q, Zhao Y, Gao G. Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10997-11005. [PMID: 35860842 DOI: 10.1021/acs.est.2c03900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane fouling compromises the benefits of membrane technology, leading to its performance deterioration and incremental cost. Coupling with an electric field has been attractive but is limited by the electrical dependence of the electrophoresis (EP) mechanism and undesired faradic reactions. This study reports a universal dielectrophoresis-based (DEP) membrane antifouling strategy for electronegative, electropositive, and neutral colloidal foulants, which depends on the particle polarizability rather than its charge. The porous Ni@PVDF model electroconductive membrane was fabricated to construct a nonuniform electric field inducing DEP, while applying a low voltage avoided side electrochemical reactions. For electronegative SiO2(-) and electropositive Al2O3(+) particles with a lower relative permittivity than the medium water (78), the membrane permeability all remarkably increased by 90.1% under AC/DC (±1.0 V) fields. By contrast, serious membrane fouling occurred for the BaTiO3 colloids with a higher relative permittivity (∼2000). Notably, the permittivity of nearly all colloids in wastewater treatment is much less than that of water, which makes the dielectrophoresis-based antifouling strategy universal. The theoretical simulation systematically analyzed the forces on particles including DEP, EP, and others, indicating that the formed protected area on the membrane pore wall by DEP forces prevented the irreversible membrane blockage of colloids and facilitated loose cake layer formation for alleviating membrane fouling. In brief, this work reported a hopeful concept for dielectrophoresis-based membrane antifouling and verified its antifouling mechanism.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiancheng Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Zhao Y, Gu Y, Liu B, Yan Y, Shan C, Guo J, Zhang S, Vecitis CD, Gao G. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 2022; 608:69-73. [PMID: 35922500 DOI: 10.1038/s41586-022-04942-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
Pressure-driven membranes is a widely used separation technology in a range of industries, such as water purification, bioprocessing, food processing and chemical production1,2. Despite their numerous advantages, such as modular design and minimal footprint, inevitable membrane fouling is the key challenge in most practical applications3. Fouling limits membrane performance by reducing permeate flux or increasing pressure requirements, which results in higher energetic operation and maintenance costs4-7. Here we report a hydraulic-pressure-responsive membrane (PiezoMem) to transform pressure pulses into electroactive responses for in situ self-cleaning. A transient hydraulic pressure fluctuation across the membrane results in generation of current pulses and rapid voltage oscillations (peak, +5.0/-3.2 V) capable of foulant degradation and repulsion without the need for supplementary chemical cleaning agents, secondary waste disposal or further external stimuli3,8-13. PiezoMem showed broad-spectrum antifouling action towards a range of membrane foulants, including organic molecules, oil droplets, proteins, bacteria and inorganic colloids, through reactive oxygen species (ROS) production and dielectrophoretic repulsion.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yuna Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yujie Yan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, China
| | - Jian Guo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Shantao Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chad D Vecitis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China. .,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Tang J, Zhang C, Quan B, Tang Y, Zhang Y, Su C, Zhao G. Electrocoagulation coupled with conductive ceramic membrane filtration for wastewater treatment: Toward membrane modification, characterization, and application. WATER RESEARCH 2022; 220:118612. [PMID: 35613483 DOI: 10.1016/j.watres.2022.118612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane separation is an effective solution for pollutant removal, however, achieving high permeability and antifouling ability remains a pressing challenge for its widespread application. In this study, a novel method of coating flat ceramic membranes (CMs) with a conductive film (Sb-SnO2) was developed to enhance the filtration and antifouling performance of CMs when the membrane filtration was coupled with electrocoagulation. After comparing the parameters, including the film sheet resistance and pure water flux, with those of other coating methods (i.e., gel coating and immersion hydrolysis), a well-fixed conductive coating with optimal permeability and stability was generated using spray pyrolysis with a substrate ceramic membrane surface temperature of 475 °C, precursor concentration of 0.5 M (calculate as SnO2), and spraying amount of 50 mL (120 cm2), during membrane modification. Batch filtration experiments using wastewater from the mechanical industry demonstrated that the conductive ceramic membrane (CCM) cathode integrated with electrocoagulation at an electric field of 2.8 V/cm (3.0 mA/cm2) achieved permeate fluxes that were 0.34, 0.70, 0.75 and 1.41 times higher than those of sole CM separation after four cycles. Moreover, the membrane separation process was dominated by the standard pore-blocking model, and its correlation coefficient decreased with the exertion of the electric field, indicating that membrane filtration fouling changed from irreversible to reversible. This CCM combined with electrocoagulation exhibited significant potential for alleviating membrane fouling and widespread application, and could act as a promising technology for industrial wastewater treatment.
Collapse
Affiliation(s)
- Jiawei Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China; National Institute of Low Carbon and Clean Energy, Beijing 102211, China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; Zhongguancun Summit Enviro-Protection Co., Ltd, Beijing 100070, China.
| | - Bingxu Quan
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yuanhui Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd, Beijing 100070, China
| | - Chen Su
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China; National Institute of Low Carbon and Clean Energy, Beijing 102211, China
| | - Guifeng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| |
Collapse
|
14
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
|
16
|
Du Z, Ji M, Li R. Enhancement of membrane fouling mitigation and trace organic compounds removal by electric field in a microfiltration reactor treating secondary effluent of a municipal wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151212. [PMID: 34715231 DOI: 10.1016/j.scitotenv.2021.151212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Applying an electric field in the membrane filtration was an effective method to alleviate membrane fouling and enhance the trace organic compounds (TrOCs) removal. The secondary effluent of a municipal wastewater treatment plant was used as feed water to evaluate the performance of the electric field coupled microfiltration system. Applying a 1.25 V voltage reduced 22.9% membrane fouling by electrophoretic force, and the membrane fouling was alleviated by 70.8% at 3 V by electrochemical oxidation and electric field force. At 3 V, active chlorine and hydroperoxide generated on the electrodes and the acidic environment formed around the anode significantly inhibited the growth of microorganisms and their attachment on the membrane surface, and thus reduced the membrane fouling formed by microorganisms. Electrochemical oxidation also removed the protein in wastewater and changed the main organic components of membrane fouling from microorganisms, protein, and polysaccharide to humic substances and polysaccharide. Furthermore, the electrophoretic force and acidic environment reduced the electrostatic repulsion of humic substances and made them tend to aggregate and form hydrophilic porous fouling structures, which obviously lowered filtration resistance and showed significant membrane fouling mitigation. Also, the electric field effectively enhanced the removal of target TrOCs through electrochemical oxidation and electric field force improving the elimination of TrOCs from 8.5% ~ 26.1% at 0 V to 35.9% ~ 84.8% at 3 V.
Collapse
Affiliation(s)
- Zhen Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
17
|
Xu LL, Wang KP, Li KL, Zhao SY, Wang J. Development and performance of stable PANI/MWNT conductive membrane for contaminants degradation and anti-fouling behavior. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
A novel conductive rGO/ZnO/PSF membrane with superior water flux for electrocatalytic degradation of organic pollutants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119901] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Sun F, Yang J, Shen Q, Li M, Du H, Xing DY. Conductive polyethersulfone membrane facilely prepared by simultaneous phase inversion method for enhanced anti-fouling and separation under low driven-pressure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113363. [PMID: 34314960 DOI: 10.1016/j.jenvman.2021.113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Electrically conductive membranes have been regarded as a new alternative to overcome the crucial drawbacks of membranes, including permeability-selectivity trade-off and fouling. It is still challenging to prepare conductive membranes with good mechanical strength, high conductivity and stable separation performance by reliable materials and methods. This work developed a facile method of simultaneous phase inversion to prepare electrically conductive polyethersulfone (PES) membranes with carboxylic multiwalled carbon nanotubes (MWCNT) and graphene (Gr). The resultant MWCNT/Gr/PES nanocomposite membranes are composed of the upper MWCNT/Gr layer with good conductivity and the base PES layer providing mechanical support. MWCNT as nanofillers effectively turns the insulting PES layers to be electrically conductive. With the dispersing and bridging functions of Gr, the MWCNT/Gr layer shows an enhanced electric conductivity of 0.10 S/cm. This MWCNT/Gr/PES membrane in an electro-filtration cell achieves excellent retention of Cu(II) ions up to 98 % and a high flux of 94.5 L m-2∙h-1∙bar-1 under a low driven-pressure of 0.1 MPa. The conductive membrane also shows improved anti-fouling capability during protein filtration, due mainly to the electrostatic repulsion and hydrogen evolution reaction on the electrode. This facile strategy has excellent potential in electro-assistant membrane filtration for fouling control and effective separation.
Collapse
Affiliation(s)
- Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Jingyi Yang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Qi Shen
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hong Du
- Shenzhen Water Group, Shenzhen, China
| | - Ding Yu Xing
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
20
|
Pu L, Zhang J, Wang C, Pan Y, Zhao Y, Bu Y, Zhang Q, Pan B, Gao G. Membrane cleaning strategy via in situ oscillation driven by piezoelectricity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Xu L, Wang K, Wang J, Patterson DA. Linking the Tuneability and Defouling of Electrically Conductive Polyaniline/Exfoliated Graphite Composite Membranes. MEMBRANES 2021; 11:membranes11080631. [PMID: 34436394 PMCID: PMC8400208 DOI: 10.3390/membranes11080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Stimuli responsive membranes, which are able to respond to environmental stimuli, are attracting ever-increasing interests. In this study, we blended exfoliated graphite (EG) into the polyaniline (PANI) and developed PANI/EG composite membranes. The properties of the new generated membranes, especially the stimuli response properties (e.g., electrical tuneability, deformation), were studied. The fouling removal ability of the membrane under applied electrical potential was also investigated by using bovine serum albumin (BSA) as a model foulant. A flat membrane with defect-free surface and good adhesion to the support layer was formed by non-solvent induced phase separation method. The electrical conductivity of the formed PANI/EG composite membrane was (5.10 ± 0.27) ×10-4 S cm-1. The dynamic droplet penetration rate through the membranes showed an increase under applied electrical potential, which gives a preliminary quantitative indication of the electrical tuneability of the membranes. The membrane deformation appeared at a fast response under applied potential and recovered to its original position immediately when removing the applied potential. The application of electrical potential led to the removal of BSA foulant from the membrane surface as indicated by the increase in permeance of the fouled membrane on cleaning with 46.2% flux recovery ratio and increased BSA concentration in the wash solution. The electrically conductive PANI/EG composite membranes are able to respond to electrical stimuli, enabling a new range of potential applications including externally tuneability and in situ removal and control of fouling.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
- Correspondence:
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | | |
Collapse
|
22
|
Mantel T, Jacki E, Ernst M. Electrosorptive removal of organic water constituents by positively charged electrically conductive UF membranes. WATER RESEARCH 2021; 201:117318. [PMID: 34134036 DOI: 10.1016/j.watres.2021.117318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Negatively charged electrically conductive ultrafiltration (UF) membranes have been intensively investigated for fouling mitigation and rejection enhancement in recent years. This study reports the novel approach of applying positive charge (+2.5 V cell potential) to a conductive membrane to induce electrosorption of negatively charged substances onto the membrane. Subsequently, desorption of negatively charged substances is achieved by changing the potential periodically (e.g., after 30 min) to negative charge (-2.5 V cell potential). For this purpose, sputter deposition of ultra-thin gold layers (40 nm) is used to generate electrically conductive gold-polymer-gold flat sheet membranes by coating the active and the support layer of two commercial polymer UF membranes (polyethersulfone UP150, polyamide M5). When M5 membrane was charged positively during filtration (+2.5 V), Suwannee River NOM, Hohloh lake NOM, humic acid and Brilliant Blue ionic dye showed removal rates of 70 %, 75% and 93% and 99%, respectively. Whereas, when no potential was applied (0 V) removal rates were only 1 - 5 %. When a positive potential was applied to the active membrane layer and a negative potential was applied to the support layer (cell potential 2.5 V), a significant increase of flux with 25 L/(m² h) was observed due to the induction of electro-osmosis. Electrosorption was only observed for M5 membrane (ζ: +13 mV, pH 7) and not with UP150 membrane (ζ: -29 mV, pH 7). Due to a low current density of 1.1 A/m² at a flux of 100 L/(m² h), the additional energy consumption of electrosorption and desorption process was low with 0.03 kWh per m³ of permeate. This study delivered the proof of concept for the novel process of electrosorptive UF with energy consumption between microfiltration and ultrafiltration but NOM removal rates of nanofiltration membranes.
Collapse
Affiliation(s)
- Tomi Mantel
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany.
| | - Elena Jacki
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| |
Collapse
|
23
|
Ying XB, Huang JJ, Shen DS, Feng HJ, Jia YF, Guo QQ. Fouling behaviors are different at various negative potentials in electrochemical anaerobic membrane bioreactors with conductive ceramic membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143199. [PMID: 33234267 DOI: 10.1016/j.scitotenv.2020.143199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling remains a critical challenge to the practical application of anaerobic membrane bioreactor (AnMBR). To address this challenge, a conductive ceramic membrane was prepared for fouling control in AnMBR. By using the conductive membranes, the anti-fouling performances were enhanced about 3 times at potentials below -1.0 V vs Ag/AgCl compared to the conventional AnMBR. The particle size distributions and the electric field calculations suggest that such an enhancement was mainly attributed to the increased particle sizes of foulants in the supernatant and the electric field forces. Moreover, the scanning electron microscope and confocal laser scanning microscope results show that the conductive membrane at -1.0 V could increase the porosity of the gel layer on the surface, whereas the conductive membrane at -2.0 V could inhibit the activity of adhering bacteria. Surprisingly, membrane fouling of electrically-assisted AnMBR (AnEMBR) at -0.5 V was increased, which was attributed to a dense biofilm-like structure formation. Such a result is contrary to the conventional cognition that negative potential could mitigate the membrane fouling. Overall, this work supplements the understanding of the anti-fouling effects of the electric field in AnEMBR, and provides supplementary information for the engineering application of AnEMBR.
Collapse
Affiliation(s)
- Xian-Bin Ying
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jing-Jing Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dong-Sheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| | - Yu-Feng Jia
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, PR China
| | - Qiao-Qi Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| |
Collapse
|
24
|
Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Larocque MJ, Latulippe DR, de Lannoy CF. Formation of electrically conductive hollow fiber membranes via crossflow deposition of carbon nanotubes – Addressing the conductivity/permeability trade-off. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Liu L, Li K, Zhao S, Wang J, Lan H, Wang J. The effects of electrophoresis, bubbles and electroosmosis for conductive membrane performance in the electro-filtration process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Fouling reduction and recovery during forward osmosis of wastewater using an electroactive CNT composite membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Ho KC, Teoh YX, Teow YH, Mohammad AW. Life cycle assessment (LCA) of electrically-enhanced POME filtration: Environmental impacts of conductive-membrane formulation and process operating parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111434. [PMID: 33045646 DOI: 10.1016/j.jenvman.2020.111434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the environmental impacts of the formulation of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) conductive membranes and of the process operating parameters of electrically-enhanced palm oil mill effluent (POME) filtration. Two different analyses approaches were employed, cradle-to-gate approach for conductive membrane production and gate-to-gate approach for the POME filtration process. The parameters in conductive-membrane formulation (e.g. the weight ratio of carbon nanomaterials, and concentration of GO/MWCNT nanohybrids) and process operating parameters (e.g. electric field strength and electricity operating mode) were investigated. The findings herein are twofold. Firstly, for the fabrication of GO/MWCNT conductive membranes, the best weight ratio of GO:MWCNTs was found to be 1:9, given its superior membrane electrical conductivity with lower environmental impacts by 8.51% compared to pristine MWCNTs. The most suitable concentration of carbon nanomaterials was found to be 5 wt%, given its lowest impacts on resource depletion, human health, and ecosystems. Secondly, for the electrically-enhanced POME filtration, the optimum process operating parameters were found to be the application of an electric field of 300 V/cm in the continuous mode, given its lower environmental impacts (22.99%-89.30%) secondary to its requirement of the least electricity to produce permeate. The present study has established not only the optimized conditions in membrane formulation but also the operating parameters of electrically-enhanced filtration; such findings enable the use of cleaner production and sustainable approach to minimize fouling for industrial applications, whilst maintaining excellent efficiency.
Collapse
Affiliation(s)
- K C Ho
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Y X Teoh
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Y H Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - A W Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Kumari P, Bahadur N, Cretin M, Kong L, O'Dell LA, Merenda A, Dumée LF. Electro-catalytic membrane reactors for the degradation of organic pollutants – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00091h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electro-catalytic membrane reactor exhibiting electro-oxidation degradation of organic pollutants on anodic membrane.
Collapse
Affiliation(s)
- Priyanka Kumari
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
- TERI-Deakin Nano-Biotechnology Centre (TDNBC), Teri Gram, Gwal pahari, Gurugram 122003, Haryana, India
| | - Nupur Bahadur
- TERI-Deakin Nano-Biotechnology Centre (TDNBC), Teri Gram, Gwal pahari, Gurugram 122003, Haryana, India
- TADOX Technology Centre for Water Reuse, Water Resources Division, The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi-110003, India
| | - Marc Cretin
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Andrea Merenda
- Institute for Frontier Materials, Deakin University, Geelong, Waurn Ponds, 3216, Victoria, Australia
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Xu LL, Liu L, Wang KP, Zhao SY, Liu QY, Zhang Y, Wang J. Development of a novel electrocoagulation membrane reactor with electrically conductive membranes as cathode to mitigate membrane fouling. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118713] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Liu Y, Gao G, Vecitis CD. Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. Acc Chem Res 2020; 53:2892-2902. [PMID: 33170634 DOI: 10.1021/acs.accounts.0c00544] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rapid population growth and industrialization have driven the emergence of advanced electrochemical and membrane technologies for environmental and energy applications. Electrochemical processes have potential for chemical transformations, chloralkali disinfection, and energy storage. Membrane separations have potential for gas, fluid, and chemical purification. Electrochemical and membrane technologies are often used additively in the same unit process, e.g., the chloroalkali process where a membrane is used to separate cathodic and anodic products from scavenging each other. However, to access the maximal potential requires intimate hybridization of the two technologies into an electroactive membrane. The combination of the two discrete technologies results in a range of synergisms such as reduced footprint, increased processing kinetics, reduced fouling, and increased energy efficiency.Due to their high specific surface area, excellent electric conductivity, and desirable robustness, 1D carbon nanotubes (CNTs) hold promise for many applications over a range of industry sectors such as a base material for electrodes and membranes. Importantly, CNT morphology and surface chemistry can be rationally modified and fine-tuning of these CNT physicochemical properties can enhance their functionality toward practical applications. The CNT 1D form allows assembly of a stable thin-film fibrous network by a variety of facile techniques. These CNT networks have pore sizes in the range of 10-500 nm (dpore ∼ 6-8dCNT) and thicknesses of 10-200 μm, both similar to those of classical polymer membranes, thus allowing for straightforward incorporation into commercial membrane devices modified for electroactivity inclusion.In this Account, CNTs and their composites are used as model electroactive porous materials to exemplify the design strategies and environmental applications of emerging electroactive membrane technology. The Account begins with a brief summary of the electroactive membrane design principles and flow processes developed by our groups. After the methodology section, a detailed discussion is provided on the underlying physical-chemical mechanisms that govern the electroactive membrane technology. Then we summarize our findings on the rational design of several flow-through electrochemical CNT filtration systems focused on either anodic oxidation reactions or cathodic reduction reactions. Subsequently, we discuss a recently discovered electrochemical valence-state-regulation strategy that is capable to detoxify and sequester heavy metal ions. Finally, we conclude the Account with our perspectives toward future development of the electroactive membrane technology.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092 China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
32
|
Liu Y, Liu F, Ding N, Hu X, Shen C, Li F, Huang M, Wang Z, Sand W, Wang CC. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Bergsman DS, Getachew BA, Cooper CB, Grossman JC. Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat Commun 2020; 11:3636. [PMID: 32686666 PMCID: PMC7371709 DOI: 10.1038/s41467-020-17259-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature, enabling the formation of LIG without any changes to the membrane's underlying pore structure. These membranes are shown to have comparable sheet resistance to carbon-nanotube-composite membranes. They are electrochemically stable and maintain their permeability after lasing, demonstrating their competitive performance as electrically conductive membranes. These results demonstrate the immense versatility of SIS for modifying materials when combined with laser induced graphitization for a variety of applications.
Collapse
Affiliation(s)
- David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA
| | - Bezawit A Getachew
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA
| | - Christopher B Cooper
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA.
| |
Collapse
|
34
|
Reduction of Biofouling of a Microfiltration Membrane Using Amide Functionalities-Hydrophilization without Changes in Morphology. Polymers (Basel) 2020; 12:polym12061379. [PMID: 32575508 PMCID: PMC7362187 DOI: 10.3390/polym12061379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023] Open
Abstract
A major goal of membrane science is the improvement of the membrane performance and the reduction of fouling effects, which occur during most aqueous filtration applications. Increasing the surface hydrophilicity can improve the membrane performance (in case of aqueous media) and decelerates membrane fouling. In this study, a PES microfiltration membrane (14,600 L m-2 h-1 bar-1) was hydrophilized using a hydrophilic surface coating based on amide functionalities, converting the hydrophobic membrane surface (water contact angle, WCA: ~90°) into an extremely hydrophilic one (WCA: ~30°). The amide layer was created by first immobilizing piperazine to the membrane surface via electron beam irradiation. Subsequently, a reaction with 1,3,5-benzenetricarbonyl trichloride (TMC) was applied to generate an amide structure. The presented approach resulted in a hydrophilic membrane surface, while maintaining permeance of the membrane without pore blocking. All membranes were investigated regarding their permeance, porosity, average pore size, morphology (SEM), chemical composition (XPS), and wettability. Soxhlet extraction was carried out to demonstrate the stability of the applied coating. The improvement of the modified membranes was demonstrated using dead-end filtration of algae solutions. After three fouling cycles, about 60% of the initial permeance remain for the modified membranes, while only ~25% remain for the reference.
Collapse
|
35
|
Sun J, Hu C, Wu B, Liu H, Qu J. Improving ion rejection of graphene oxide conductive membranes by applying electric field. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Ma C, Yi C, Li F, Shen C, Wang Z, Sand W, Liu Y. Mitigation of Membrane Fouling Using an Electroactive Polyether Sulfone Membrane. MEMBRANES 2020; 10:membranes10020021. [PMID: 32019206 PMCID: PMC7074576 DOI: 10.3390/membranes10020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/13/2023]
Abstract
Membrane fouling is the bottleneck limiting the wide application of membrane processes. Herein, we adopted an electroactive polyether sulfone (PES) membrane capable of mitigating fouling by various negatively charged foulants. To evaluate anti-fouling performance and the underlying mechanism of this electroactive PES membrane, three types of model foulants were selected rationally (e.g., bovine serum albumin (BSA) and sodium alginate (SA) as non-migratory foulants, yeast as a proliferative foulant and emulsified oil as a spreadable foulant). Water flux and total organic carbon (TOC) removal efficiency in the filtering process of various foulants were tested under an electric field. Results suggest that under electrochemical assistance, the electroactive PES membrane has an enhanced anti-fouling efficacy. Furthermore, a low electrical field was also effective in mitigating the membrane fouling caused by a mixture of various foulants (containing BSA, SA, yeast and emulsified oil). This result can be attributed to the presence of electrostatic repulsion, which keeps foulants away from the membrane surface. Thereby it hinders the formation of a cake layer and mitigates membrane pore blocking. This work implies that an electrochemical control might provide a promising way to mitigate membrane fouling.
Collapse
Affiliation(s)
- Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chao Yi
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- Correspondence: ; Tel.: +86-21-6779-8752
| |
Collapse
|
37
|
Souza-Chaves BM, Dezotti M, Vecitis CD. Synergism of ozonation and electrochemical filtration during advanced organic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121085. [PMID: 31465946 DOI: 10.1016/j.jhazmat.2019.121085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/19/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Here, we investigated the synergistic effect towards phenol degradation and mineralization between ozonation (O3) and electrochemical filtration (ECF) using perforated titanium as cathode and porous carbon nanotube (CNT) networks as anode. A flow rate of 1.6 mL min-1, 10 mM of sodium sulfate electrolyte, 1.0 mM of phenol (model aromatic compound), and an ozone dose of 12 mgO3 L-1 were used. Insight into the synergistic mechanism was achieved via carbon anode morphology characterization and phenol degradation kinetics analysis. Improved kinetic performance was observed for the combined process (O3-ECF) as compared to the sum of the individual processes, not only towards phenol degradation (3.2-fold increase), but also towards phenol mineralization (2.2-fold increase). Scanning electron microscopy revealed a significant decrease of polymer formation and deposition on CNT after the hybrid O3-ECF process as compared to the ECF alone. Voltage-dependent (0-2.5 V) ozone CNT functionalization was investigated at pH 7-11 to assist in elucidation of the synergistic mechanism. X-Ray photoelectron spectroscopy indicated increases up to 26-fold in CNT oxygen content post-ozonation at pH 7 comparing to fresh CNT. Various potential O3-ECF synergistic reaction mechanisms for organic aromatic oxidation and mineralization are discussed.
Collapse
Affiliation(s)
- Bianca M Souza-Chaves
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States; Programa de Engenharia Química - PEQ/COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, RJ, Brazil.
| | - Márcia Dezotti
- Programa de Engenharia Química - PEQ/COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Chad D Vecitis
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| |
Collapse
|
38
|
Wu Y, Xia Y, Jing X, Cai P, Igalavithana AD, Tang C, Tsang DCW, Ok YS. Recent advances in mitigating membrane biofouling using carbon-based materials. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120976. [PMID: 31454608 DOI: 10.1016/j.jhazmat.2019.120976] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 05/26/2023]
Abstract
Biofouling is the Achilles Heel of membrane processes. The accumulation of organic foulants and growth of microorganisms on the membrane surface reduce the permeability, shorten the membrane life, and increase the energy consumption. Advancements in novel carbon-based materials (CBMs) present significant opportunities in mitigating biofouling of membrane processes. This article provides a comprehensive review of the recent progress in the application of CBMs in antibiofouling membrane. It starts with a detailed summary of the different antibiofouling mechanisms of CBM-containing membrane systems. Next, developments in membrane modification using CBMs, especially carbon nanotubes and graphene family materials, are critically reviewed. Further, the antibiofouling potential of next-generation carbon-based membranes is surveyed. Finally, the current problems and future opportunities of applying CBMs for antibiofouling membranes are discussed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yinfeng Xia
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; College of Water Conservancy & Environmental Engineering, Zhejiang University of Water Resources & Electric Power, Hangzhou, China
| | - Xinxin Jing
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chuyang Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China; School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia; School of Civil and Environmental Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
39
|
Rodrigues R, Mierzwa JC, Vecitis CD. Dataset and detailed methodology for structure and performance characterization of modified polymeric membranes. Data Brief 2019; 28:104862. [PMID: 31872001 PMCID: PMC6909045 DOI: 10.1016/j.dib.2019.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
The data contained in this publication refers to protocols adopted characterization of clay nanoparticles (CN) membranes with and without the use of polyethylene oxide (PEO) as pore former. The membrane casting solutions were produced by dissolving PS (18% w/w) in NMP with addition of CN (1–5% w/w CN/PS) and/or PEO (1–5% w/w PEO/PS) when applicable. Membranes with no CN or PEO were used as a control. Pure water permeability of cast membranes was determined using the cross-flow cell unit. Viscosity was measured for most casting solution compositions and contact angle was measured for all membranes. The control membrane was further compared in detail to the highest permeability membranes with only CN (1.5%), only PEO (5%), 1.5% CN and 5% PEO (combination of optimal individual permeabilities), and 4.5% CN and 5% PEO (optimal combined permeability) regarding thickness, porosity, rejection, fouling resistance, surface charge, and thermal/mechanical properties. The relevance of the data presented here is to show details about methods for characterizing membranes for future comparison of performance and eventual improvement of characterization methods.
Collapse
Affiliation(s)
- Raphael Rodrigues
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States.,Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, United States
| | - José Carlos Mierzwa
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Chad D Vecitis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| |
Collapse
|
40
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
41
|
Hutfles J, Lumley C, Chen X, Ren ZJ, Pellegrino J. Graphene-integrated polymeric membrane as a flexible, multifunctional electrode. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Liang S, Li M, Cao J, Zuo K, Bian Y, Xiao K, Huang X. Integrated ultrafiltration–capacitive-deionization (UCDI) for enhanced antifouling performance and synchronous removal of organic matter and salts. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Liu L, Xu Y, Wang K, Li K, Xu L, Wang J, Wang J. Fabrication of a novel conductive ultrafiltration membrane and its application for electrochemical removal of hexavalent chromium. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Zhu X, Jassby D. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges. Acc Chem Res 2019; 52:1177-1186. [PMID: 31032611 DOI: 10.1021/acs.accounts.8b00558] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To meet the increasing demand for water, potable water providers are turning toward unconventional waters, such as seawater and wastewater. These highly saline and/or heavily contaminated water sources are difficult to treat, demanding the use of advanced technology not typically used to treat conventional water sources such as river water or fresh groundwater. Of these advanced technologies, membrane separation processes are fast becoming the most widely used methods to convert these marginal waters into useful resources. The main factors contributing to the widespread adoption of membrane separation processes for water treatment include their modular nature, small physical footprint, and relative energy efficiency compared to traditional distillation processes. In addition, membranes present a physical barrier to pathogens, which is an attractive feature in terms of disinfection credits. However, traditional membrane materials suffer from several distinct drawbacks, which include membrane fouling (the accumulation of material on the membrane surface that blocks the flow of water), the need for high-pressure membranes (such as reverse osmosis (RO) or nanofiltration (NF)) or membrane/thermal processes (e.g., membrane distillation (MD)) to remove small contaminant compounds (e.g., trace metals, salt, endocrine disrupting compounds), and a pressure-driven membrane's inability to effectively remove small, uncharged molecules (e.g., N-nitrosodimethylamine (NDMA), phenol, acetone, and boron). Electrically driven physical and chemical phenomena, such as electrophoresis, electrostatic repulsion, dielectrophoresis, and electricity-driven redox reactions, have long been coupled to membrane-based separation processes, in a process known as electrofiltration. However, it is only in recent years that appropriate membrane materials (i.e., electrically conducting membranes (EMs)) have been developed that enable the efficient use of these electro-driven processes. Specifically, the development of EM materials (both polymeric and inorganic) have reduced the energy consumption of electrofiltration by using the membrane as an electrode in an electrochemical circuit. In essence, a membrane-electrode allows for the concentrated delivery of electrical energy directly to the membrane/water interface where the actual separation process takes place. In the past, metal electrodes were placed on either side of the membrane, which resulted in large potentials needed to drive electrochemical/electrokinetic phenomena. The use of a membrane-electrode dramatically reduces the required potentials, which reduces energy consumption and can also eliminate electrocorrosion and the formation of undesirable byproducts. In this Account, we review recent developments in the field of electrofiltration, with a focus on two water treatment applications: desalination and water reuse (wastewater or contaminated groundwater recycling). Specifically, we discuss how EMs can be used to minimize multiple forms of fouling (biofouling, mineral scaling, organic fouling); how electrochemical reactions at the membrane/water interface are used to destroy toxic contaminants, clean a membrane surface, and transform the local pH environment, which enhances the rejection of certain contaminants; how electric fields and electrostatic forces can be used to reorient molecules at the membrane/water interface; and how electrical energy can be transformed into thermal energy to drive separation processes. A special emphasis is placed on explicitly defining the additional energy consumption associated with the electrochemical phenomena, as well as the additional cost associated with fabricating EM materials. In addition, we will discuss current limitations of the electrofiltration process, with particular attention given to the current limitations of membrane materials and the future research needs in the area of membrane materials and module development.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Fan X, Liu Y, Wang X, Quan X, Chen S. Improvement of Antifouling and Antimicrobial Abilities on Silver-Carbon Nanotube Based Membranes under Electrochemical Assistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5292-5300. [PMID: 30933494 DOI: 10.1021/acs.est.9b00313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excellent fouling resistance to various foulants is crucial to maintain the separation performance of membranes in providing potable water. Antimicrobial modification is effective for antibiofouling but fails to mitigate organic fouling. Improving surface charges can improve the resistance to charged foulants, but the lack of antimicrobial ability results in bacterial aggregation. Herein, a silver nanoparticle modified carbon nanotube (Ag-CNT)/ceramic membrane was prepared with enhanced antifouling and antimicrobial properties under electrochemical assistance. The presence of silver nanoparticles endows the composite membrane with antimicrobial ability by which biofilm formation is inhibited. Its steady-state flux is 1.9 times higher than that for an unmodified membrane in filtering bacterial suspension. Although the formation of organic fouling did weaken the biofouling resistance, the negatively charged bacteria and organic matter can be sufficiently repelled away from the cathodic membrane under electrochemical assistance. The flux loss under a low-voltage of 2.0 V decreased to <10% from >35% for the membrane alone when bacteria and organic matter coexisted in the feedwater. More importantly, silver dissolution was significantly inhibited via an in situ electroreduction process by which the Ag+ concentration in the effluent (<1.0 μg/L) was about 2 orders of magnitude lower than that without voltage. The integration of antimicrobial modification and electrochemistry offers a new prospect in the development of membranes with high fouling resistance in water treatment.
Collapse
Affiliation(s)
- Xinfei Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
- College of Environmental Science and Engineering , Dalian Maritime University , Dalian 116026 , China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xiaochen Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
46
|
Liu H, Ni XY, Huo ZY, Peng L, Li GQ, Wang C, Wu YH, Hu HY. Carbon Fiber-Based Flow-Through Electrode System (FES) for Water Disinfection via Direct Oxidation Mechanism with a Sequential Reduction-Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3238-3249. [PMID: 30768244 DOI: 10.1021/acs.est.8b07297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flow-through configuration for electrochemical disinfection is considered as a promising approach to minimize the formation of toxic byproducts and energy consumption via the enhanced convective mass transport as compared with conventional flow-by one. Under this hydrodynamic condition, it is essential to ascertain the effect of sequential electro-redox processes with the cathode/anode then anode/cathode arrangements on disinfection performance. Here, carbon fiber felt (CFF) was utilized to construct two flow-through electrode systems (FESs) with sequential reduction-oxidation (cathode-anode) or oxidation-reduction (anode-cathode) processes to systematically compare their disinfection performance toward a model Escherichia coli ( E. coli) pathogen. In-situ sampling and live/dead backlight staining experiments revealed that E. coli inactivation mainly occurred on anode via an adsorption-inactivation-desorption process. In reduction-oxidation system, after the cathode-pretreatment, bulk solution pH increased significantly, leading to the negative charge of E. coli cells. Hence, E. coli cells were adsorbed and inactivated easily on the subsequent anode, finally resulting in its much better disinfection performance and energy efficiency than the oxidation-reduction system. Application of 3.0 V resulted in ∼6.5 log E. coli removal at 1500 L m-2 h-1 (50 mL min-1), suggesting that portable devices can be designed from CFF-based FES with potential application for point-of-use water disinfection.
Collapse
Affiliation(s)
- Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Lu Peng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| | - Guo-Qiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| |
Collapse
|
47
|
Bakr AR, Rahaman MS. Crossflow electrochemical filtration for elimination of ibuprofen and bisphenol a from pure and competing electrolytic solution conditions. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:615-621. [PMID: 30471576 DOI: 10.1016/j.jhazmat.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
For the first time, a crossflow electrochemical filtration system containing multiwalled carbon nanotubes (MWNTs) blended with buckypaper as a flat sheet dual membrane electrode was investigated for the removal of two contaminants of emerging concern, Ibuprofen and Bisphenol A. Breakthrough experiments revealed that a crossflow configuration could be highly efficient in eliminating both contaminants at applied DC potentials of 2 and 3 V over an extended period, from pure salt electrolyte as well as from synthetic secondary wastewater effluent. The shear flow provided consistent surface coverage resulting in excellent sorption performance. The long residence time of the two contaminants within the membrane (18.3 s) was sufficient enough to allow for almost complete degradation of phenolic aromatic products and quinoid rings and the resulting formation of aliphatic carboxylic acids, which was more evident at a higher applied potential (3 V). The formation of the non-toxic aliphatic carboxylic acids is a clear indication of the superior electrochemical performance of the crossflow mode over the dead-end flow-through system. Moreover, this study provides an in-depth understanding of different factors such as filter surface area and residence time that can greatly affect the removal of the contaminants considered.
Collapse
Affiliation(s)
- Ahmed Refaat Bakr
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Md Saifur Rahaman
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| |
Collapse
|
48
|
Zhang Y, Yu W, Li R, Xu Y, Shen L, Lin H, Liao BQ, Wu G. Novel conductive membranes breaking through the selectivity-permeability trade-off for Congo red removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Wang K, Xu L, Li K, Liu L, Zhang Y, Wang J. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.043] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|