1
|
Developing strong and tough cellulose acetate/ZIF67 intelligent active films for shrimp freshness monitoring. Carbohydr Polym 2023; 302:120375. [PMID: 36604053 DOI: 10.1016/j.carbpol.2022.120375] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
There is a growing demand for the development of intelligent active packaging films to maintain and monitor the freshness of meat food. Herein, nano Co-based MOF (ZIF67) with ammonia-sensitive and antimicrobial functions was successfully synthesized and then integrated into cellulose acetate (CA) matrix to prepare intelligent active films. The impacts of ZIF67 incorporation on the structure, physical and functional characteristics of CA film were fully investigated. The results demonstrated that the ZIF67 nanofillers were evenly dispersed in CA matrix, resulting in remarkable improvement on tensile strength, toughness, thermal stability, UV barrier, hydrophobicity and water vapor barrier ability of CA film. Furthermore, the prepared CA/ZIF67 films exhibited superb antimicrobial and ammonia-sensitive functions. The CA/ZIF67 intelligent films turned their color from blue at beginning to brown during progressive spoilage of shrimp. These results revealed that the CA/ZIF67 films with excellent antimicrobial and ammonia-sensitive functions could be applied in intelligent active food packaging.
Collapse
|
2
|
Ma X, Wang C, Guo H, Wang Z, Sun N, Huo P, Gu J, Liu Y. Novel dopamine-modified cellulose acetate ultrafiltration membranes with improved separation and antifouling performances. JOURNAL OF MATERIALS SCIENCE 2022; 57:6474-6486. [PMID: 35281667 PMCID: PMC8902852 DOI: 10.1007/s10853-022-07024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Cellulose acetate (CA) is widely used in the preparation of ultrafiltration membranes due to its many excellent characteristics, especially chemical activity and biodegradability. To improve the inherent hydrophobic and antifouling properties of CA membrane, in this work, CA was successfully modified with dopamine (CA-2,3-DA) through selective oxidation and Schiff base reactions, which was confirmed by FTIR and 1H NMR measurements. Then, CA-2,3-DA membrane with high water permeability and excellent antifouling property was prepared by the phase inversion method. Compared with the original CA membrane, the CA-2,3-DA membrane maintained a higher rejection ratio for BSA (92.5%) with a greatly increased pure water flux (167.3 L m-2 h-1), which could overcome the trade-off between permeability and selectivity of the traditional CA membrane to a certain extent. According to static protein adsorption and three-cycle dynamic ultrafiltration experiments, the CA-2,3-DA membrane showed good antifouling performance and superior long-term performance stability, as supported by the experimental results, including flux recovery ratio, flux decline ratio, and filtration resistance. It is expected that this approach can greatly expand the high-value utilization of modified natural organic polysaccharides in separation engineering.
Collapse
Affiliation(s)
- Xi Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Chengyang Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012 People’s Republic of China
| | - Hanxiang Guo
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhaofeng Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Nan Sun
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Pengfei Huo
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiyou Gu
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
3
|
Huang Y, Jin Y, Wang B, Tian H, Weng Y, Sun K, Men S. Preparation and characterization of compatibilized and toughened polylactic acid/cellulose acetate films by long‐chain hyperbranched polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.52097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yansong Huang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yujuan Jin
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Bo Wang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Huafeng Tian
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yunxuan Weng
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Kangdi Sun
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Shuang Men
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| |
Collapse
|
4
|
Yao A, Yan Y, Tan L, Shi Y, Zhou M, Zhang Y, Zhu P, Huang S. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Yang M, Hadi P, Yin X, Yu J, Huang X, Ma H, Walker H, Hsiao BS. Antifouling nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning property. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chen K, Yu J, Huang J, Tang Q, Li H, Zou Z. Improved mechanical, water vapor barrier and UV-shielding properties of cellulose acetate films with flower-like metal-organic framework nanoparticles. Int J Biol Macromol 2020; 167:1-9. [PMID: 33253742 DOI: 10.1016/j.ijbiomac.2020.11.164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
Flower-like metal-organic frameworks (Cu-MOF) nanoparticles are successfully synthesized and incorporated into cellulose acetate (CA) matrix to prepare CA-based functional nanocomposite films via a simple solution-casting method. The effect of the incorporation of flower-like Cu-MOF on the morphological, mechanical, thermal, surface wettability, water vapor barrier, cytotoxicity, photostability and UV-shielding properties of CA films is fully investigated. Results reveal that the flower-like Cu-MOF has good compatibility with CA, providing uniform and compact nanocomposite films. The as-prepared nanocomposite films show improved mechanical properties, surface hydrophobicity, water vapor barrier ability compared to neat CA film, and exhibit super UV-shielding capability through the entire UV regions meanwhile retaining a high visible transparency. Moreover, the high transparency and UV-shielding ability of the nanocomposite films can be still maintained even after continuous UV-light (365 nm) irradiation for 12 h. In addition, MTT cytotoxicity assays towards normal human liver cells (HL-7702) reveal high cell viability (over 80%) and good biocompatibility for the CA/Cu-MOF nanocomposite films. These results indicate that the CA/Cu-MOF nanocomposite films with obviously improved physical and functional performances hold significant potential for transparent packaging and UV-protection applications.
Collapse
Affiliation(s)
- Kui Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jingling Yu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jiawei Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
8
|
Vatanpour V, Faghani S, Keyikoglu R, Khataee A. Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite. Carbohydr Polym 2020; 256:117413. [PMID: 33483008 DOI: 10.1016/j.carbpol.2020.117413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
This study reports the modification of cellulose acetate (CA) membrane with zinc oxide (ZnO)@graphitic carbon nitride (g-C3N4) nanocomposite to improve the antifouling and separation performance. Different combinations of the CA-based membranes such as CA/g-C3N4, CA/ZnO, and CA/ZnO@g-C3N4 were fabricated using the non-solvent induced phase separation (NIPS) method. Membranes were analyzed for their morphology (SEM), porosity, pore size, contact angle, permeability, rejection, and antifouling properties. According to the SEM images of CA/ZnO@g-C3N4, the formation of pear-shaped macro voids and finger-like canals originating from the top layer was evident. Nanocomposite blended membrane with 0.25 wt.% ZnO@g-C3N4 achieved the largest pore radius (3.05 nm) and the lowest contact angle (67.7°). With these characteristics, 0.25 wt.% ZnO@g-C3N4 membrane obtained a pure water flux of 51.3 LMH, which is 2.1 times greater than the bare CA and high BSA and dye rejections with 97.20% and 93.7% respectively. Finally, the antifouling resistance of the CA membrane was greatly improved with FRR increasing from 73.7% to 94.8%, which was accompanied by a significant decrease in the fouling resistance parameters.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719‑14911, Tehran, Iran.
| | - Somayeh Faghani
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719‑14911, Tehran, Iran
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
9
|
Guo H, Peng Y, Liu Y, Wang Z, Hu J, Liu J, Ding Q, Gu J. Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification. Int J Biol Macromol 2020; 160:652-659. [PMID: 32479941 DOI: 10.1016/j.ijbiomac.2020.05.223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
In this contribution, a novel cellulose acetate modified with dopamine (CA-DA) membrane material was designed and prepared by a two-step route consist of chlorination and further substitution reactions. The chemical structure of the prepared CA-DA material was determined by FTIR and 1H NMR, respectively. The CA-DA ultrafiltration membrane was subsequently fabricated by the scalable phase inversion process. Compared with cellulose acetate membrane as the control sample, the introduction of dopamine improved the porosity, pore size and hydrophilicity of the CA-DA membrane, which was helpful to the water permeability (181.2 L/m2h) without obviously affecting the protein rejection (93.5%). According to the static protein adsorption and dynamic cycle ultrafiltration experiments, the CA-DA membrane displayed persistent antifouling performance, which was verified by flux recovery ratio, flux decline ratio and filtration resistance. Moreover, the water flux recovery ratio of the CA-DA membrane was retained at 97.3% after three-cycles of BSA solution filtration, which was much higher than that of the reference CA membrane. This new approach provided a long life and excellent ultrafiltration performance for polymer-based membranes, which has potential application prospects in the field of separation process.
Collapse
Affiliation(s)
- Hanxiang Guo
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yang Peng
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Yang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Zhaofeng Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jingwan Hu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Jinghao Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Qun Ding
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Jiyou Gu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Bio-based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
10
|
Mitigating the fouling of mixed-matrix cellulose acetate membranes for oil–water separation through modification with polydopamine particles. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For decades, the water deficit has been a severe global issue. A reliable supply of water is needed to ensure sustainable economic development in population growth, industrialization and urbanization. To solve this major challenge, membrane-based water treatment technology has attracted a great deal of attention to produce clean drinking water from groundwater, seawater and brackish water. The emergence of nanotechnology in membrane science has opened new frontiers in the development of advanced polymeric membranes to enhance filtration performance. Nevertheless, some obstacles such as fouling and trade-off of membrane selectivity and permeability of water have hindered the development of traditional polymeric membranes for real applications. To overcome these issues, the modification of membranes has been pursued. The use of macromolecules for membrane modification has attracted wide interests in recent years owing to their interesting chemical and structural properties. Membranes modified with macromolecules have exhibited improved anti-fouling properties due to the alteration of their physiochemical properties in terms of the membrane morphology, porosity, surface charge, wettability, and durability. This review provides a comprehensive review of the progress made in the development of macromolecule modified polymeric membranes. The role of macromolecules in polymeric membranes and the advancement of these membrane materials for water solution are presented. The challenges and future directions for this subject are highlighted.
Collapse
|
12
|
Liu S, Zhang L, Chen X, Chu T, Guo Y, Niu M. Cationic micelles self-assembled from quaternized cellulose-g-oligo (ε-caprolactone) amphiphilic copolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Ismail N, El-Gendi A, Essawy H, El-Din LN, Abed K, Ahmed A. Impact of graphene/graphene oxide on the mechanical properties of cellulose acetate membrane and promising natural seawater desalination. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
New formulations of cellulose acetate (CA) membrane with graphene (G)/graphene oxide (GO) are suggested and investigated in the present work. This study is intended to find a wide range of conditions for fabricating CA membranes in the presence of some additions of graphene (G), and graphene oxide (GO). The membrane is prepared by phase inversion process. Microscopic investigations for graphene (G), graphene oxide (GO), and prepared membrane were performed by high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The mechanical properties of prepared membranes are determined and evaluated. Permeation tests were performed using natural seawater and simulated seawater to check the prepared membrane performance. The results presented that the permeate flux of M25% CA membranes containing 0.01 wt.% G is the highest flux (57–74 l/m2 h) compared with the neat CA membrane, and the 0.01 wt.% GO-based membranes, while the GO-based membranes were comparable as the neat CA membrane at operating pressures (30–35 bar) and with a feed of 35 g/l NaCl solution. The results showed a remarkable salt rejection of simulated seawater of 95%, and natural seawater with a feed from the Mediterranean Sea displayed 90% salt rejection and accepted pure water flux as well.
Collapse
|
14
|
Preparation of an Asymmetric Membrane from Sugarcane Bagasse Using DMSO as Green Solvent. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asymmetric cellulose acetate membranes have been successfully fabricated by phase inversion, using sugarcane bagasse (SB) as the starting material. SB is a raw material with high potential to produce cellulose derivatives due to its structure and morphology. Cellulose was extracted from SB by pretreatment with solutions of 5 wt% NaOH, 0.5 wt% EDTA; then bleached with 2 wt% H2O2. Cellulose acetate (CA) was prepared by the reaction between extracted cellulose with acetic anhydride, and H2SO4 as a catalyst. The obtained CA exhibited a high degree of substitution (2.81), determined with 1H-NMR spectroscopy and titration. The functional groups and thermal analysis of the extracted cellulose and the synthesized CA have been investigated by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The change in the crystallinity of the extracted cellulose and CA was evaluated by X-ray diffraction (XRD) spectroscopy. Asymmetric membranes were fabricated using dimethyl sulfoxide (DMSO) as the solvent, with a casting thickness of 250 µm. The obtained membranes were studied by scanning electron microscopy (SEM), DSC and atomic force microscopy (AFM). The hydrophilicity of the membranes was evaluated, as demonstrated by the measurement of water contact angle (WCA) and water content. Furthermore, the antifouling properties of membranes were also investigated.
Collapse
|
15
|
Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; preparation and in vivo evaluation. Int J Biol Macromol 2019; 124:871-887. [DOI: 10.1016/j.ijbiomac.2018.11.224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
16
|
Gholami N, Mahdavi H. Nanofiltration composite membranes of polyethersulfone and graphene oxide and sulfonated graphene oxide. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nader Gholami
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Hossein Mahdavi
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| |
Collapse
|
17
|
Mahdavi H, Norouzian S. Preparation and characterization of modified ultrafiltration nylon 6 membrane modified by poly (acrylamide-co-maleic anhydride). JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1610-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane: application in removal of ceftriaxone sodium. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1470-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Jeon IY, Noh HJ, Baek JB. Hyperbranched Macromolecules: From Synthesis to Applications. Molecules 2018; 23:E657. [PMID: 29538327 PMCID: PMC6017023 DOI: 10.3390/molecules23030657] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/16/2022] Open
Abstract
Hyperbranched macromolecules (HMs, also called hyperbranched polymers) are highly branched three-dimensional (3D) structures in which all bonds converge to a focal point or core, and which have a multiplicity of reactive chain-ends. This review summarizes major types of synthetic strategies exploited to produce HMs, including the step-growth polycondensation, the self-condensing vinyl polymerization and ring opening polymerization. Compared to linear analogues, the globular and dendritic architectures of HMs endow new characteristics, such as abundant functional groups, intramolecular cavities, low viscosity, and high solubility. After discussing the general concepts, synthesis, and properties, various applications of HMs are also covered. HMs continue being materials for topical interest, and thus this review offers both concise summary for those new to the topic and for those with more experience in the field of HMs.
Collapse
Affiliation(s)
- In-Yup Jeon
- Department of Chemical Engineering, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST, Ulsan 44919, Korea.
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST, Ulsan 44919, Korea.
| |
Collapse
|
20
|
Lv J, Zhang G, Zhang H, Yang F. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals. Carbohydr Polym 2017; 174:190-199. [DOI: 10.1016/j.carbpol.2017.06.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/04/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
|
21
|
A polyamide thin-film composite membrane modified by Michael addition grafting of hyperbranched poly(amine ester). JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1272-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Li N, Yin J, Wei L, Shen Q, Tian W, Li J, Chen Y, Jin J, Teng H, Zhou J. Facile Synthesis of Cellulose Acetate Ultrafiltration Membrane with Stimuli-Responsiveness to pH and Temperature Using the Additive of F127-b-PDMAEMA. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naixu Li
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Jun Yin
- Department of Biological and Chemical Engineering; Jingdezhen College; Jingdezhen Jiangxi 333000 China
| | - Lingfei Wei
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Quanhao Shen
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Wei Tian
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Jing Li
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Yong Chen
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Jing Jin
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Hongcheng Teng
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing Jiangsu 211189 China
- Department of Chemical and Pharmaceutical Engineering; Southeast University Chengxian College; Nanjing Jiangsu 210088 China
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research; Southeast University; Nanjing Jiangsu 211189 China
| |
Collapse
|
23
|
Ye M, Zhu N, Ni Z, Dong W, Chen M. Preparation and characterization of innovative cellulose diacetate/epoxy resin blends modified by isophorone diamine. J Appl Polym Sci 2016. [DOI: 10.1002/app.44151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Ye
- Key Laboratory of Food Colloids and Biotechnology (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Nianqing Zhu
- Key Laboratory of Food Colloids and Biotechnology (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Zhongbin Ni
- Key Laboratory of Food Colloids and Biotechnology (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Weifu Dong
- Key Laboratory of Food Colloids and Biotechnology (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| | - Mingqing Chen
- Key Laboratory of Food Colloids and Biotechnology (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University; 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
24
|
Zhou J, Chen J, He M, Yao J. Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization. J Appl Polym Sci 2016. [DOI: 10.1002/app.43946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jianjun Zhou
- College of Science; Nanjing Forestry University; Nanjing 210037 China
| | - Jin Chen
- College of Science; Nanjing Forestry University; Nanjing 210037 China
| | - Ming He
- College of Science; Nanjing Forestry University; Nanjing 210037 China
| | - Jianfeng Yao
- College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 China
| |
Collapse
|
25
|
Synergistic Effect of Functionalized Nanokaolin Decorated MWCNTs on the Performance of Cellulose Acetate (CA) Membranes Spectacular. NANOMATERIALS 2016; 6:nano6040079. [PMID: 28335207 PMCID: PMC5302557 DOI: 10.3390/nano6040079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023]
|
26
|
Hou JZ, Xue HL, Li L, Dou YL, Wu ZN, Zhang PP. Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1630-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Giwa A, Akther N, Dufour V, Hasan SW. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Adv 2016. [DOI: 10.1039/c5ra17221g] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current and recent advances in polymeric and nano-enhanced membrane developments for reverse osmosis are reported in terms of membrane performance and fouling.
Collapse
Affiliation(s)
- Adewale Giwa
- Department of Chemical and Environmental Engineering
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Nawshad Akther
- Department of Chemical and Environmental Engineering
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Virginie Dufour
- Department of Chemical and Environmental Engineering
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Shadi Wajih Hasan
- Department of Chemical and Environmental Engineering
- Masdar Institute of Science and Technology
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
28
|
Effect of hyperbranched polyester and poly(amine ester) on the performance and properties of polyethersulfone membranes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0615-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|