1
|
Maraddi AS, Kumar A, D'Souza GB, Kamath SV, Yoon H, Sanna Kotrappanavar N. CoFe 2O 4 modified bentonite-based mixed matrix loose nanofiltration membranes for effective wastewater treatment. CHEMOSPHERE 2024; 350:141051. [PMID: 38159730 DOI: 10.1016/j.chemosphere.2023.141051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Mixed-matrix membranes (MMMs) with an ideal polymer/hydrophilic flux enhancer interface considerably recuperates the separation and purification performance of membrane. In this direction, a novel CoFe2O4 functionalized natural clay-bentonite (CoFe2O4@BT) material as a compatible flux enhancer was synthesized for preparation of mixed matrix based in polyethersulfone (PES) matrix. Here, the influences of CoFe2O4@BT on the morphology and performance of the MMMs membranes were systematically investigated using various analytical techniques. Meanwhile, the water flux and sepration eficiency of the CoFe2O4@BT-PES membranes significantly enhanced due to the incorporation of CoFe2O4@BT that altered hydrophilicity, pore and surface characteristic features. The water flux as well as separation efficiency range up to 95%, 94.69%, 94.16% of Congo red (CR), Crystal violet (CV), and humic acid (HA) respectively. Meanwhile, the fouling parameters demonstrated that the CoFe2O4@BT-PES membranes exhibited better antifouling property in the long term experiment comparing with commercial polyamide membrane. CoFe2O4@BT material incorporated membranes showed less decline ratio and a better recovery ratio. The high rejection of dyes with a high permeation flux of the newly designed membranes indicated an amazing possibility for dye purification. In this study, a potential dye mechanism for composite membranes impacted by synthetic CoFe2O4@BT was also put forth. Within the context of application considerations for environmental protection, new materials stock in membranes show good potential for the separation of different organic contaminants.
Collapse
Affiliation(s)
- Ashok Shrishail Maraddi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Anshu Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Glenita Bridget D'Souza
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Smitha V Kamath
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Nataraj Sanna Kotrappanavar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India; School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|
2
|
Hollow-fiber mixed-matrix membrane impregnated with glutaraldehyde-crosslinked polyethyleneimine for the removal of lead from aqueous solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J. Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Kai Fan, Zhou G, Gao C, Li J, Xu F. Removal of Cerium from Wastewater Based on Polymer-Enhanced Ultrafiltration Technology through Polyethersulfone-g-Poly(N-vinyl-2-pyrrolidone) Modified Membrane. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Huyen DTT, Ray SS, Kim I, Kim M, Kwon Y. Structured pattern hollow fiber membrane designed via reverse thermally induced phase separation method for ultrafiltration applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dao Thi Thanh Huyen
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Saikat Sinha Ray
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - In‐Chul Kim
- Membrane Research Center Korea Research Institute of Chemical Technology Daejeon Republic of Korea
| | | | - Young‐Nam Kwon
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| |
Collapse
|
6
|
Liu X, Wu H, Wu P. Synchronous Engineering for Biomimetic Murray Porous Membranes Using Isocyanate. NANO LETTERS 2022; 22:3077-3086. [PMID: 35343706 DOI: 10.1021/acs.nanolett.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly permselective and durable membranes are desirable for massive separation applications. However, currently most membranes prepared using nonsolvent-induced phase separation (NIPS) suffer from low permeability and a high fouling tendency due to the great challenges in a rational design and also practical approach for membrane optimization. Inspired by the natural Murray network from vascular plants, we developed a hierarchical membrane via a straightforward yet robust strategy, using isocyanate as a multifunctional additive. Thanks to the integrated functions of a phase separation regulator, blowing agent, cross-linker, and functionalization anchor of isocyanate, our strategy is featured as a perfect combination of a phase separation and chemical reaction, and it enables synchronous engineering of the membrane hierarchy on porosity and components. The representative membrane exhibits superior water permeance (334 L/m2·h·bar), protein retention (>98%), and antifouling ability (flux recover ratio ∼ 98%). This work highlights a versatile path for pursuing a highly enhanced performance of NIPS-made membranes, from the fancy perspective of Murray bionics.
Collapse
Affiliation(s)
- Xueyuan Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|
7
|
Interfacial polymerization of a covalent organic framework layer on titanium dioxide@graphene oxide/polyacrylonitrile mixed-matrix membranes for high-performance dye separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Raje A, Buhr K, Koll J, Lillepärg J, Abetz V, Handge UA. Open-Celled Foams of Polyethersulfone/Poly( N-vinylpyrrolidone) Blends for Ultrafiltration Applications. Polymers (Basel) 2022; 14:1177. [PMID: 35335507 PMCID: PMC8953762 DOI: 10.3390/polym14061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Since membranes made of open porous polymer foams can eliminate the use of organic solvents during their manufacturing, a series of previous studies have explored the foaming process of various polymers including polyethersulfone (PESU) using physical blowing agents but failed to produce ultrafiltration membranes. In this study, blends containing different ratios of PESU and poly(N-vinylpyrrolidone) (PVP) were used for preparation of open-celled polymer foams. In batch foaming experiments involving a combination of supercritical CO2 and superheated water as blowing agents, blends with low concentration of PVP delivered uniform open-celled foams that consisted of cells with average cell size less than 20 µm and cell walls containing open pores with average pore size less than 100 nm. A novel sample preparation method was developed to eliminate the non-foamed skin layer and to achieve a high porosity. Flat sheet membranes with an average cell size of 50 nm in the selective layer and average internal pore size of 200 nm were manufactured by batch foaming a PESU blend with higher concentration of PVP and post-treatment with an aqueous solution of sodium hypochlorite. These foams are associated with a water-flux up to 45 L/(h m2 bar). Retention tests confirmed their applicability as ultrafiltration membranes.
Collapse
Affiliation(s)
- Aniket Raje
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Kristian Buhr
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Joachim Koll
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Jelena Lillepärg
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ulrich A. Handge
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany; (A.R.); (K.B.); (J.K.); (J.L.); (V.A.)
- Chair of Plastics Technology, Faculty of Mechanical Engineering, TU Dortmund University, Leonhard-Euler-Straße 5, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Wen X, He C, Hai Y, Ma R, Sun J, Yang X, Qi Y, Wei H, Chen J. Fabrication of an antifouling PES ultrafiltration membrane via blending SPSF. RSC Adv 2022; 12:1460-1470. [PMID: 35425199 PMCID: PMC8979071 DOI: 10.1039/d1ra06354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfonated polysulfone (SPSF) with different sulfonation degrees (10%, 30%, and 50%) was added to polyethersulfone (PES) to improve the separation and antifouling performance of polyethersulfone ultrafiltration membranes. The PES/SPSF blend ultrafiltration membrane was prepared by the non-solvent induced phase inversion method (NIPS), and the effect of sulfonation degree on the ultrafiltration performance was studied. The compatibility of SPSF and PES was calculated by the group contribution method, and confirmed by differential scanning calorimetry (DSC). The morphology and surface roughness of the membrane were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), the chemical composition of the membrane was analyzed by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR), and the permeability and anti-fouling performance of the blend membrane were studied through filtration experiments. The research shows that the flux and anti-fouling performance of the blend membrane have been improved after adding SPSF. When the sulfonation degree of the SPSF is 30%, the pure water flux of the blend membrane can reach 530 L m−2 h−1, the rejection rate of humic acid (HA) is 93%, the flux recovery rate of HA increases from 69.23% to 79.17%, and the flux recovery rate of BSA increases from 72.56% to 83%. The chemical structures of (a) PES and (b) SPSF.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
10
|
Poly (arylene ether ketone) with carboxyl groups ultrafiltration membrane for enhanced permeability and anti-fouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Fang Y, He H, Dong K, Yang J, Qin Z. Preparation and adsorption properties of hyperbranched polyethyleneimine-cellulose nanofiber aerogel. NEW J CHEM 2022. [DOI: 10.1039/d1nj06156a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel cellulose-based aerogel was prepared by a chemical cross-linking reaction and hydrogen bonding between cellulose nanofibers (CNF), polyethylene glycol diglycidyl ether (PEGDE), and hyperbranched polyethyleneimine (HPEI).
Collapse
Affiliation(s)
- Yanyuan Fang
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Hua He
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Jisheng Yang
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| | - Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning, 530004, China
| |
Collapse
|
12
|
Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater. MEMBRANES 2021; 11:membranes11120935. [PMID: 34940436 PMCID: PMC8706919 DOI: 10.3390/membranes11120935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Membranes are an efficient way to treat emulsified heavy metal-based wastewater, but they generally come with a trade-off between permeability and selectivity. In this research, the amine and sulphonic groups on the inner and outer surface of mesoporous silica nanoparticles (MSNs) were first modified by a chemical approach. Then, MSNs with amine and sulphonic groups were utilized as new inorganic nanofiller to fabricate mixed matrix polysulfone (PSU) nanocomposite membranes using the classical phase inversion approach. The resultant nanoparticles and membranes were characterized by their physico-chemical characteristics as well as determination of pure water permeability along with cadmium and zinc ion removal. Embedding nanoparticles resulted in a significant rise in the water permeability as a result of changes in the surface properties and porosity of the membrane. Furthermore, the efficiency of developed membranes to remove cadmium and zinc was significantly improved by more than 90% due to the presence of functional groups on nanoparticles. The functionalized-MSNs/PSU nanocomposite membrane has the potential to be an effective industrial effluent removal membrane.
Collapse
|
13
|
Li G, Qi Y, Lin H, Lu N, Chen J, Wang J, Han Q, Liu F. Ni-metal-organic-framework (Ni-MOF) membranes from multiply stacked nanosheets (MSNs) for efficient molecular sieve separation in aqueous and organic solvent. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wen X, He C, Hai Y, Liu X, Ma R, Sun J, Yang X, Qi Y, Chen J, Wei H. Fabrication of a hybrid ultrafiltration membrane based on MoS 2 modified with dopamine and polyethyleneimine. RSC Adv 2021; 11:26391-26402. [PMID: 35479471 PMCID: PMC9037359 DOI: 10.1039/d1ra03697a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials. MoS2 nanoparticles that were modified with polydopamine (PDA) and polyethyleneimine (PEI), named MoS2-PDA-PEI, were added to fabricate a polyethersulfone ultrafiltration membrane (PES/MoS2-PDA-PEI) for the first time. The effects of modified MoS2 nanoparticles on membrane performance were clarified. The results indicated that the permeability, rejection, and anti-fouling capability of the hybrid PES/MoS2-PDA-PEI membrane have been improved compared with the pristine PES membrane. When the content of MoS2-PDA-PEI nanoparticles in the membrane is 0.5%, the pure water flux of the hybrid membrane reaches 364.03 L m−2 h−1, and the rejection rate of bovine serum albumin (BSA) and humic acid (HA) is 96.5% and 93.2% respectively. The flux recovery rate of HA reached 97.06%. As expected, the addition of MoS2-PDA-PEI nanoparticles promotes the formation of the porous structure and improves the hydrophilicity of the membrane, thereby improving its antifouling performance. The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xiaofan Liu
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
15
|
Sulfonated carbon nano-onion incorporated polyethersulfone nanocomposite ultrafiltration membranes with improved permeability and antifouling property. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:906-965. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable methods have so far been used for the surface modification of biomedical membranes. Several reviews and articles have been published on the improvements achieved in the field of poly(arylsulfone) membranes subjected to various surface modification methods and used in biomedical applications. This review concentrates on the surface modification, biological applications and future perspective of the poly(arylsulfone) biomedical membranes. Different surface modification procedures employed for the poly(arylsulfone) membranes have been classified, studied and compared. Diverse surface modification techniques include surface coating, chemical modification and immobilization/cross-linking, grafting, surface zwitterionicalization, mussel-inspired coating and layer-by-layer assembly. Furthermore, we review the recent research studies performed on the surface modification of the poly(arylsulfone) biomedical membranes. Meanwhile, the properties of biomedical membranes are also discussed in each section. At last, the future perspective and challenges of the strategies utilized for the surface modification of poly(arylsulfone) biomedical membranes are presented.
Collapse
Affiliation(s)
- Vahid Hoseinpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Laya Noori
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Saba Mahmoodpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
17
|
Single-walled carbon nanotubes grafted with dextran as additive to improve separation performance of polymer membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Zhang M, Ni F, He J, Liu Y. Evaluation of the formation and antifouling properties of a novel adsorptive homogeneous mixed matrix membrane with in situ generated Zr-based nanoparticles. RSC Adv 2021; 11:8491-8504. [PMID: 35423351 PMCID: PMC8695176 DOI: 10.1039/d0ra10330f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
In situ generation is a powerful technique used to prepare homogenous adsorptive mixed matrix membranes (MMMs) containing functional nanoparticles, although the mechanism of formation of the membranes is not yet clear and there have been few published evaluations of membrane fouling. We therefore used this method to prepare a novel homogeneous adsorptive Zr-based nanoparticle–polyethersulfone (PES) MMM and systematically studied the mechanism of membrane formation at the atomic level. As the amount of ZrOCl2·8H2O in the casting solution increased, the phase inversion kinetics changed from instantaneous demixing due to the thermodynamic enhancement effect to a delayed demixing process caused by viscosity hindrance. The in situ generation of nanoparticles in these MMMs can be divided into three stages: the migration stage, the exfoliation stage and the stable stage. Our findings provide a fundamental understanding of the interface chemistry in the development of in situ generated MMMs. M2 showed a higher adsorption of As(v) than the pure PES membrane and could be reused after regeneration. The removal of As(v) from the M2 filtration system mainly took place via adsorption rather than size exclusion, as confirmed by EDS and experimental data. The presence of humic acid slightly inhibited the removal of As(v) during the filtration process as a result of the barrier effect caused by the formation of a filter cake via humic acid fouling. The filtration of a bovine serum albumin solution showed that the MMM with in situ generated nanoparticles had better antifouling properties than the PES membrane alone in multiple applications as a result of the enhanced hydrophilic surface. A homogeneous in situ generated Zr-based NPs/PES mixed matrix membrane with enhanced adsorptive and antifouling performance was developed.![]()
Collapse
Affiliation(s)
- Mei Zhang
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Fan Ni
- Department of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Yan Liu
- College of Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| |
Collapse
|
19
|
Deposition of Dopamine and Polyethyleneimine on Polymeric Membranes: Improvement of Performance of Ultrafiltration Process. Macromol Res 2020. [DOI: 10.1007/s13233-020-8156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Vatanpour V, Dehqan A, Harifi-Mood AR. Ethaline deep eutectic solvent as a hydrophilic additive in modification of polyethersulfone membrane for antifouling and separation improvement. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Liao Z, Nguyen MN, Wan G, Xie J, Ni L, Qi J, Li J, Schäfer AI. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122779. [PMID: 32387831 DOI: 10.1016/j.jhazmat.2020.122779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
An effective way to remove micropollutants is desirable for water purification. In this work, a dual-functional ultrafiltration (DFUF) membrane was fabricated by loading hollow mesoporous carbon nanospheres (HMCNs) into the finger-like support layer pores of the polymeric ultrafiltration (UF) membrane. The designed DFUF membrane combines the high selectivity of ultrafiltration that removes macromolecules based on size exclusion mechanism, and excellent adsorption capacity of HMCNs towards micropollutants in water. When tetracycline (TCN) and 17β-Estradiol (E2) were selected as model micropollutants, corresponding 97 % and 94 % removal were achieved at a low pressure less than 0.15 bar and a flux of 50 and 64 L h-1 m-2 (estimated residence time less than 6 s), respectively. Moreover, simultaneous removal of multiple pollutants was demonstrated by filtering a mixture containing TCN and polyethylene glycols (PEG) 600 kDa macromolecules. Over a long filtration period (more than 60 h) that produced 3180 L/m2 of permeate, the TCN concentration reduced from 100 μg/L in the feed to less than 10 μg/L in the permeate. The above results indicate that the DFUF membrane is capable of removing the small molecular and macromolecular pollutants simultaneously at low pressure, and hence offers remarkable potential in water treatment applications.
Collapse
Affiliation(s)
- Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minh Nhat Nguyen
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gaojie Wan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Andrea Iris Schäfer
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Kahrs C, Gühlstorf T, Schwellenbach J. Influences of different preparation variables on polymeric membrane formation via nonsolvent induced phase separation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48852] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Catharina Kahrs
- Sartorius Stedim Biotech GmbH 37079 Goettingen Germany
- Institute for Technical ChemistryLeibniz University Hannover 30167 Hannover Germany
| | - Thorben Gühlstorf
- Sartorius Stedim Biotech GmbH 37079 Goettingen Germany
- Faculty of Computer Science and EngineeringFrankfurt University of Applied Sciences 60318 Frankfurt/Main Germany
| | | |
Collapse
|
23
|
Fang X, Li J, Ren B, Huang Y, Wang D, Liao Z, Li Q, Wang L, Dionysiou DD. Polymeric ultrafiltration membrane with in situ formed nano-silver within the inner pores for simultaneous separation and catalysis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wu Y, Xiao C, Liu H, Huang Q. Fabrication and characterization of novel foaming polyurethane hollow fiber membrane. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Jiang B, Zhang N, Wang B, Yang N, Huang Z, Yang H, Shu Z. Deep eutectic solvent as novel additive for PES membrane with improved performance. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sun H, Tang B, Wu P. Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal. J Colloid Interface Sci 2018; 514:760-768. [DOI: 10.1016/j.jcis.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
|
29
|
Wu X, Xie Z, Wang H, Zhao C, Ng D, Zhang K. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone. RSC Adv 2018; 8:7774-7784. [PMID: 35539120 PMCID: PMC9078463 DOI: 10.1039/c7ra12447c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
Ultrafiltration membranes with improved filtration performance and antifouling properties have been synthesized through blending polyethersulfone with carboxylic acid functionalized polysulfone.
Collapse
Affiliation(s)
- Xing Wu
- Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- China
| | - Zongli Xie
- CSIRO Manufacturing
- Clayton South
- Australia
| | - Huanting Wang
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Chen Zhao
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Derrick Ng
- CSIRO Manufacturing
- Clayton South
- Australia
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- China
| |
Collapse
|
30
|
Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhu J, Zhang Q, Zheng J, Hou S, Zhang S, Li S. Correlation of the polymer hydrophilicity and membrane fabrication process on the properties of asymmetric membranes in a vapor-induced phase-inversion process. J Appl Polym Sci 2017. [DOI: 10.1002/app.44701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhua Zhu
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Qifeng Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Jifu Zheng
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Shuhua Hou
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Suobo Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| | - Shenghai Li
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; 5625 Renmin Street Changchun 130022 China
| |
Collapse
|
33
|
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609306] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Ding
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Yanjie Wang
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Hongbin Chen
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry; Leibniz University of Hannover; Callinstrasse 3A 30167 Hannover Germany
| | - Haihui Wang
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| |
Collapse
|
34
|
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew Chem Int Ed Engl 2017; 56:1825-1829. [DOI: 10.1002/anie.201609306] [Citation(s) in RCA: 454] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Li Ding
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Yanjie Wang
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Hongbin Chen
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry; Leibniz University of Hannover; Callinstrasse 3A 30167 Hannover Germany
| | - Haihui Wang
- School of Chemistry and Chemical Engineering; South China University of Technology; 510640 Guangzhou China
| |
Collapse
|
35
|
The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Temporal evolution of the selectivity-permeability relationship during porous membrane filtration of protein solutions. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Li X, Li J, Fang X, Bakzhan K, Wang L, Van der Bruggen B. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. J Colloid Interface Sci 2016; 469:164-176. [PMID: 26874982 DOI: 10.1016/j.jcis.2016.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaofeng Fang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kariboz Bakzhan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
38
|
Zhao Y, Tang K, Liu Q, Van der Bruggen B, Díaz AS, Pan J, Gao C, Shen J. Recovery of chemically degraded polyethyleneimine by a re-modification method: prolonging the lifetime of cation exchange membranes. RSC Adv 2016. [DOI: 10.1039/c5ra27916j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recovery of chemically degraded cation exchange membranes in a cyclic process.
Collapse
Affiliation(s)
- Yan Zhao
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Kaini Tang
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Qinqin Liu
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - B. Van der Bruggen
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
- Faculty of Engineering and the Built Environment
| | - Arcadio Sotto Díaz
- Department of Chemical and Environmental Technology
- Rey Juan Carlos University
- 28933 Móstoles
- Spain
| | - Jiefeng Pan
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology
- Ocean College
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
39
|
Li Q, Pan S, Li X, Liu C, Li J, Sun X, Shen J, Han W, Wang L. Hollow mesoporous silica spheres/polyethersulfone composite ultrafiltration membrane with enhanced antifouling property. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Li X, Li J, Van der Bruggen B, Sun X, Shen J, Han W, Wang L. Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol–gel formed ZnO nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra05783c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The addition of sol–gel formed ZnO nanoparticles endows the PES membrane with an improved antifouling performance, which expands the potential application of UF membrane in drinking water treatment and wastewater reuse.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | | | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|